

Abstract

- Investigated impact of MPI rank-reordering and BLACS grid topology on advanced polar decompositions of dense matrices.
 - Naturally assumed to be compute bound, but in the strong scaling limit the algorithms suffer from communication and load balancing.
 - Modifying grid topology and rank-reordering improves both.
 - QDWH and ZOLOPD algorithms based on ScaLAPACK.
- Used profiling to identify affected code regions.
 - Focused on QDHW which benefits more from these modifications.

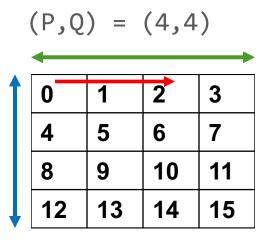
Context of this Work

- Cray Center of Excellence at King Abdullah University of Science and Technology (KAUST).
 - High-level collaborations with principal investigators in areas ranging from traditional HPC (Combustion, Linear Algebra, ...) to Analytics and Machine Learning.
 - Maintained by the Cray EMEA Research LAB (CERL)
- Hierarchical Computations on Manycore Architectures
 - Is the project from which the present work arose.
 - Extreme Computing Research Lab at KAUST.

Rank-Reordering Feature of cray-mpich

- (a) column-major global rank ordering used internally
- (b) SMP-style rank ordering used by default on the Cray XC system. Red arrows correspond to the ones in (a).

- (c) Rank reo-rdering file yielding the placement shown in (a).
 - The cray-mpich library allows to override the default MPI rank placement scheme by means of the MPICH_RANK_REORDER_METHOD environment variable.


COMPUTE

STORE

ScaLAPACK Grid Topology

Basic Linear Algebra Communication Subroutines

Polar Decomposition

- Of the form A=UP, where U is a unitary matrix and P is a positive-semidefinite Hermitian matrix
 - Can be computed with Heron's method
 - More advanced (inverse-free) algorithms are
 - QR-based Dynamically Weighted Halley method (QDWH)
 - Zolotarev rational functions (ZOLOPD).
- PD is the first computational step toward solving symmetric eigenvalue problems and the singular value de-composition.

Polar Decomposition

QDWH

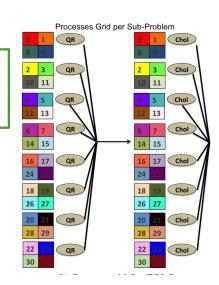
$$X_0 = A/\alpha,$$

$$\begin{bmatrix} \sqrt{c_k} X_k \\ I \end{bmatrix} = \begin{bmatrix} Q_1 \\ Q_2 \end{bmatrix} R,$$

$$X_{k+1} = \frac{b_k}{c_k} X_k + \frac{1}{\sqrt{c_k}} \left(a_k - \frac{b_k}{c_k} \right) Q_1 Q_2^\top, \ k \ge 0.$$

$$X_{k+1} = \frac{b_k}{c_k} X_k + \left(a_k - \frac{b_k}{c_k} \right) (X_k W_k^{-1}) W_k^{-\top},$$

$$W_k = \operatorname{chol}(Z_k), \ Z_k = I + c_k X_k^{\top} X_k.$$



ZOLOPD

$$\begin{bmatrix} X \\ \sqrt{c_{2j-1}}I \end{bmatrix} = \begin{bmatrix} Q_{j1} \\ Q_{j2} \end{bmatrix} R_j,$$

$$Z_{2r+1}(X;\ell) = X + \sum_{j=1}^r \frac{a_j}{\sqrt{c_{2j-1}}} Q_{j1} Q_{j2}^*.$$

Sub-problems joined in a large matrix.

Maximum	of 6	iterations

		Successive	Independent
	QDWH	ZOLO-PD	ZOLO-PD
# QR-based iterations	2	8	1
# Cholesky-based iterations	4	8	1
Algorithmic complexity	$33n^{3}$	$100n^{3}$	15 n^3
Memory footprint	$6n^2$	$6n^2$	$48n^{2}$
· ·		'	

COMPUTE

STORE

Simulation Setup

Dedicated Cray XC system

- Featuring dual Intel Broadwell processor compute nodes with
- 128GB DDR4 memory each
- Running with Moab/Torque+ALPS.
 - Number of cores and base clock frequencies are not uniform across compute nodes.
 - Only 32 cores per node were used with a frequency capped to 2.1GHz for the experiments.
 - The codes were built with the Intel Compiler 17.0.1.132 and the corresponding MKL libary for the basic linear algebra computations

Matrices considered in QDWH and ZOLOPD

 Range from 71680 to 122880 in steps of 10240 and are factorized on 200, 400, and 800 compute nodes using one MPI rank per core, where the MPI ranks are arranged by ScaLAPACK in a row-major order on a P × Q grid.

