The NIWA/NeSI HPC Replacement Project:
A voyage in complexity integrating (multi-site) XC, CS, ESS and OpenStack systems

- M. Uddstrom\(^1\), B. Corrie\(^1\), N. Jones\(^1\), F. Cantos\(^1\), A. Hicks\(^1\), W. Hayek\(^1\), D. Kelly\(^2\), P. Balle\(^2\), A. Sachitano\(^2\), B. Gilmer\(^2\), J. Altorf\(^2\), D. McCurdy\(^3\), A. Beattie\(^3\).

\(^1\)NIWA/NeSI, \(^2\)Cray, \(^3\)IBM

New Zealand eScience Infrastructure
About NIWA and NeSI

• **NIWA**: National Institute of Water and Atmospheric Research (a Crown Research Institute - CRI):
 • NIWA’S purpose is to enhance the economic value and sustainable management of New Zealand’s aquatic resources and environments, *to provide understanding of climate and the atmosphere and increase resilience to weather and climate hazards to improve safety and wellbeing of New Zealanders.*

• **NeSI**: New Zealand eScience Infrastructure (collaboration: University of Auckland, University of Otago (Dunedin), Manaaki Whenua (CRI, Lincoln) and NIWA (CRI, Wellington))
 • NeSI’s purpose is to *grow the computing capability of researchers* to ensure New Zealand’s future prosperity
 • ~50% Government funded, provides National HPC services
Background and Context

- **NeSI**: HPC legacy:
 - Established in 2011;
 - Share of NIWA’s IBM P575/P6: 2,208 cores;
 - IBM iDataPlex (2012/13/14): 5,784 cores (WSM, SAB, IVB), GPFS

- **NIWA**: HPC legacy:
 - Cray T3E 1200e (1999/04): 544 cores
 - IBM P575/P6 (2010/13): 3,392 cores, GPFS

- **The Challenge**:
 - Four investing institutions (2×CRIs, 2×Uni’s);
 - Design - coming to agreement;
 - RFP…
Design Decisions

• National data-centric research and operational computing environment:
 • Single site: NIWA, Wellington;
 • Capacity Cluster: High Throughput and Private Cloud;
 • Capability: Large simulations & NIWA forecasting;
 • Capability (DR): NIWA forecasting (Auckland);
 • High performance filesystems.

• New user services:
 • Virtual Labs;
 • Remote visualisation;
 • OpenStack private cloud;
 • Advanced data analytics;
 • Hierarchical storage management services.

• Back-end services that mitigate the risk of data loss.
Procurement Strategy

- **Maximise return on investment:**
 - One RFP (3 HPCS);
 - Single Site, shared storage;
 - NIWA ($15.2M), UoA, UoO and MW ($4.8M);
 - Separate NIWA DR site (Auckland).

- **Benchmark driven:**
 - Capacity: NAMD, ANSYS, GROMACS, GATK, NWCHEM;
 - Capability: Unified Model, NEMO, EMOD3D;
 - I/O: IOR, MDTEST, IOZONE;
 - Workflow:
 - Real use case (cylc NWP cycle including post processing)
 - Workloads.

Request for Proposals:
NeSI/NIWA Platforms Refresh

RFP NeSI-002

Contact Details:
Procurement Manager
National Institute of Water and Atmospheric Research Ltd.
43 Market Place,
Auckland 1010,
New Zealand
Email: tac.procurement@niwa.co.nz

Notices: Commercial & Confidential
Version 4.0 Release
Date: 31st January 2017

Authors: NeSI Platforms Manager
NeSI Solutions Manager
Solution (Wellington)

• **NIWA/NeSI:**
 • CS400: 9,604 cores (BRW)
 • CS400: Test Cluster
 • **ESS: 10.1PB** (GS4, GS4S, GL6S)
 • XC50-LC: 18,560 cores (6148)
 • CS500: 1,120 cores (6148)
 • CS400: 180 cores (BRW)
 • Nvidia P100: 16
 • S822L: 30TB

• **Ancillary Nodes:**
 • OpenStack VMs or Baremetal;
 • NICE DCV Remote Visualisation;
 • Virtual Labs;
 • Pre/Post Processing.

New Zealand eScience Infrastructure

CUG Stockholm (23-May-2018)
Storage Architecture (Wellington)

• **User Storage (ESS):**
 - GPFS (aka Scale) clients:
 - CS400;
 - CS500.
 - DVS GPFS nodes:
 - XC50.
 - BOS VM via SR-IOV;
 - Other systems:
 - Protocol nodes.

