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Abstract—We demonstrate the importance of both MPI
rank reordering and choice of processor grid topology in the
context of advanced dense linear algebra (DLA) applications
for distributed-memory systems. In particular, we focus on the
advanced polar decomposition (PD) algorithm, based on the
QR-based Dynamically Weighted Halley method (QDWH). The
QDWH algorithm may be used as the first computational step
toward solving symmetric eigenvalue problems and the singular
value decomposition. Sukkari et al. (ACM TOMS, 2017) have
shown that QDWH may benefit from rectangular instead
of square processor grid topologies, which directly impact
the performance of the underlying ScaLAPACK algorithms.
In this work, we experiment an extensive combination of
grid topologies and rank reorderings for different matrix
sizes and number of nodes, and use QDWH as a proxy for
advanced compute-bound linear algebra operations, since it is
rich in dense linear solvers and factorizations. A performance
improvement of up to 54% can be observed for QDWH
on 800 nodes of a Cray XC system, thanks to an optimal
combination, especially in strong scaling mode of operation, for
which communication overheads may become dominant. We
perform a thorough application profiling to analyze the impact
of reordering and grid topologies on the various linear algebra
components of the QDWH algorithm. It turns out that point-
to-point communications may be considerably reduced thanks
to a judicious choice of grid topology, while properly setting
the rank reordering using the features from the cray-mpich
library.

Keywords-Performance Analysis; Rank Reordering; Grid
Topology; Polar Decomposition; Strong Scaling;

I. INTRODUCTION

A considerable amount of parallel applications in HPC
employ point-to-point communication to exchange infor-
mation between a pair of specific processing elements
(PE), besides collective communication involving all the
participants in a simulation. In cases where the point-to-
point communication prevails, substantial slowdown and
load imbalance may manifest, when communication paths
unnecessarily cross compute node boundaries, due to limit-
ing factors such as the network latency encountered for small
messages and the injection bandwidth in general. An obvious
improvement approach consists of maximizing the on-node
communication, and therefore reduce the related off-node

traffic, through appropriate placement of PEs on compute
nodes. A common pattern for point-to-point communications
consists in nearest neighbor interactions on a Cartesian grid
topology, for instance, as seen for the iterative solution
of partial differential equations or sparse matrix problems.
While these applications are the typical beneficiaries of rank
reordering in the strong scaling limit, it is less obvious
that traditional dense linear algebra (DLA) applications can
benefit as well, because of the surface-to-volume effect,
i.e., performing O(n3) operations on O(n2) data, for which
computation time is automatically assumed to be prevalent
over communication and memory traffic. The LINPACK
benchmark [1], which measures the sustained peak per-
formance of a system for the Top500 list, is one of the
most prominent examples. However, applications composed
of successive calls to high-level DLA matrix operations of
irregular workloads may also generate substantial network
traffic and, thus, may suffer from process misplacement,
especially in strong scaling mode of operations. In addi-
tion, load-balancing issues due to specific choices of grid
topologies may appear and become cumbersome. Therefore,
it is critical to mitigate the communication overheads by
employing an optimal rank reordering with an appropriate
PE placement.

In this work, we propose to perform a comprehensive
performance analysis using the polar decomposition (PD)
based on the advanced iterative QR-based Dynamically
Weighted Halley (QDWH) algorithm, which successively
calls dense matrix operations. The QDWH approach for the
PD algorithm is also suited for symmetric eigensolvers and
singular value decompositions, thanks to its high compute-
intensiveness and degree of parallelism. However, in situ-
ations where PEs run out of work due to strong scaling,
QDWH suffers from expensive communication overheads
and load imbalance. Compared to our previous work [9], we
thoroughly investigate the combined performance impact of
rank reordering and processor grid topology on QDWH. In
particular, we highlight the limit of the surface-to-volume
effect and present a rank reordering strategy to overcome
the performance bottlenecks. Since the existing QDWH