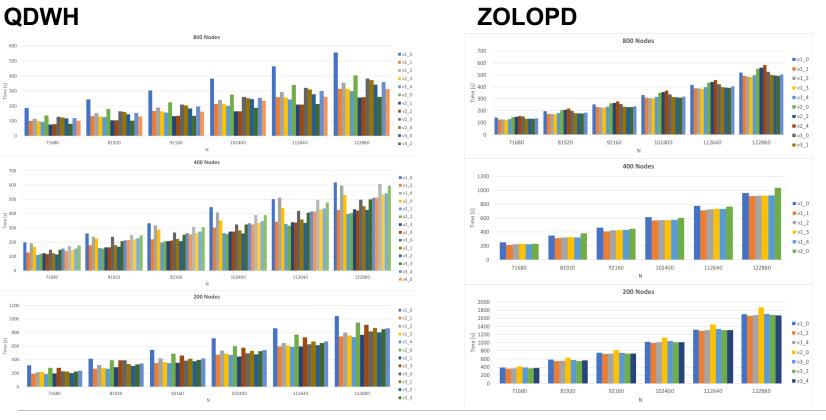
COMPUTE

STORE

Simulation Setup

- Rank-Reordering
 - Both row-major and columnmajor global rank re-orderings have been considered with two different on- node orderings.
- Only a few grid topologies
 P×Q are possible with a
 compatible rank reordering.

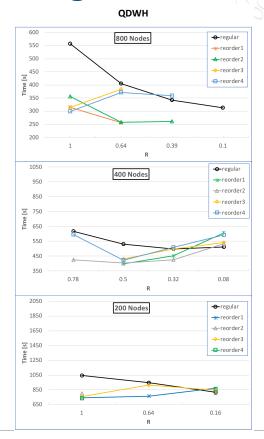
Command	Label
<no reordering=""></no>	0
grid_order -R -c 8,4 -g P,Q	1
grid_order -R -c 4,8 -g P,Q	2
grid_order -C -c 8,4 -g P,Q	3
grid_order -C -c 4,8 -g P,Q	4


ZOLOPD

								$\overline{}$	
Nodes	Ranks	P	Q	p	q	R = P/Q	r = p/q	Reorder	Label
								1	v1_0
	İ		İ					1	vl_l
		80	320	40	80	0.25	0.5	2	v1_2
								3	v1_3
								4	v1_4
								0	v2_0
800	25600	80	320	20	160	0.25	0.125	2	v2_2
								4	v2_4
								0	v3_0
		1.00	1.00	40	80	1	0.5	1	v3_1
		160	160	40	80	1	0.5	2	v3_2
								3	v3_3
									v3_4
								0	v1_0
400	12800	80	160	40	40	0.5	1	1 2	v1_1 v1_2
400	12800	80	100	40	40	0.5	1	3	
								4	v1_3 v1_4
		64	200	32	50	0.32	0.64	0	v2_0
		04	200	32	30	0.32	0.04	0	v1_0
		40	160	20	40	0.25	0.5	2	v1_0 v1_2
		+0	100	20	40	0.23	0.5	4	v1_2 v1_4
200	6400	40	160	10	80	0.25	0.125	0	v2_4
200	0-700		100	10	- 00	0.23	0.123	0	v3_0
		80	80	20	40	1	0.5	2	v3_0
		"	50	-0	٠.٠		0.5	4	v3_4
									12_1

