
Cray® XC50TM CLE Port to ARM: Functionality, Performance, and Lessons

Learned

Jeffrey J. Schutkoske

Compute Products R&D

Cray, Inc.

Bloomington, MN, USA

jjs@cray.com

Abstract— The Cray Linux Environment (CLE) supports the

Cavium ThunderX2 ARM processor in the Cray® XC50TM

system. This is the first ARM 64 processor that is supported by

CLE. The port of CLE to ARM provides the same level of

functionality, performance, and scalability that is available on

other Cray XC systems. This paper describes the functionality,

performance, and lessons learned from the port of CLE to ARM.

Keywords: Cray® XC50TM system, Cray Linux Environment,

CLE, system management, operating systems, programming

environment

I. INTRODUCTION

The Cray XC50TM system includes a new Cray Processor

Daughter Card (PDC) which supports the Cavium

ThunderX2 CN99xx ARM processor. The Cray Linux

Environment (CLE) is enhanced to support the ARM

processor.
The Cray Linux Environment (CLE) software stack

provides robust services for the Cray XC50TM system
components including the compute and service nodes. CLE
includes the base operating system for the computational
complexes, networking software stack, I/O software, and
other specialized services.

The Cray XCTM CLE architecture is organized around
service nodes and compute nodes. Service nodes perform the
functions needed to support users, administrators, and
applications running on compute nodes. Above the operating
system level are specialized daemons and applications that
perform functions unique to each service node.

CLE starts with a subset of a Linux distribution and Cray
adds features for scalability and usability, as well as
reliability, availability, and serviceability (RAS). By
tailoring Linux to provide only those services required for
applications, CLE greatly reduces the operating system
footprint without sacrificing application functionality. CLE
is designed to address scaling issues by minimizing
operating system induced noise or jitter.

The port of CLE to ARM provides the same level of
functionality, performance, and scalability that is available
on other processors in Cray XCTM systems. The process
included porting existing functionality to the aarch64
architecture, replacing functionality with new aarch64
functionality, and in some cases no changes were required.
This paper describes the functionality, performance, and

lessons learned from the port of CLE to ARM. Section II
describes the basic hardware configuration. BIOS
initialization is covered in Section III. The compute node
Linux (CNL) is described in Section IV followed by the
managed services and network stack descriptions in Section
V and VI respectively. Reliability, availability, and
serviceability (RAS) features are described in Section VII.
Workload managers are discussed in Section VIII. Section
IX describes the changes required to support the aarch64
architecture in Cray system management. Power
management changes are described in Section X. The Cray
programming environment is described in Section XI.
Initial performance is discussed in Section XII followed by
lessons learned in Section XIII. A summary is provided in
Section XIV.

II. BASIC HARDWARE CONFIGURATION

The Cray PDC supports a four node, dual socket per node

configuration. Each compute blade supports two Cray

PDCs. The two sockets that comprise a single node are

connected together via the interchip coherency interface

(ICI). Each node supports a PCIe Gen 3 x16 channel to the

Cray Aries interconnect. Each node also supports up to 8

DDR4 memory channels. Each ARM socket contains 32

cores with four threads per core. So, a dual socket node

contains 256 (2*32*4) logical CPUs.

III. BIOS INITIALIZATION

The BIOS is based on the ARMv8 UEFI BIOS from the

Linaro open source [1]. On node power up, the M3 micro-

core ROM enables low level functionality needed by

ARMv8, while the ARMv8 cores are being held in reset.

The ARMv8 Boot firmware performs DDR initialization as

well as other board specific initialization. It also performs

ICI linkup and slave node discovery in the case of multi-

node configuration. When the node is running, M3

firmware performs monitoring and power management

function.

Cray added additional support for the Cray Aries

interconnect initialization, high speed network boot support,

and specific hardware error handling and reporting through

the out-of-band (OOB) Cray Hardware Supervisory System

(HSS).

