

Bright Cluster Manager

Scalable Accounting & Reporting for Compute Jobs

Michele Bertasi Development Team Lead 21/05/2018

About Bright Cluster Manager

- Bright Cluster Manager:
 - Streamlines cluster deployments
 - Manages and healthchecks cluster after deployment
 - Integrates with OpenStack, Kubernetes, Spark, Ceph
- Cluster management daemon on every node (CMDaemon)
- Management interfaces:
 - GUI: Bright View
 - CLI: CMSH
 - API: JSON API (+ Python & C++ bindings)
- On-premise, off-premise, hybrid
- Easy to re-purpose nodes (also automatically based on workload)
- Rich collection of HPC/deep learning tools & libraries

About Bright & Cray

- Long history between Cray and Bright
 - Between ~2010 ~2016: Bright used on cluster alongside XC systems for login nodes, storage nodes, data mover nodes
 - Since 2017: Bright standard on all CS systems
- In past completed 2 successful PoCs for Bright on XC
- Ambition still exists to expand from CS to XC series

Why Accounting?

- Systems are expensive
- Knowing how they are used helps
 - Capacity planning
 - Securing budget for future systems
 - Chargeback
 - Troubleshooting

What do we want to know?

- Who is using the resources?
- Who is using them poorly?
- How was the system behaving in a particular moment in the past?
- Are all the components of the system being used?
 - Are the jobs CPU bound or I/O bound?
 - Do we have enough network bandwidth?
 - What is the utilization on GPUs?

Two different approaches

- Monitoring
 - What is going on right now
 - Gives you visual insights
- Accounting
 - What has happened in a certain period
 - Gives you numbers that you can report to others

(e.g. power consumption for this user's jobs was 50 kW hour)

What do we monitor?

- •A metric is a value that changes over time
- •It helps you understand how different parts of your system behave
- Device based metrics
 - Network, CPU, load average, power consumption, ...
- Job based metrics
 - Cgroup metrics (CPU, memory, disk I/O)
 - Metrics and metadata from the Workload Management System

Monitoring evolution (I)

- Traditionally reporting was per-device (2005)
- Then we introduced per-job reporting (2015)
- Limitations
 - No way to aggregate data
 - No way to group and filter

Monitoring evolution (II)

- Introduced Workload manager Accounting & Reporting
- Features
 - Aggregate and filter metrics
 - Create graphs or reports for a particular period of time
 - Create reports over historic aggregation of data
 - Dynamic and flexible

Examples (I)

Saved query: 🕚

users_job_memory_bytes

Memory usage by users

- Aggregate memory metrics by user
- Plot them over a period of time

End time:

now

Start time:

now-25m

•

Examples (II)

Current jobs' waiting time

job_id	job_name	user	group	job_waiting_time
7	pi	bob	dev	69034 s
6	my_mpi_job	mike	ds	360 s
15	рі	bob	dev	10 s

- Single metric
- Take the last value
- Sorting
- Show them in a table

Examples (III)

CPU wall clock time used over the last week by account

account	account_cpu_time
projectx	15300 CPU s
seismic	360 CPU s
drilling	369034 CPU s

- Aggregating over time
- Grouping by account

Examples (IV)

Power consumption of Bob's jobs over the last week

power_usage 231 kWh

- Aggregation over time
- Filtering by a particular user
- Single number as a result

Grouping and filtering

- Metrics come with labels
 - They are arbitrary key value strings providing metadata
 - Specified by the metrics producer
- Examples of labels
 - User = bob
 - Job = job.15
 - Hostname = node123
 - Queue = high-priority
- Filtering and grouping can be done on labels
 - CPU usage only user="bob"
 - Average memory usage on nodes with category="bigmem"

Flexible reporting (I)

- Provide sensible defaults and ready to use dashboard
- Different people want different reports
 - Impossible to make everyone happy
 - Impossible to determine the needs of tomorrow

Flexible reporting (II)

- Standard interfaces and pluggable components
- PromQL as query language
 - Known in the industry, well documented
- Prometheus data sources
 - Allows integration of open-source metrics samplers
 - Easy to create new samplers
- Prometheus query APIs
 - Allows plotting from any compatible dashboard (e.g. Grafana)

PromQL (I)

- PromQL is a functional expression language
- Allows to select and aggregate time series data in real time
- Features
 - Labels selection
 - Arithmetic and comparison operators
 - Aggregation
 - Joins
 - Statistical functions
 - Sorting
 - ...