relies on ScaLAPACK [2], the linear algebra algorithms
are decoupled from the actual data distribution, i.e., the
two-dimensional block cyclic data distribution. This data
distribution may be mapped to a two-dimensional Cartesian
grid topology, with a number of row and column processors.
Performance analysis reveals that point-to-point commu-
nications are one of the main limiting factors, especially
when work is not sufficiently available to hide the data
motion overheads. Using a rank reordering strategy from
cray-mpich, combined with a judicious choice of grid
topologies, the standard QDWH may benefit up to 54% of
performance improvement on 800 nodes of a two-socket 16-
core Intel Broadwell Cray XC system.

The remainder of the paper is as follows. Section II
gives an overview of rank reordering capabilities of the
cray-mpich on Cray systems. Section III recalls the de-
scription of the QDWH algorithm and highlights its various
linear algebra operations used as building blocks. The sim-
ulation setup and results are then illustrated in Section IV.
Section V provides a comprehensive application profiling
analysis. Details on the software integration of QDWH
in cray-libsci are given in Section VI. Section VII
summarizes and presents future works.

II. RANK REORDERING

An allocation of NN compute nodes on a Cray system
featuring cray-mpich is assumed, with an application
launcher such as aprun or srun. Every compute node
has at least NC cores available and the application to be
executed makes use of the message passing interface (MPI),
where a PE is represented by an MPI rank. The number of
cores per nodes as well as the total number of MPI ranks
NP = NN × NC , can be factorized by two integers each,
i.e. NP = P × Q and NC = mc × nc, where mc and nc
is a divisor of P and Q, respectively. If not all cores per
node are used, aprun and srun distribute the MPI ranks
differently by default but with the appropriate set of options
an equivalent placement can be achieved. For both launchers,
successive MPI ranks are placed on the same node by default
which is referred to as the SMP-style placement of process-
ing elements. The cray-mpich library allows to override
the default MPI rank placement scheme by means of the
MPICH_RANK_REORDER_METHOD environment variable.
This runtime parameter accepts values from 0− 4, where 1
is the SMP scheme and 3 allows to specify a custom rank
placement which is the focus of this work. Option 0 specifies
a round-robin placement, where sequential MPI ranks are
placed on the next node in the list. Option 2 specifies a
folded-rank placement, where again sequential MPI ranks
are placed on the next node in the list but when every
node has been used, instead of starting over with the first
node again, the rank placement starts at the last node, going
back to the first. Finally, option 4 specifies a topology-aware
rank placement. This option determines an optimized rank

1 5 9 13

2 6 10 14

3 7 11 15

4 8 12 16

1 3 9 11

2 4 10 12

5 7 13 15

6 8 14 16(a) (c)(b)

1, 5, 2, 6
3, 7, 4, 8
9, 13, 10, 14
11, 15, 12, 16

MPICH_RANK_ORDER

Figure 1: (a) Column-major global rank ordering used inter-
nally by an application. Blue lines denote the compute node
boundaries and red arrows only the vertical communication
for simplicity (color online). (b) SMP-style rank ordering
used by default on the Cray XC system. Red arrows corre-
spond to the ones in (a). (c) Rank reordering file yielding
the placement shown in (a).