QDWH

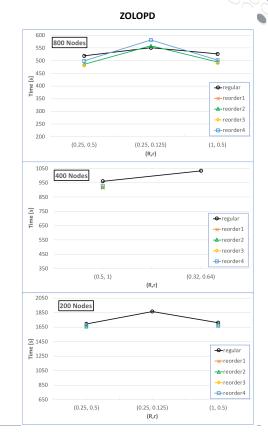
Nodes Ranks P Q R = P/Q Reorder Label								
160 160 1	Nodes	Ranks	P	1 0	R = P/Q	Reorder	Label	
800 25600 128 200 0.64 2 0 0 0 0				<u> </u>	. , ,		v1 0	
800 25600 128 200 0.64 3 1 1 1 1 1 1 1 1 1								
800 25600 128 200 0.64 4			160	160	1	2	v1 2	
800 25600 128 200 0.64 2 1 1 1 1 1 1 2 2						3	v1_3	
1							v1_4	
800 25600 128 200 0.64 2 \frac{\frac{7}{\sqrt{2}}}{3} \frac{1}{\sqrt{2}} \frac{1}{\sqrt								
100 256 0.39 0 v3.2 100 256 0.39 2 v3.3 50 512 0.098 0 v4.0 100 128 0.78 2 v1.2 80 160 0.5 2 v2.2 80 160 0.5 2 v2.2 4 v2.4 4 v2.4 4 v1.4 4 v2.4 5 v2.1 80 160 0.5 2 v2.2 4 v2.4 4 v2.4 5 v2.1 7 v3.1 7 v3.1 80 80 1 2 v1.2 80 80 1 3 v2.3 80 80 1 3 v3.3 80 80 1 3 v2.3 80 80 1 3 v3.3								
400 12800 640 64 100 0.64 1 v.2.1 v.3.1 v.3.1 v.2.1 s.3 v.2.3 v.3.2 v.3.	800	25600	128	200	0.64			
400 12800 6400 64 100 0.64 1 1 V2_1 80 80 1 1 2 2 V1_2 1 V3_3 2 V1_2 4 V1_4 4 V1_4 4 V2_4 4 V2_4 5 V2_3 6 V3_2 7 V2_0 8 V1_0 1 V2_1 1 V3_1 1 V3_1 2 V1_2 4 V2_4 4 V2_4 4 V2_4 6 V2_0 8 V2_0 8 V2_0 9 V3_0 9 V3_0 9 V4_0 9								
400 12800								
40 1280			100	256	0.20			
400 12800 640 64 100 0.64 1 1 v2.1 1 v2.1 200 6400 64 100 0.64 1 v2.1 1 v3.1 1			100	230	0.39			
400 1280			50	512	0.000			
400 1280 0.78 2 v1.2 80 160 0.5 2 v2.2 80 160 0.5 2 v2.2 3 v2.3 4 v2.4 4 v1.4 4 v1.4 1 v2.1 2 v2.2 3 v2.3 4 v3.4 4 v3.4 3 v3.3 4 v3.4 4 v3.4 4 v3.4 4 v3.4 4 v4.4 4 v4.4 200 0.8 1 2 v2.2 3 v4.2 3 v3.3 4 v3.4 4 v4.4 4 v4.4 4 v4.4 200 0.8 1 2 v2.2 3 v4.2 3 v4.3 4 v2.4 4 v4.4 4 v4.4 200 0.8 1 2 v2.2 3 v2.3 4 v2.4 4 v4.4 4 v4.4 200 v1.0 200 6400 64 100 0.64 1 v2.1 3 v2.1 3 v2.3 4 v2.4 3 v2.3 4 v2.4 4 v4.4 200 v2.0 200 v3.0 200 v3.0			50	312	0.098			
400 12800 80 160 0.5 2			100	120	0.79			
400 12800 80 160 0.5 2			100	120	0.78			
400 12800 12800 6400 6400 64 100 0.64 1 1 1 1 1 1 1 1 1								
400 12800 64 100 0.64 1 1 1 1 1 1 1 1 1								
400 12800 6400 64 100 0.64 1 1 1 1 1 1 1 1 1			80	160	0.5			
400 12800			00 100	100				
80 80 1 2 v1_2 80 80 80 1 2 v1_2 80 80 80 1 2 v1_2 200 6400 64 100 0.64 1 v2_1 3 v2_2 3 v3_3 4 v3_3 4 v3_4 0 v4_4 0 v1_4 1 v1_1 1 v1_1 1 v2_1 1 v2_1 3 v1_2 0 v2_0 3 v2_0 3 v2_3 4 v2_4 0 v2_4 0 v2_0 3 v2_0 3 v2_0 0 v3_0 1 v2_1 1 v2_1 1 v2_1 1 v2_1 1 v2_1 1 v3_1								
80 80 1 2 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	400	12800			0.3	0	v3_0	
30 400 0.08 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3								
32 400 0.08 2 v4_2 32 400 0.08 2 v4_2 3 v4_3 4 v4_4 0 v1_0 1 v2_1 3 v2_2 3 v1_3 4 v1_3 4 v1_4 200 640 64 100 0.64 1 v2_1 0 v2_0 0 v3_0 1 v3_1 1 v3_1 1 v3_1			64	200			v3_2	
32 400 0.08 0.08 1 1 v4.1 1 v4								
200 6400 64 100 0.64 1 v2_1 1 v2_1 1 v3_1 1								
200 6400 64 100 0.64 2 3 42 200 6400 64 100 0.64 2 1 92 200 6400 64 100 0.64 1 92 200 6400 64 100 0.64 1 92 200 6400 64 100 0.64 1 92 200 73,0								
200 6400 64 100 0.64 1 v2_1 200 6400 64 100 0.64 0 v3_0 200 0 v3_0 1 v3_1			22	400				
200 6400 64 100 0.64 1 v2_1 0 0 v1_0 1 1 v1_1 2 1 v2_1 3 v1_3 4 v1_4 0 0 v2_0 0 1 v2_0 0 v3_0 1 v2_1 1 v2_1 1 v2_1 1 v2_1 1 v3_1			32	400	0.08			
200 6400 64 100 0.64 1 V2_0 200 6400 64 100 0.64 0 V2_0 								
200 6400 64 100 0.64 1 v2_1 0 0 v3_0 1 0 v1_1 2 v1_2 3 v1_3 4 v1_4 0 v2_0 0 v3_0 0 v3_0 1 v2_1 1 v3_1			_	_				
200 6400 64 100 0.64 1 1 22.0 200 6400 64 100 0.64 1 1 22.1 3 22.2 0 73.1			00	80	1			
200 6400 64 100 0.64 1 1 v2_1 0 v3_0 0 v3_0 1 v3_1 1 v3_1								
200 6400 64 100 0.64 1 1 V2_1 3 V2_2 0 V3_0 1 V3_1	200 6400		80					
200 6400 64 100 0.64 0 v2.0 1 v2.1 3 v2.2 0 v3.0 1 v3.1								
200 6400 64 100 0.64 1 v2_1 3 v2_2 0 v3_0 1 v3_1								
3 v2_2 0 v3_0 1 v3_1		64	100	0.64				
1 v3_1				100				
1 v3_1								
22 200 0.16 2 1/2.2			32	l	l	1	v3_1	
				32 200	0.16	2	v3_2	
3 v3_3								
4 v3_4						4	v3_4	