• **Flexible Storage (S822L):**
 - Provisioning OSs;
 - Databases;
 - ELK, etc.
Some Performance Measures

<table>
<thead>
<tr>
<th>XC core performance relative to P575/P6 at P6 core counts</th>
<th>Large Simulation Codes: (UM, NEMO, EMOD3D)</th>
<th>Large Simulation Codes + NAMD</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRW E5-2695v4 (2.1 GHz, 18 cores/socket) RFP reference</td>
<td>1.60</td>
<td>1.56</td>
</tr>
<tr>
<td>SKL 6148 (2.4GHz, 20 cores/socket) BAFO estimate</td>
<td>2.08</td>
<td>1.97</td>
</tr>
<tr>
<td>SKL 6148 (2.4 GHz, 20 cores/socket) Acceptance Tests</td>
<td>2.14 (33.8%)</td>
<td>2.07 (32.7%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ESS (4×GL6S, 1×GS4S) GPFS v5.0</th>
<th>CS400 (Native GPFS Client)</th>
<th>XC 50 (via DVS – 36 nodes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDTEST (4KB creates, unique dirs.)/s</td>
<td>156,900</td>
<td>35,766 (23%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Read (GB/s)</th>
<th>Write (GB/s)</th>
<th>Total (GB/s)</th>
<th>Read (GB/s)</th>
<th>Write (GB/s)</th>
<th>Total (GB/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IOR (Single Stream) 4KB</td>
<td>2.1</td>
<td>1.3</td>
<td>3.2 (w/IOBUF!)</td>
<td>3.2 (w/IOBUF!)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IOR (Single Stream) 8MB</td>
<td>5.1</td>
<td>3.3</td>
<td>2.5</td>
<td>2.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IOR (total bandwidth)</td>
<td>59.5</td>
<td>86.7</td>
<td>146.3</td>
<td>63.0</td>
<td>64.0</td>
<td>126.9</td>
</tr>
</tbody>
</table>
Status

• **NIWA DR** (XC50, CS500, CS400, OpenStack) installed and operational since 01/2018:
 • P575/P6 (Wellington) users/data transferred (~6PB) 03-Dec-2017;
 • NIWA operational forecasting service 09-Jan-2018.

• **NIWA/NeSI** (CS400 Cluster, XC50, CS500, CS400, OpenStack) installation started: 26-Feb-2018:
 • Upgrade GPFS 4.3 to GPFS 5.0 (s/w and filesystems);
 • Passed acceptance tests: 30 Apr 2018;
 • Bright OpenStack completed 18-May-2018;
 • Expect to put first users on the system – Mid June.

• **Wellington Plant Upgrade**:
 • Increased data centre efficiency, power and cooling redundancy.

• **Issues**: DVS (need a better solution for GPFS sites).
Additional Slides
NIWA/NeSI - Wellington

CUG Stockholm (23-May-2018)
Solution (Auckland)

- **NIWA:**
 - XC50-AC: 4160 cores (6148)
 - CS500: 440 cores (6148)
 - CS400: 144 cores (E5-2695v4)
 - Nvidia P100: 2
 - ESS: 4.5PB (GS4S, GL6S)
 - S822L: 30TB

- **Ancillary Nodes:**
 - OpenStack VMs or Baremetal;
 - Virtual Labs;
 - Remote Visualisation;
 - Pre/Post processing...

- **IBM ESS Storage**
 - Persistent
 - Scratch
 - Operational

- **IBM Spectrum Protect**
 - Backup
 - HSM

- **IBM TS4500 (Offline Storage)**
 - Tape Library
 - LTO

- **IBM S822L Storage**
 - Bright OpenStack
 - Logs
 - Databases

- **CS400 (EDR) (Shared Services)**
 - SLURM
 - DTN
 - Protocol Nodes
 - ELK
 - FreeIPA
 - Ansible Tower
 - Web servers
 - Librarian... etc.

- **XC50 Capability (Kupe)**
 - Compute
 - NIWA/NeSI shared

- **CS500 (EDR) Ancillary Nodes**
 - Large memory
 - GPGPUs

- **CUG Stockholm (23-May-2018)**
NIWA DR - Auckland

Tamaki: System Overview with IBM storage

HPC3/XC50
(104 compute nodes
19 DVS links)

HPC3 Multi-Purpose
(11 x C5500 nodes)

HPC3 Shared SVC
(4 x C5400 nodes)

All links in the network are EDR Infiniband

- IB-Eth
 - 12-port switch for ib-to-Ethernet
 - Gateway; 2 x 16 links to core switches

- 10/40Gb link(s) to Tamaki site

Research & Persistent & Operational & Nearline Storage
1 x GS4s + 2 x GL6s
(4 x EDR IB links to each GS4 and GL6s)

Flexible Storage
2 x Power Servers with internal drives, running Spectrum Scale
Data Management Edition
(2 x EDR IB links to each server)

NIWA DR - Auckland

New Zealand eScience Infrastructure