placement based on the hardware resources available to the
job at the time of job launching. Use of this placement style
requires setting the MPICH_RANK_REORDER_OPTS envi-
ronment variable which is explained in the mpi man page.
The custom rank reordering option 3 allows the specification
of a file MPICH_RANK_ORDER containing a permutation
of {0, . . . , NP − 1}. The rows are comma-separated and
the file is parsed from left to right and top to bottom. The
MPI ranks of the application are placed in this order on the
compute nodes. An example is shown in Figure 1 (c). In
the simplified case of a two-dimensional nearest neighbor
point-to-point communication pattern, a code can logically
organize the ranks in a column-major order internally, as
shown in Figure 1 (a), while ranks are physically placed
by default in SMP-style, as shown in Figure 1 (b). In this
scenario, a third of the off-node traffic, which is considerably
more expensive than on-node communication, can be saved
with a custom rank reordering such as in Figure 1 (a) using
the rank reorder file shown in Figure 1 (c) which restored
consistency between physical and logical rank placement.
The MPICH_RANK_ORDER can be generated manually in
case of small NP or by means of the grid_order tool
on Cray systems. This utility creates a rank order list for an
MPI application that uses communication between nearest
neighbors in a grid. The main command line arguments
are the global grid dimensions (-g N1,N2...) and the
dimensions of the cells into which the grid is subdivided
(-c n1,n2...). In addition, one can specify if the grid
follows a column-major (-C) of row-major (-R) ordering.
This notation covers two and three-dimensional cases. It
is preferable, but not required, that each cell dimension
evenly divides the corresponding grid dimension, and that
the product of the cell dimensions is equal to the number
ranks that will be placed on a node. For the two-dimensional
case described at the beginning of this section one has N1
= P , N2 = Q, n1 = mc, and n2 = nc All rank numbers
that fall into a given cell will be listed consecutively in the
rank order that is produced and thus placed on the same



compute node. Note that the MPICH_RANK_ORDER only
specifies which ranks are grouped together on a compute
node but not on which particular node. The impact of
specific node placement is considered to be negligible for
the application in this work because the limiting factor is
the injection bandwidth of a compute node. And especially
on a dedicated Cray XC system, the inter node traffic is not
shared. Setting the MPICH_RANK_REORDER_DISPLAY
environment variable could be used to display which specific
node each MPI rank resides in.

Given the vast variety of point-to-point communication
patterns, the default SMP-style placement is usually not
much worse than other schemes in terms of off-node com-
munication for average workloads. However, in case of
strong scaling experimental situations, opportunities to over-
lap regular point-to-point communications may not be avail-
able, which may engender performance penalties. Therefore,
it becomes paramount to further reduce the network traffic
with an appropriate custom rank reordering and load bal-
ancing for fast time to solution.

III. POLAR DECOMPOSITION

A. Introduction

The polar decomposition (PD) for dense matrices is a
major decomposition used in many applications includ-
ing aerospace computations [3] and chemistry [4]. More
recently, it has been used as a building block toward
computing the singular value decomposition (SVD) and
the symmetric eigenvalue decomposition (SEVD) [5]. The
QDWH-PD algorithm is a backward stable iterative method,
composed by successive calls to highly parallel compute-
bound matrix operations (e.g., QR, Cholesky, matrix-matrix
multiplication). More details can be found in [5], [6].

The polar decomposition of the matrix A ∈ Rm×n

(m ≥ n) is written as A = UpH . Up is the polar factor,
an orthogonal matrix obtained form the QDWH iteration
procedure. H =

√
A>A is a symmetric positive semidefinite

matrix, from which a QDWH-based SEVD or SVD may be
calculated recursively or directly, respectively.

B. The QDWH-based Polar Decomposition

The inverse-free QDWH-based iterative procedure com-
putes the polar decomposition as follows [5], [7]:

X0 = A/α,[√
ckXk

I

]
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[
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Q2

]
R,
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ck
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√
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(
ak −
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Q1Q

>
2 , k ≥ 0.

(1)

When the matrix A is well-conditioned or its condition
number gets improved after k iterations, it is possible to

replace Eq. (1) with a Cholesky-based implementation as
follows:
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k )W−>k ,

Wk = chol(Zk), Zk = I + ckX
>
k Xk.

(2)

This further reduces the algorithmic complexity and, there-
fore, may speed up the overall computation [5].

