
Dynamic	Monitoring	and	Task	Mapping	
Response
§ Use	dynamic information	about	system traffic	to	preferentially	

assign	communicating	tasks	to	cores	to	reduce	the	impact	of	
competing	traffic.

§ Utilize	dynamic	information	in	architecture-aware	context.
§ Requires:	determine	meaningful	architecture-aware	measures	of	

contention	at	run-time	and	deliver	them	on	actionable	time-scales	
at	scale



Components	of	Analysis	and	Feedback
§ Congestion	monitoring.	Weight	potential	communication	routes	

based	on	congestion	measures	(max	stalls	along	a	route).
§ Response	determination	via	graph	partitioning:

§ Graph-based	mapping	library	(Scotch)	maps	tasks	to	nodes	while	attempting	
to minimize	total	cost	of	communication,	accounting	for	both	message	sizes	
and	communication	cost	across	links.		

§ Inputs:	Task	graph	of	application	communication	routes,	weighted	
architecture	graphs

§ Response	implementation	via	feedback	of	partitioning	result	to	
application



Example:	Application	Allocation
§ Sparse	Matrix	Vector	Computation.
§ Communication	with	6	nearest	neighbors
§ 16	nodes,	4	ranks/node

Network Dimensions: 2x2x8



Competing	Application	with	Network	
Traffic	Demands

Max CREDIT_STALL = 68%
Max USED_BW = 61%



Contention	Affects	Potential	Application	
Routes
• 256 possible unique routes
• Task placement 

determines which routes 
are actually utilized during 
execution

• Not all combinations valid -
restrictions due to the 
actual communication 
patterns

• Scotch Mapping: Minimize 
communication cost within 
the restrictions of the 
communication patterns



Results
§ Percentage	Execution	Time	Recovered	by	Performing	

Mapping	with	Various	Metrics	(higher	is	better)

Remapping	based	on	dynamic	network	information	in	a	congested	
environment	recovered	~50%	of	the	time	lost	to	congestion.