The initial BIOS execution on the first boot after a flash

of the BIOS takes approximately fifteen minutes. The

subsequent boots require only 5 minutes because the

memory training parameters are stored and reused. When

BIOS is flashed these values are cleared.

IV. COMPUTE NODE LINUX (CNL)

CNL has many of the positive attributes of a lightweight

kernel (LWK), however it does not restrict services to the

extent that many LWKs do. Instead, it provides low

operating system overhead, while exposing standard Linux

services and interfaces to applications. CNL not only

provides standard page-based memory management for

locally accessed memory, but also provides support for

PGAS programming models. There are a number of areas

that involved additional work to support Cray XC50TM

system including CPU performance counters, core

specialization, and huge pages.

A. Performance Counters

With the Cray XC50TM system, CNL supports SLES 12

SP3, kernel version 4.4 for the initial aarch64 release of

CLE. As part of the development effort, Cray updated the

kernel to version 4.4.92-6.18.1, which added support for the

power management unit (PMU) counters. A number of

these counters are utilized by the Cray Programming

Environment (Cray PE) through the performance API

(PAPI) [2].

B. Core Specialization

Cray supports core specialization on the Cray XC50TM

system. Core specialization binds sets of Linux kernel-

space processes and daemons to one or more cores within a

Cray compute node. This enables the software application to

fully utilize the remaining cores within its cpuset. All

possible overhead processing is restricted to the specialized

cores within the reservation. This has been shown to

improve overall application performance. There is a user

level API that is supported in the libjob library. When core

specialization is desired for a job, job_set_corespec() must

be called between job_create() and job_set_affinity(). The

core specialization requested here takes effect upon the

successful job_set_affinity() call. The only aspect that takes

effect immediately is that after this call, job_create() calls

will fail until this job is destroyed. Core specialization is

supported on a per application launch basis, i.e. using the

Cray application level placement scheduler (ALPS) aprun

or Slurm srun command. A single job can be made up of

multiple application launches, both in parallel and

sequentially. CLE core specialization support in the Cray

XC50TM system with ARM processors is on par with the

x86-64 Cray XCTM systems.

C. Huge Pages

A translation lookaside buffer (TLB) is a cache of

virtual-to-physical translations. Typically, this is a very

scarce resource on a processor. Operating systems try to

make best use of a limited number of TLB resources. This

optimization is more critical now as bigger and bigger

physical memories (several GBs) are more readily available.

Huge pages (also known as large pages) in simplest

terms are blocks of memory. The huge page support in the

Linux kernel is built on top of the multiple page size support

that is provided by most modern architectures. For example,

x86 CPUs normally support 4K and 2M (1G if

architecturally supported) page sizes. CLE supports

dynamic or on-demand huge page allocation. In some cases

(e.g. "HUGETLB_DEFAULT_PAGE_SIZE=64M aprun -

m256h") the kernel may have pre-allocated a number of

physical huge pages as requested by aprun and will assign

one of those huge pages to the user application at the

requested user address.

But if there are not any pre-allocated huge pages of the

desired size, the kernel will attempt to allocate a huge page

of the desired size via the kernel's "buddy allocator". In

both cases (pre-allocated via aprun at the start of the job,

allocated at the time of a page fault during the job), the huge

page is assigned to the job at the time of the page fault.

The kernel has limited knowledge of "jobs" and their

lifetimes, so from the kernel's point-of-view almost all huge

page allocations are "dynamic". The main distinction from

the kernel's point-of-view is between "boot-time" allocation

(which bypasses the kernel's "buddy allocator") and

"runtime" allocation (all other cases that Cray has

implemented). Although the community and SLES kernels

support "boot-time" allocation, this is not used in practice

with CLE, so huge pages are always allocated

"dynamically" at "runtime".

CLE enhances Linux to support any huge page size

(power of 2) from 4KiB to 2GiB by combining hardware

natively sized pages. CLE huge pages can be allocated

dynamically at runtime. CLE huge pages provide

significant enhancements over the community and SLES

kernel which only support 4KiB, 2MiB, and 1GiB huge

pages. CLE huge pages support in the Cray XC50TM

system is on par with the x86 Cray XCTM systems.