While such a compute-intensive dense linear algebra
algorithm is able to usually extract a good fraction of the
system’s theoretical peak performance, it may naturally lead
to performance degradation in strong scaling experimental
situations, when PEs run out of work. While this is expected
for most DLA workloads, QDWH may be more sensitive
to these challenging situations, due to its large number of
successive DLA matrix operations. We propose to overcome
these challenges using two approaches: a rank reordering
technique combined with a grid topology strategy or an
algorithmic paradigm shift based on the Zolotarev rational
function. The former does not necessitate any changes on
QDWH, while the latter revisits the QDWH core algorithm
and introduces another level of parallelism at the expenses
of extra floating-point operations (flops).

C. The ZOLO-PD Polar Decomposition

The main idea behind the ZOLO-PD algorithm is to
generalize the rational approximant underlying the QDWH
iterations, which results in the following iteration:[

X√
c2j−1I

]
=

[
Qj1

Qj2

]
Rj ,

Z2r+1(X; `) = X + Σs
j=1

aj√
c2j−1

Qj1Q
∗
j2.

(3)

Equation (3) exemplifies r embarrassingly parallel QR
factorizations and matrix-matrix multiplications Qj1Q

∗
j2.

Typically, for ill-conditioned matrices in double precision
floating-point arithmetic, s = 8 and the number of iterations
to converge is two. More analysis can be found in [6]
and [8]. Similar to the QDWH algorithm, once Xk is well-
conditioned, the QR-based iterations in Equation (3) can
be replaced with Cholesky-based iterations with a lower
arithmetic cost (see Equation (2)).

D. Algorithmic Complexity and Memory Footprint

For ill-conditioned matrices with condition number κ =
1012, QDWH performs two QR-based iterations followed
by four Cholesky-based iterations. ZOLO-PD requires only
two successive iterations but with many more operations
per iteration, though embarrassingly parallel ones (up to
s = 8 independent subproblems per iteration), as highlighted
in [8]. In fact, the polar decomposition based on QDWH
or ZOLO iterations reveals the existing trade-off between
concurrency, algorithmic complexity and memory footprint.



The independent execution within ZOLO-PD iterations re-
quires as many distinct data structures as the number of
the parallel subproblems. Table I compares the resulting
flop count and memory footprint of QDWH and ZOLO-
PD for matrices with κ = 1012. If the high concurrency

Table I: Algorithmic complexity and memory footprint for
various PD algorithms with κ2(A) = 1012.

Successive Independent
QDWH ZOLO-PD ZOLO-PD

# QR-based iterations 2 8 1
# Cholesky-based iterations 4 8 1
Algorithmic complexity 33n3 100n3 15 n3

Memory footprint 6n2 6n2 48n2

of ZOLO-PD is not exploited, a single data structure can
be reused for the independent subproblems as well as the
subsequent iterations. However, the algorithmic complexity
is expensive since the extra flops are computed sequentially.
On the opposite, assuming there are enough PEs to solve
each subproblem in parallel, the algorithmic complexity
drops at the expense of an increase of the memory footprint
to separately store each subproblem. ZOLO-PD performs
then less than half of the QDWH operations.

Figure 2 further distinguishes the three algorithmic vari-
ants for PD. Indeed, Figure 2a shows the PD iterations for
QDWH which are done successively, and therefore, all pro-
cesses work together in computing the corresponding QR or
Cholesky-based iterations (up to six all-in-all). in ZOLO-PD,
although the PD iterations are also performed successively,
the overall number of processes is split in process subgroups
to work concurrently within each iteration, as depicted in
Figure 2b.

IV. SIMULATION RESULTS

The test bed for the simulations consists of a dedicated
Cray XC system featuring dual Intel Broadwell proces-
sor compute nodes with 128GB DDR4 memory each and
running with Moab/Torque+ALPS. The number of cores
and base clock frequencies are not uniform across com-
pute nodes. Only 32 cores per node were used with a
frequency capped to 2.1GHz for the experiments. This
amounts to 1075.2 GFlops/s theoretical peak performance
per node in double precision floating-point arithmetic. The
codes were built with the Intel Compiler 17.0.1.132 and
the corresponding MKL library for the basic linear algebra
computations. The enabled Hugepages feature was used
for the factorizations. The matrix sizes considered for the
polar decomposition with QDWH and ZOLO-PD range from
71680 to 122880 in steps of 10240 and are factorized on
200, 400, and 800 compute nodes using one MPI rank per
core, where the MPI ranks are arranged by ScaLAPACK
in a row-major order on a P × Q grid. The different rank

(a) Process grid for QDWH applied at each successive iteration: QR (2) and
Cholesky (4).

