
Practical implementation of
monitoring on Cray systems

CUG 2018, BoF 11C
V. H. Rusu, JG. Piccinali, G. Peretti-Pezzi
Tuesday, May 22nd 2018

Outline

Our goals:
problems we are addressing / questions we want to answer

Implementation goals and constraints:

Software: Open source, Specific stack ?
Hardware requirements, Cray specifically, HPC in general ?

Implementation specifics (details, recipe to share)

Component / Data Flow Diagram of the system ()
Links to relevant information (recipes, papers, discoveries)

Outcomes: (both positive and negative - learning experience)

Example(s) of scenario where the implementation was applied
Did it work? If not, why not?
What would you recommend doing di↵erently?

Q/A
CUG 2018 | 2

Goals

Share lessons learned in monitoring scientific application
usage

Just application usage: what software our researchers use (or
do not use) on our supercomputer ?
Only a subset of overall CSCS monitoring infrastructure
Only a subset of what the monitoring tool can do
Enough to expose (many) problems

Disclaimer

We do scientific application support
reporting usage is our mission
we are neither slurm, nor monitoring tool developers
we are not data scientists

CUG 2018 | 3

To err is human, but disaster requires a computer.

Piz Daint

https://www.cscs.ch/computers/piz-daint/

Hybrid/Multicore Cray XC/40 and XC/50:

Each XC/40 compute node hosts 2 Intel Broadwell CPUs

Each XC/50 compute node hosts 1 Intel Haswell CPU and 1
NVIDIA P100 GPU

Aries interconnect (dragonfly topology), Slurm

CUG 2018 | 4

https://www.cscs.ch/computers/piz-daint/

Typical usage reporting
We track usage with:
http://github.com/Fahey-McLay/xalt.git

Xalt intercepts the user link (ld) and job launcher (srun) user
calls,
it maps program name & libraries to modulefile names,
it records complete list of environment vars, stores the results
and provides reporting tools

CUG 2018 | 5

http://github.com/Fahey-McLay/xalt.git

CSCS specific implementation
xalt: replaced blacklist of environment variables with
whitelist (xalt run submission.py)
xalt: added support for modulefile names longer than 64
characters (XALTdb.py)
xalt: fixed gid capture plus additional slurm job fields
(xalt site pkg.py)

Figure: Left: Xalt’s MySQL DB growth, right: number of jobs
CUG 2018 | 6

Data flow

CUG 2018 | 7

Current di�culties

Some slurm jobs are not captured
no call to srun

srun --multi-prog

module unload xalt

Some slurm jobs may not be fully captured
Multi steps jobs - missing steps
Cancelled slurm jobs - wrong elapsed time (pap145)

Di�cult to map python based applications

MySQL queries are slow - hundreds of jobs per day, and will
get slower

Duplicated data sets (SLURM and XALT databases)

A lot of post processing needed to curate/validate XALT DB

Application mapping has false positives and unmapped
applications

CUG 2018 | 8

What can we do di↵erently?

Instrument user code like XALT 2.0?
Solves the problem that some slurm jobs are not captured
Doesn’t solve the cancelled slurm jobs - no end time

Use native srun instead of XALT?
Decrease maintenance of additional DB
Duplicated data - data curation

Deep learning for application mapping?
Use TensorFlow (ldd, objectdump, command line flags)?
Not enough data to train?
Biased data?
What about the unmapped user code? We will always need to
talk to the users

CUG 2018 | 9

Thank you for your attention

Cary Whitney

Data Visualization

Stockholm/May 23, 2018

My Reference Definitions

Definitions
•  Data - Event and time-series information about a system
•  Data Collect - Structure and setup for the purpose of collecting data.
•  Purpose for collected data

–  Monitoring - Ability to look at a data point
–  Knowledge/Understanding - Learning about what the data may

be saying. New questions being asked.
–  Machine Learning - Grouping/correlation of data points

•  Outcome of a data collected
–  Visualization - A method to display collected data
–  Alerts/notification/feedback - Outreach to a method/object to

perform an action based on the data

Data collect
•  Desire - Everyone wants one because they see the benefit
•  Problems

–  High involvement of people
–  Hardware
–  Time
–  R&D on what is happening
–  Once there is an understanding, how to communicate it in a

usable means
•  But what part is important?