Complete Set of Simulation Results

Impact of Topology and Rank-Reordering

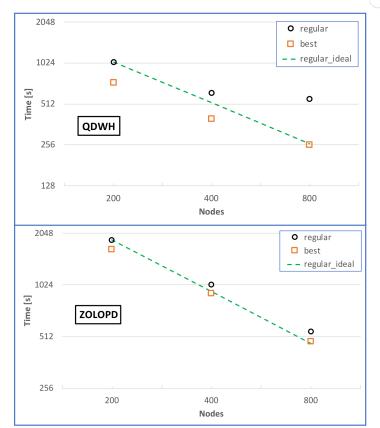
QDWH (largest matrix)

- Improvement of the total execution time for the QDWH algorithm when lowering the ratio R without reordering.
- Row-major in this case, is more beneficial than column-major especially on a large amount of nodes.
 - Consistent with the ScaLAPACK grid topology
- On-node reordering -c 4,8 yields a better performance than -c 8,4 only for R = 1.



Impact of Topology and Rank-Reordering

ZOLOPD (largest matrix)


- Does not manifest a comparable improvement to QDWH when rank reordering or different grid topologies are used.
- This is observed for every node count.
- The reason is assumed to be in the subproblem structure and has to be further investigated.

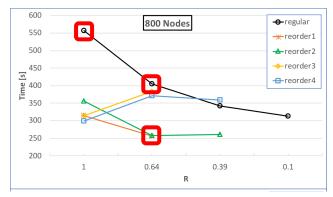
Impact of Topology and Rank-Reordering

Strong Scaling

- Is improved in both cases when using the best combination instead of the least performant SMP-style ordering.
- The best solver times
 approach the ideal scaling
 curve of the least performant
 SMP-style ordering in the
 strong scaling limit.

Profiling Analysis of QDWH

Focusing on three data points.


 Pure topology change notably improves the QR and Cholesky decompositions, while shifting the focus of the work towards QR.

 Using the most performant combination of rank reordering and grid topology further improves the individual decompositions and levels

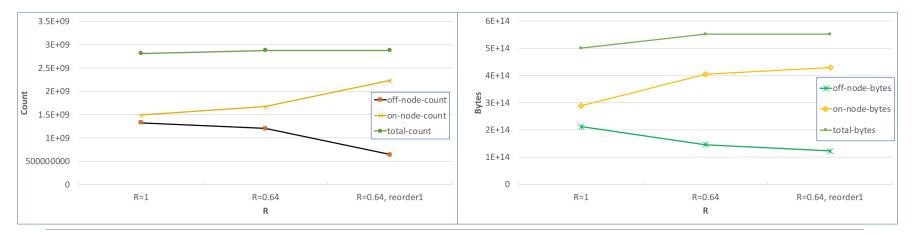
out the relative amount of work

between the two.