(b) Independent process grids (with s = 8)
for ZOLO applied within each successive it-
eration: QR (1) and Cholesky (1).

Figure 2: Process Grids for QDWH and ZOLO-PD.

Table II: Different rank reorderings for the same simulation
grid P ×Q with corresponding label. Scheme 0 corresponds
to the default SMP-style ordering.

Command Label
<no reordering> 0

grid_order -R -c 8,4 -g P,Q 1
grid_order -R -c 4,8 -g P,Q 2
grid_order -C -c 8,4 -g P,Q 3
grid_order -C -c 4,8 -g P,Q 4

reordering schemes for the simulations are summarized in
Table II.

Both row-major and column-major global rank reorder-
ings have been considered with two different on-node order-
ings. For a given amount of compute nodes, and therefore
total number of MPI ranks, only a few grid topologies
P × Q are possible with a compatible rank reordering.
Table III summarizes the combinations used for the QDHW
algorithm. Similarly, Table IV summarizes the combinations
of rank reorderings and grid topologies P ×Q used for the
ZOLO-PD algorithm. The eight subproblems are solved on
a sub-grid p × q which represents an additional degree of
freedom compared to QDWH. Again, only a few compatible
combinations of P , Q, p, and q exist for a given total
amount of MPI ranks. The complete set of results for
the QDWH algorithm, i.e. solver time as a function of
matrix size N for 800, 400, and 200 compute nodes, and
different combinations of reorderings schemes as well as



Table III: Combinations of rank reordering strategies and
processor grid topologies P × Q on 800, 400, and 200
compute nodes for the QDWH algorithm with corresponding
labels. The numbers in the reorder column correspond to the
labels from Table II.

Nodes Ranks P Q R = P/Q Reorder Label
0 v1 0
1 v1 1

160 160 1 2 v1 2
3 v1 3
4 v1 4
0 v2 0
1 v2 1

800 25600 128 200 0.64 2 v2 2
3 v2 3
4 v2 4
0 v3 2

100 256 0.39 2 v3 3
4 v3 4

50 512 0.098 0 v4 0
0 v1 0

100 128 0.78 2 v1 2
4 v1 4
0 v2 0
1 v2 1

80 160 0.5 2 v2 2
3 v2 3
4 v2 4

400 12800 0 v3 0
1 v3 1

64 200 0.3 2 v3 2
3 v3 3
4 v3 4
0 v4 0
1 v4 1

32 400 0.08 2 v4 2
3 v4 3
4 v4 4
0 v1 0
1 v1 1

80 80 1 2 v1 2
3 v1 3
4 v1 4
0 v2 0

200 6400 64 100 0.64 1 v2 1
3 v2 2
0 v3 0
1 v3 1

32 200 0.16 2 v3 2
3 v3 3
4 v3 4

grid topologies is given in Figure 5. And the full set of
results for the ZOLO-PD algorithm is shown in Figure 6.
In particular, Figure 3 shows the QDWH and ZOLO-PD
solver time for the largest matrix with N = 122880 as a
function of the ratio R = P/Q, and r = p/q for ZOLO-
PD, for different reordering strategies. Sukkari et al. [9]
observed an improvement of the total execution time for
the QDWH algorithm when lowering the ratio R without
reordering and this effect is also visible here over a wider
range of R. Using a rank reordering which is consistent with
the ScaLAPACK grid topology layout, i.e., row-major in this