–  Collection of important data (Important is relative to your
environment)

–  Action on collected data

Collection of relative data

Collection
•  Collection type, method, transport, storage, archive, etc of the data is

defined by the site. References from other sites should be
considered.
–  Vendor specific solutions may also work for some sites.
–  Size does not matter, just relevance to the site

•  Large data collection
–  Allows R&D and discovery.
–  Concentrate on all data available
–  Wild idea: Collaborate with smaller organizations so they have

the possibility to contribute. Their ideas are valuable also. :-)
•  Small data collects

–  Contain only data for visualization and alerting/notification
–  Concentrate only on relevant data

Outcome of data collected

Relevant Data
•  Need a good definition of what the data points are. Started
•  Type of data - log/metric

–  Relevant collection rate for monitoring, for ML, for other
applications

–  Log pattern
•  What affects each data point?
•  What the data point affects?
•  Collection method for data. Partially started

–  Do sites need to run an application?
–  Is there a API to get access to the data?
–  Can there be a collection short form? (Small sites)

•  GIT doc site?

Visualization
•  Grafana - I hate to just name a product; the idea is a common

visualization platform Started, can provide
–  Allows multiple data sources on a dashboard
–  Possible multiple data sources in a graph
–  Cray is using it for Lustre stats Started
–  IBM is using it for their GPFS stats Possible, other group
–  Does allow alerting on some data source - No Elastic at this time
–  Dashboards defined and exportable as JSON
–  Adapting a shared dashboard with others involve changing:

•  Data source
•  Maybe changing query in the graphs

–  Let’s create GIT repository and Best Practice on adapting
dashboards

Alert/Notification/Feedback
•  Grafana could be used by some sites. Elastic need something else.
•  Nagios - Is this the default or a good standard?

–  Scripts can be shared
•  Email/SMS of alerts - Are there better methods?
•  Responses to issues

–  Are there best practises in dealing with known issues? Shared?
GIT? Operation documents as a starting point.

–  Automated responses? Do we know enough yet? Goal?
•  Methods? Is this even more site specific? Can information

be shared? A little testing
•  Feedback into other applications? Do we know enough?

–  Share best practices? GIT? :-)

Issues (some)
•  Data

–  From the understanding of different data points, sites can
determine relevance

–  Can ML patterns be shared?
•  Visualization

–  Getting permission from Cray/IBM to use their Grafana instance
for other dashboards and data sources.

–  Our GPFS instance, IBM does not control the dashboards,
Grafana is a site application.

–  Limited to what Grafana can display but open source
•  Alerting/Notification

–  Data abstraction. Example: Allow same Nagios scripts to alert
on a data point stored with different methods

Thank You

Reference Architecture for Monitoring
HPC Systems

Goals of this effort
● Gain insight into system and application problems, resource

constraints, usage trends, through monitoring
● Focus initially on a useful human view of data- ML or prediction can

come later

Implementation goals and constraints

● Scalable, Performant, Minimize jitter, Reliable
● Multiple subsystems (server-side metrics/events, environmental, etc.)
● Portable to other systems, including non-Cray
● Software:

○ Widely adopted
○ Open source or free if possible
○ Leverage Containers
○ ELK or TICK? Graphana? Graylog

● Hardware requirements
● Hot spool database for recent data that is off-system
● Ideally, leverage system itself for long term data store and query, and possibly analysis
● Ideally, seamless boundary between hot and cold spool for visualization interface

Infrastructure Model

● Data: Counter, Event (requires log typing), and Performance (requires polling)
● Components:

● Collect
● Transport
● Store

● Archive, reduction, rotation, resampling
● Query

● Filter by source and timeframe (a job is one common example, but not limited to jobs,
nor compute nodes within a job, or compute nodes themselves)

● Visualize
● Provide method to quickly navigate through data, drill down, cross reference, overlay,

correlate, hover data, etc
● Alerting

Implementation specifics

Still underway.

Outcomes

● Prototype is functional, useful
● Did it work?

○ Yes, but… it’s a prototype. Limited history, limited exposure level.
● What would you recommend doing differently?

● Leverage containers where possible
● Event storms
● RDB table type (RDB at all?)
● Refine data reduction/archival/rotation methods
● Non-monolithic solution (components can be independently deployed and useful)
● Separate mission critical function from non-critical (system doesn’t break if monitoring system

is off)
● Bin data by sample interval?

Q&A

	Outline
	Goal
	Implementation