PromQL (II)

Jobs' allocated nodes

job_metadata_num_nodes

Saved query: 🕕		Query ty	/pe:	Time:							
New query		• Instan	t Range	Tues	sday, May 15	, 2018 11:0	1	Run 👻			
PromQL Query: 💿											
job_metadata_num_nodes					•						
				^							± ll ≡
🗄 Drag here to set row gro	oups										
NAME	GROUP	HOSTNAME	JOB	JOB ID	JOB NAME	QUEUE	USER	WLM	TIME	VALUE	
job_metadata_num_nodes	bob	mb-c-05-02	JobMet	6	long.job	defq	bob	slurm	Tuesday, May	1	
job_metadata_num_nodes	mike	mb-c-05-02	JobMet	4	long.job	defq	mike	slurm	Tuesday, May	1	
job_metadata_num_nodes	mike	mb-c-05-02	JobMet	5	long.job	defq	mike	slurm	Tuesday, May	1	

PromQL (III)

User's allocated nodes

sum by(user) (job_metadata_num_nodes

PromQL (IV)

Associate power consumption with jobs

hostname	pwr_consumption
node001	250 W
node002	233 W
node003	245 W

pwr_	_consumption	

job_power_watts =
pwr_consumption
* on(hostname) group_right()
(job_metadata_is_running)

sum by(user) (iob power watts		
)	user	user_power_watts
	bob	495 W
	mike	233 W

job_id	hostname	user	job_power_watts
5	node001	bob	0
6	node001	bob	250 W
6	node003	bob	245 W
7	node002	mike	233 W

job_id	hostname	user	is_running
5	node001	bob	0
6	node001	bob	1
6	node003	bob	1
7	node002	mike	1

Usage

- Predefined queries
 - Sane defaults that work 90% of the cases
- Custom queries
 - Modify the defaults
 - Save new queries for later use
 - Queries on the fly to experiment
- Export the data to Excel, CSV

Accounting for end users (I)

- Jobs metrics are sensitive
 - Only the administrators can view everything
 - End-users by default are not allowed to see anything
- Planned for BCM 8.2
 - Allow end-users to see their metrics
 - Permissions define who can see what (e.g. only their own jobs, nothing, everything)

Accounting for end users (II)

- The user portal will add accounting & reporting
 - No need to be admin to see the monitoring data
- Allows users to get insights from their jobs
 - Job based metrics
 - Accounting and statistics

Scalability (I)

- Monitoring system currently scales to ~10k nodes in typical use
- The load is a factor of
 - # of nodes
 - # of jobs
 - # of metrics
 - Sampling interval

Scalability (II: storage)

- Metrics data is not stored indefinitely
 - Raw data limited to last period (time window, or # of samples)
 - Older data is consolidated (per day, week, month, ...)
- Recording rules
 - Execute queries periodically
 - Aggregate data
 - Store data for longer periods
- Completely configurable

Availability

- Data is replicated across both head nodes
- At least one head node needs to be up

In the works

- Dedicated monitoring nodes
 - Increased scalability and reliability
 - Decrease load on head nodes
- Custom job metrics
 - Application specific data
- Parametrized queries
- Monitoring for end users
- More default metrics and queries

Conclusion

- Accounting & Reporting allows admins to gain insights
 - On how effectively the resources are used
 - By which groups of users
- Easy to start with defaults
 - No prior knowledge required
 - No additional software
- Flexible reporting
 - PromQL gives you infinite possibilities
- Standard interfaces
 - Plug your metrics
 - Plug your queries
 - Plug your dashboards

Bright Computing Bright offers a complete platform to get insights on your infrastructure...