case, is more beneficial than column-major especially on a
large amount of nodes, where network traffic starts to prevail
over computation. Furthermore, the on-node reordering -c
4,8 yields a considerable better performance than -c 8,4
only for R = 1. When rank reordering is in use, the
best performance is not achieved for large R but for an
intermediate ratio. Figure 3 allows to identify the overall
best combination of rank reordering and grid topology which
never coincides with the default SMP-style ordering. In the
case of the largest matrix on 800 nodes the combination
P = 128, Q = 200, and reorder #1 yields an improvement
of 54% over the SPM-style ordering on a square processor
grid. This is also the best combination for the smallest matrix
which achieves an improvement of 58% but is not shown
here. Similarly, an optimal combination of reordering and
topology can be identified for smaller node counts which
is also not discussed here. Choosing row-major (1 and 2),
which is consistent with the ScaLAPACK ordering, instead
of column-major (3 and 4) rank reordering yields a smaller
difference in performance for the square topology compared
to the rectangular cases as shown in Figure 3. On the
other hand, the ZOLO-PD algorithm does not manifest a
comparable improvement when rank reordering or different
grid topologies are used as shown in Figure 3. This is
due to the overwhelming amount of extra flops required by
ZOLO-PD, which permits to mitigate the communication
overhead. However, strong scaling behavior is improved
in both cases when using the best combination instead of
the least performant SMP-style ordering as can be seen in
Figure 4. The best solver times approach the ideal scaling
curve of the least performant SMP-style ordering in the
strong scaling limit.

V. PROFILING ANALYSIS

The impact of rank reordering and variation of grid
topology on the QDWH polar decomposition of the largest
matrix N = 122880 on 800 nodes is investigated by means
of profiling analysis. In particular, the square (R = 1)
and rectangular (R = 0.64) grid topology as well as the
best performing combination of reordering and topology,
i.e. reorder1 and R = 0.64. Lower node counts as well
as the ZOLO-PD algorithm will not be considered in this
section. Cray performance analysis tools are used to measure
individual algorithm components and separate computation
and communication time. Table V shows timings for the
Cholesky and QR decomposition as well as the time spent
for the estimation of condition number (timeLi) and the
formation of the polar factor (timeFormH) for the three
cases of interest relative to the total solver time and relative
to the corresponding data for the square topology without
rank reordering. Changing the grid topology from square to
rectangular without additional reordering notably improves
the QR and Cholesky decompositions while shifting the
focus of the work towards QR. Using the most performant



Table IV: Combinations of rank reordering strategies and global processor grid topologies P × Q as well as the sub-grid
layouts p×q for the eight subproblems on 800, 400, and 200 compute nodes for the ZOLO-PD algorithm with corresponding
labels. The numbers in the reorder column correspond to the labels from Table II.

Nodes Ranks P Q p q R = P/Q r = p/q Reorder Label
1 v1 0
1 v1 1

80 320 40 80 0.25 0.5 2 v1 2
3 v1 3
4 v1 4
0 v2 0

800 25600 80 320 20 160 0.25 0.125 2 v2 2
4 v2 4
0 v3 0
1 v3 1

160 160 40 80 1 0.5 2 v3 2
3 v3 3
4 v3 4
0 v1 0
1 v1 1

400 12800 80 160 40 40 0.5 1 2 v1 2
3 v1 3
4 v1 4

64 200 32 50 0.32 0.64 0 v2 0
0 v1 0

40 160 20 40 0.25 0.5 2 v1 2
4 v1 4

200 6400 40 160 10 80 0.25 0.125 0 v2 4
0 v3 0

80 80 20 40 1 0.5 2 v3 2
4 v3 4

Table V: Time for individual components of the QDWH
algorithm expressed as percentages of total solver time for
the largest matrix N = 122880 on 800 nodes for two
regular cases without rank reordering (R ∈ {1, 0.64}) and
the optimal case with reorder1 and R = 0.64. The numbers
in brackets in third and fourth columns are percentages of
the total time of the regular case with R = 1.