V. MANAGED SERVICES

CLE managed services execute on the Cray XC50TM

system service nodes. Service nodes run a version of Linux

that has more features enabled than typically are on the

compute nodes. The features enabled may depend on the

services being provided and are configurable. The managed

services execute on the standard x86-64 nodes within the

Cray XC50TM system. There are a number of managed

services supported in the Cray XC50TM system as follows:

• System Database

• Boot Service

• Netroot Service

• Data Virtualization Service

• DataWarp Service

• Gateway Service

• Lustre® Network Service

• Login Service

A. System Database

The system database (SDB), which is a MySQL database,

contains the CLE system database. The CLE database

contains both persistent and non-persistent tables. The

processor and service processor tables are non-persistent

and are created from the HSS data at boot time. The CLE

database tables track system configuration information. The

SDB makes the system configuration information available

to the application level placement scheduler (ALPS), which

interacts with individual compute nodes running CNL.

There were a number of changes required to support the

new CPU type and core counts.

B. Boot Service

The Cray XCTM system supports the ability to efficiently

bootstrap large numbers of nodes by leveraging the high-

speed network infrastructure to distribute image content to

compute and service nodes. The boot node is PXE booted

from the system management workstation (SMW). The

SMW boot manager process, bootmanager, recognizes that

the boot node is being booted and is responsible for

installing the appropriate files, creating the appropriate PXE

boot configuration files and placing them into their proper

locations, taking into consideration which partition and

which boot node is being booted.

The boot node daemon (BND) supports the high-speed
boot of the compute and service nodes. BND writes the

kernel and the initramfs (in-memory root file system)

images into each node's memory. BND takes into

consideration the identity (i.e. CPU family) of target nodes.

The average boot time for CLE is approximately 200

seconds with CLE 6.0 UP06 for a single node. The Cray

boot process executes the boot on multiple nodes in parallel

so that as the system size increases the overall boot time

does not increase.

C. Netroot Service

The Netroot service provides a scalable mechanism for

the efficient projection of shared root file system images, as

well as other file system images for binding in content, such

as the Cray PE or Cray online diagnostics. Netroot provides

a mechanism that allows images to be booted on XC

compute and/or service nodes without incurring the memory

overhead by constructing a copy-on-write (COW) root file-

system from a scalable read-only network file system and

tmpfs file system utilizing the OverlayFS support present in

the SLES 12 and upstream kernels. There were no changes

required to support the Cray XC50TM system with ARM

processors.

D. Data Virtualization Service

Cray’s I/O forwarding as well as file projection solution

is provided by the Cray data virtualization service (DVS).

DVS is a distributed network service that provides

applications running on compute nodes transparent access to

file systems residing on DVS service nodes and remote

servers in the data center. Cray DVS provides features to

aid in the distribution of large I/O requests.

DVS is a core service in CLE, used for Netroot fanout,

serving the programming environment, and DataWarp

(discussed next). DVS currently uses Lustre® networking

(LNET) and Lustre® network driver (LND) as its primary

transport mechanism. There were no changes required to

support the Cray XC50TM system with ARM processors.

E. DataWarp Service

DataWarp is an I/O accelerator technology that allocates

storage dynamically in either private (dedicated) or shared

modes. Storage performance quality of service can be

provided to individual applications, based on the user’s

policies.

DataWarp can be used as a global storage cache for

parallel file systems (PFS) such as Lustre® [3] or General

Parallel File System (GPFS™) [4]. However, Cray

currently only tests and supports Lustre with DataWarp. In

these scenarios, the applications I/O accelerator capabilities

drive up the overall utilization of the parallel file system by

buffering performance across this new tier. DataWarp

improves overall application performance by decoupling

application I/O from the corresponding PFS I/O, while also

improving the performance and resiliency of conventional

disk-based solutions [5]. There were no changes required to

support the Cray XC50TM system with ARM processors.