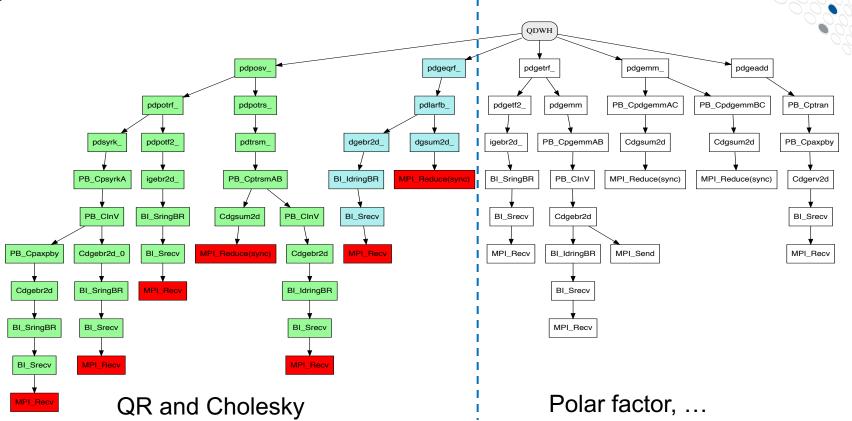
	R=1	R=0.64	reorder1, R=0.64
Total	100	100 (75.44)	100 (47.96)
Cholesky	49.29	34.39 (25.94)	41.84 (20.06)
QR	40.53	52.92 (39.92)	46.81 (22.45)
timeLi	6.97	8.99 (6.79)	5.44 (2.61)
timeFormH	2.61	2.88 (2.18)	4.19 (2.01)

Profiling Analysis of QDWH

Focusing on three data points.


 Changing topology and reordering successively reduces the relative amount of communication time while keeping the dominant portion of communication time in MPI_Recv and synchronization in MPI_Reduce.

	R=1	R=0.64	reorder1, R=0.64
Total	100	100 (75.44)	100 (47.96)
Cholesky	49.29	34.39 (25.94)	41.84 (20.06)
QR	40.53	52.92 (39.92)	46.81 (22.45)
timeLi	6.97	8.99 (6.79)	5.44 (2.61)
timeFormH	2.61	2.88 (2.18)	4.19 (2.01)


	R=1	R=0.64	reorder1, R=0.64
Total	100	100 (75.44)	100 (47.96)
Total MPI	84.07	76.56 (57.75)	60.26 (28.9)
Recv	53.33	44.08 (33.25)	25.89 (12.42)
Bcast	3.44	3.34 (2.52)	3.32 (1.59)
Bcast(sync)	3.81	4.95 (3.73)	5.98 (2.87)
Reduce	9.55	8.18 (6.17)	3.08 (1.48)
Reduce(sync)	10.51	12.05 (9.09)	16.86 (8.09)
Send	3.01	3.65 (2.75)	4.87 (2.34)

QDWH Message and Byte Counts

- CRAY
- Changing the grid topology also implies an improvement of on/off-node message and traffic ratio in addition to algorithmic improvement.
 - Rank-reordering provides a pure on/off-node ratio improvement.

QDWH Call-Tree

COMPUTE

STORE

Conclusions

- A suitable combination of rank-reordering and grid topology can considerably improve the performance of dense linear algebra algorithms in the strong scaling limit.
 - Here we considered advanced polar decompositions.
- Profiling analysis reveals an improvement of point-topoint communication in particular in MPI_Revc.
 - Analysis restricted to QDWH
 - ZOLO needs more investigation.

Legal Disclaimer

Information in this document is provided in connection with Cray Inc. products. No license, express or implied, to any intellectual property rights is granted by this document.

Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to change without notice.

Cray hardware and software products may contain design defects or errors known as errata, which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Cray uses codenames internally to identify products that are in development and not yet publicly announced for release. Customers and other third parties are not authorized by Cray Inc. to use codenames in advertising, promotion or marketing and any use of Cray Inc. internal codenames is at the sole risk of the user.

Performance tests and ratings are measured using specific systems and/or components and reflect the approximate performance of Cray Inc. products as measured by those tests. Any difference in system hardware or software design or configuration may affect actual performance.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY and design, SONEXION, URIKA and YARCDATA. The following are trademarks of Cray Inc.: CHAPEL, CLUSTER CONNECT, CLUSTERSTOR, CRAYDOC, CRAYPAT, CRAYPORT, DATAWARP, ECOPHLEX, LIBSCI, NODEKARE, REVEAL. The following system family marks, and associated model number marks, are trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT and XT. The registered trademark LINUX is used pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis. Other trademarks used on this website are the property of their respective owners.

COMPUTE

STORE