R=1 R=0.64 reorder1, R=0.64
Total 100 100 (75.44) 100 (47.96)
Cholesky 49.29 34.39 (25.94) 41.84 (20.06)
QR 40.53 52.92 (39.92) 46.81 (22.45)
timeLi 6.97 8.99 (6.79) 5.44 (2.61)
timeFormH 2.61 2.88 (2.18) 4.19 (2.01)

combination of rank reordering and grid topology further
improves the individual decompositions and levels out the
relative amount of work between the two. Table VI shows the
total communication time and individual MPI components
for the three cases of interest, again relative to the total solver
time and relative to the corresponding data for the square
topology without rank reordering. In all cases, a considerable
amount of time is spent in communication with a dominating
portion in MPI_Recv and collective synchronization in
MPI_Reduce. Changing the grid topology from square
to rectangular and then using the optimal combination of
reordering and topology, successively reduces the relative
amount of communication time while keeping the dominant
portion of communication time in MPI_Recv and synchro-

Table VI: Total MPI time and individual components ex-
pressed as percentages of total solver time for the largest
matrix N = 122880 on 800 nodes for two regular cases
without rank reordering (R ∈ {1, 0.64}) and the optimal
case with reorder1 and R = 0.64. The numbers in brackets
in third and fourth columns are percentages of the total time
of the regular case with R = 1.

R=1 R=0.64 reorder1, R=0.64
Total 100 100 (75.44) 100 (47.96)
Total MPI 84.07 76.56 (57.75) 60.26 (28.9)
Recv 53.33 44.08 (33.25) 25.89 (12.42)
Bcast 3.44 3.34 (2.52) 3.32 (1.59)
Bcast(sync) 3.81 4.95 (3.73) 5.98 (2.87)
Reduce 9.55 8.18 (6.17) 3.08 (1.48)
Reduce(sync) 10.51 12.05 (9.09) 16.86 (8.09)
Send 3.01 3.65 (2.75) 4.87 (2.34)

nization in MPI_Reduce. The gap between MPI_Recv
and MPI_Send indicates that a large amount of time is
spent in simply waiting in blocking receivers in point-to-
point communication. Figure 7 shows the relevant part of
the QDWH call-tree. The branches belonging to the QR and
Cholesky factorizations are highlighted together with the as-
sociated MPI_Recv and MPI_Reduce(sync) leafs. The
LU factorization pdgetrf is used for the estimation of the
condition number and the top level pdgemm and pdgeadd
for the formation of the polar factor. These branches also
contain calls to MPI_Recv and MPI_Reduce(sync) but



QDWH ZOLOPD

Figure 3: Left column shows the QDWH solver time as a function of the ratio R = P/Q for the largest matrix size
N = 122880 for different rank reordering strategies which are numbered according to Table II. Same for the ZOLO-PD
algorithm in the right column with the addition of the ratio r = p/q for the sub-problems as a parameter.

are less time consuming compared to QR and Cholesky in
the main loop. As already mentioned in [9], the update of
the trailing sub-matrix is the richest phase in terms of point-
to-point communications for the Cholesky decomposition.
Since more processors are involved in that phase when using
a rectangular instead of a square topology, a higher degree
of parallelism can be achieved. The resulting improvement
in load balance helps improving the blocking time in point-
to-point communication. This algorithmic improvement is
solely attributed to the change in grid topology. However,
modifying the topology also implies an improvement of
the on-node communication as can be gathered from the

traffic profiles. The rank reordering additionally reduces the
off-node communication. Choosing row-major (1 and 2),
which is consistent with the ScaLAPACK ordering, instead
of column-major (3 and 4) rank reordering is expected
to be more convenient because of row-wise and column-
wise communication. And in the rectangular cases this is
even more important. On the other hand, the ZOLO-PD
algorithm benefits comparatively much less from reordering
and different topologies. This confirms the early insights
obtained from the performance results in Section IV. For the
sizes considered herein, the workload per PE is significant
and makes the application live in the compute-bound regime



