
Michele Bertasi

Development Team Lead

21/05/2018

Scalable Accounting & Reporting for Compute Jobs

Bright Cluster Manager



About Bright Cluster Manager

• Bright Cluster Manager:
• Streamlines cluster deployments

• Manages and healthchecks cluster after deployment

• Integrates with OpenStack, Kubernetes, Spark, Ceph

• Cluster management daemon on every node (CMDaemon)

• Management interfaces:
• GUI: Bright View

• CLI: CMSH

• API: JSON API (+ Python & C++ bindings)

• On-premise, off-premise, hybrid

• Easy to re-purpose nodes (also automatically based on workload)

• Rich collection of HPC/deep learning tools & libraries



About Bright & Cray

• Long history between Cray and Bright
• Between ~2010 - ~2016: Bright used on cluster alongside XC systems for 

login nodes, storage nodes, data mover nodes

• Since 2017: Bright standard on all CS systems

• In past completed 2 successful PoCs for Bright on XC

• Ambition still exists to expand from CS to XC series



Why 
Accounting?

• Systems are expensive

• Knowing how they are used helps

• Capacity planning

• Securing budget for future systems

• Chargeback

• Troubleshooting



What do we want to know?

• Who is using the resources?

• Who is using them poorly?

• How was the system behaving in a particular moment in the past?

• Are all the components of the system being used?
• Are the jobs CPU bound or I/O bound?

• Do we have enough network bandwidth?

• What is the utilization on GPUs?



Two different approaches

• Monitoring
• What is going on right now

• Gives you visual insights

• Accounting
• What has happened in a certain period

• Gives you numbers that you can report to others

(e.g. power consumption for this user's jobs was 50 kW hour)



What do we monitor?

•A metric is a value that changes over time

•It helps you understand how different parts of your system behave

•Device based metrics
• Network, CPU, load average, power consumption, ...

•Job based metrics
• Cgroup metrics (CPU, memory, disk I/O)

• Metrics and metadata from the Workload Management System



Monitoring evolution (I)

• Traditionally reporting was per-device (2005)

• Then we introduced per-job reporting (2015)

• Limitations
• No way to aggregate data

• No way to group and filter



Monitoring evolution (II)

• Introduced Workload manager Accounting & Reporting

• Features
• Aggregate and filter metrics

• Create graphs or reports for a particular period of time

• Create reports over historic aggregation of data

• Dynamic and flexible



Examples (I)

Memory usage by users

• Aggregate memory metrics by 
user

• Plot them over a period of time



Examples (II)

Current jobs' waiting time

job_id job_name user group job_waiting_time

7 pi bob dev 69034 s

6 my_mpi_job mike ds 360 s

15 pi bob dev 10 s

• Single metric

• Take the last value

• Sorting

• Show them in a table



Examples (III)

CPU wall clock time used over the last week by account

account account_cpu_time

projectx 15300 CPU s​

seismic 360 CPU s​

drilling 369034 CPU s​

• Aggregating over time

• Grouping by account



Examples (IV)

Power consumption of Bob's jobs over the last week

power_usage

231 kWh

• Aggregation over time

• Filtering by a particular user

• Single number as a result



Grouping and filtering

• Metrics come with labels
• They are arbitrary key value strings providing metadata

• Specified by the metrics producer

• Examples of labels
• User = bob

• Job = job.15

• Hostname = node123

• Queue = high-priority

• Filtering and grouping can be done on labels
• CPU usage only user="bob"

• Average memory usage on nodes with category="bigmem"



Flexible reporting (I)

• Provide sensible defaults and ready to use dashboard

• Different people want different reports
• Impossible to make everyone happy

• Impossible to determine the needs of tomorrow



Flexible reporting (II)

• Standard interfaces and pluggable components

• PromQL as query language
• Known in the industry, well documented

• Prometheus data sources
• Allows integration of open-source metrics samplers

• Easy to create new samplers

• Prometheus query APIs
• Allows plotting from any compatible dashboard (e.g. Grafana)



PromQL (I)

• PromQL is a functional expression language

• Allows to select and aggregate time series data in real time

• Features
• Labels selection

• Arithmetic and comparison operators

• Aggregation

• Joins

• Statistical functions

• Sorting

• ...



PromQL (II)

Jobs' allocated nodes job_metadata_num_nodes



PromQL (III)

User's allocated nodes

sum by(user) (

job_metadata_num_nodes

)



PromQL (IV)

Associate power 
consumption with jobs

job_power_watts =

pwr_consumption

* on(hostname) group_right()

(job_metadata_is_running)

sum by(user) (

job_power_watts

)

pwr_consumption

hostname pwr_consumption

node001 250 W

node002 233 W

node003 245 W

job_id hostname user is_running

5 node001 bob 0

6 node001 bob 1

6 node003 bob 1

7 node002 mike 1

job_id hostname user job_power_watts

5 node001 bob 0

6 node001 bob 250 W

6 node003 bob 245 W

7 node002 mike 233 W

user user_power_watts

bob 495 W

mike 233 W



cgroup

Architecture

Bright Cluster 

Manager

Monitoring DB

Monitor Store Query

query

PromQL

engine

Compute node

Job 

1

Job 

N

...cgroup store



Usage

• Predefined queries
• Sane defaults that work 90% of the cases

• Custom queries
• Modify the defaults

• Save new queries for later use

• Queries on the fly to experiment

• Export the data to Excel, CSV



Accounting for end users (I)

• Jobs metrics are sensitive
• Only the administrators can view everything

• End-users by default are not allowed to see anything

• Planned for BCM 8.2
• Allow end-users to see their metrics

• Permissions define who can see what (e.g. only their own jobs, nothing, 
everything)



Accounting for end users (II)

• The user portal will add accounting & reporting
• No need to be admin to see the monitoring data

• Allows users to get insights from their jobs
• Job based metrics

• Accounting and statistics



Scalability (I)

• Monitoring system currently scales to ~10k nodes in typical use

• The load is a factor of
• # of nodes

• # of jobs

• # of metrics

• Sampling interval



Scalability (II: storage)

• Metrics data is not stored indefinitely
• Raw data limited to last period (time window, or # of samples)

• Older data is consolidated (per day, week, month, ...)

• Recording rules
• Execute queries periodically

• Aggregate data

• Store data for longer periods

• Completely configurable



Availability

• Data is replicated across both head nodes

• At least one head node needs to be up



In the works

• Dedicated monitoring nodes
• Increased scalability and reliability

• Decrease load on head nodes

• Custom job metrics
• Application specific data

• Parametrized queries

• Monitoring for end users

• More default metrics and queries



Conclusion

• Accounting & Reporting allows admins to gain insights
• On how effectively the resources are used

• By which groups of users

• Easy to start with defaults
• No prior knowledge required

• No additional software

• Flexible reporting
• PromQL gives you infinite possibilities

• Standard interfaces
• Plug your metrics

• Plug your queries

• Plug your dashboards



Bright offers a complete platform to 

get insights on your infrastructure...