Figure 4: QDWH and ZOLO-PD solver time for the largest
matrix N = 122880 as a function of the number of nodes.
The best combination of rank reordering and grid topology
is compared to the least performant (regular) SMP-style
ordering. The dashed line shows the ideal strong scaling
for the regular case.

throughout the execution. ZOLO-PD seems, therefore, to be
more resilient to network traffic for the studied matrix sizes.
Moreover, we have seen in [8] that ZOLO-PD may turn
out to actually improve QDWH performance when running
in strong scaling mode of operations for matrix sizes less
than 70K. There have not been rank reorderings nor grid
topology strategies employed in [8]. Applying both strategies
for small matrix sizes should impact and further improve the
performance of ZOLO-PD. The performance gap between
ZOLO-PD and QDWH may then further reduce for the
small matrix sizes, although we still anticipate ZOLO-PD
to outperformance QDWH, since network congestion may
ultimately impede QDWH performance more than ZOLO-
PD.

VI. INTEGRATION IN CRAY-LIBSCI

The support for QDWH and its related KSVD sin-
gular value decomposition solver [9] was introduced in
cray-libsci/17.11.1 with updates to the API ap-
pearing in cray-libsci/17.12.1. Several environment
variables appear in these releases to allow users to ex-
periment with the convergence tolerance in the QDWH
algorithm, to replace execution of ScaLAPACK’s pdgesvd

with KSVD, and to use the ELPA eigenvalue solver
library [10] as part of KSVD. For more information
regarding these environment variables, the QDWH and
KSVD API, and the most current features, one can re-
fer to the intro_qdwh and intro_ksvd man pages
in cray-libsci. The ZOLO-PD support is currently
planned for future cray-libsci releases.

VII. CONCLUSION

We investigated the combined impact of grid topology
and rank reordering on the polar decomposition of dense
matrices using two advanced algorithms, i.e. QDWH and
ZOLO-PD, building on top of ScaLAPACK. The focus is
on medium to large matrix sizes, for which the strong scaling
experiments may reach a limit, due to a possible dominant
communication burden, despite dense linear algebra opera-
tions are naturally expected to be computation bound. An
extensive number of simulations for several matrix sizes
on different amount of nodes have been carried out on a
dedicated Cray XC system. The QDWH algorithm profits
considerably when choosing an appropriate combination
of rank reordering and grid topology. An improvement of
up to 54% in solver time on 800 nodes for the largest
matrix could be observed. On the other hand, the ZOLO-PD
algorithm benefits comparatively much less from reordering
and different topologies, due to a higher computational
workload per PE compared to QDWH. This makes ZOLO-
PD less sensitive to network congestions. Though, strong
scaling is still improved in both cases. A few interesting data
points for the QDWH algorithm have been further analyzed
by means of Cray performance tools. The QDWH algorithm
is, as expected, clearly communication bound and most of
the time is spent in the main loop computing QR or Cholesky
decompositions. The dominant part of the communication
time is spent in MPI_Recv which is successively reduced
by using a rectangular topology and even further with the
most performant combination of reordering and topology.
The results achieved in this work are not necessarily directly
transferable to other dense linear algebra algorithms based
on ScaLAPACK but the present analysis should induce
users to experiment with the rank reordering feature of
cray-mpich and the grid topology strategies. This may
render considerable performance improvement with a rela-
tively low effort from the end-users’ perspective.
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Figure 7: Call-tree of the QDWH algorithm highlighting the Cholesky (green) and QR (blue) component. The associated
MPI_Recv and MPI_Reduce(sync) are marked in red. The other branches are the LU factorization (pdgetrf) used
for the estimation of the condition number and pdgemm and pdgeadd for the formation of the polar factor.