F. Gateway Service

Cray XCTM systems must be easily integrated into

customer site networks using gateway nodes. Cray XCTM

systems use a RFC 1918 “Private” IP network (e.g.

10.x.x.x) internally, which often overlaps with customer site

usage, and so a network address translation (NAT)

mechanism is required. This is provided by the traditional

Linux NAT running on the network gateway nodes, or by

utilizing RSIP (Realm Specific IP) which provides a similar

function with different performance characteristics. These

gateway nodes are then statically allocated amongst the

compute nodes. There were no changes required to support

the Cray XC50TM system with ARM processors.

G. Lustre® Network Service

In a Cray XCTM system with a Lustre® file system, the

high-speed network (HSN) connecting the Lustre® clients

on the compute nodes with the Lustre® servers is

implemented using Lustre® networking (LNet), which

provides the communication infrastructure required by the

Lustre® file system. Disk storage is connected to the Lustre®

MDS and OSS server nodes using direct attached storage or

traditional storage area network (SAN) technologies. There

were no changes required to support the Cray XC50TM

system with ARM processors.

H. Login Service

Login Services provide a user environment on nodes

selected for use with application development and initiation

of workloads within the Cray XC50TM system. These

services typically include providing access to the Cray PE,

support for customer user account authentication such as

through lightweight directory access protocol (LDAP), and

other tools consistent with supporting a richer user

environment than is found on compute nodes.

Users access an Ethernet network server connection to

the login nodes. Logins are distributed among the login

nodes by a load-leveling service through the domain name

service (DNS) that directs them to the least loaded login

node.

For Cray XC50TM system, the service nodes are all still

x86-64 based nodes. Customers require the ability to

compile their code natively on ARM based nodes. To

support this requirement, Cray uses a repurposed compute

node, which is ARM based, as a login node. Instead of

logging into the x86-64 login node and then the ARM login

node, users are automatically routed to the ARM login node.

There is a one-to-one mapping from the x86 login node to

the repurposed compute login node.

VI. NETWORK STACK

The Cray Aries network software stack includes three

kernel drivers and two user level libraries as follows:

• Generic Hardware Abstraction Layer driver

(GHAL)

• Generic Network Interface (GNI) driver

• User level Generic Network Interface (uGNI)

library

• Distributed Shared Memory Application (DMAPP)

• IP over Generic Fabric (IPoGIF)

The Cray XCTM system software stack is depicted in

Figure 1. The GNI API includes two sets of function calls.

User-level high-performance applications use uGNI

functions while kernel-level drivers use kGNI functions.

Figure 1: Cray XC Communications Stack

kGNI is a kernel module that presents to kernel-space

code an API similar to that of uGNI. The GNI core provides

low-level services to both uGNI and kGNI. kGNI and GNI

core are both in the kGNI module. uGNI also provides

additional functionality important for the communication

clients such as MPI which is described in Section XI. The

generic Hardware abstraction layer (GHAL) isolates all

software from the hardware specifics of the Cray Aries

interconnect.

Distributed Shared Memory Application (DMAPP) is a

communication library which supports a logically shared,

distributed memory (DM) programming model. DMAPP

provides remote memory access (RMA) between processes

within a job in a one-sided manner. One-sided remote

memory access requests require no active participation by

the process at the remote node; synchronization functions

may be used to determine when side-effects of locally

initiated requests are available. DMAPP usage in the Cray

Programming environment is described in Section XI.

A. Aries PCIe Initialization

During the initial bring up of the ARM processors, the

Aries driver failed to load. The problem was due to the fact

that no resources were being assigned to the Aries device

over PCIe. It was determined that the Aries device had a

class of zero in its config space and the kernel does not

assign resources to an “unclassified” device. The problem

was resolved by setting the Aries device as

PCI_CLASS_NETWORK_OTHER.

There were a number of additional changes required in

the network software stack centered on enabling the correct

kernel configuration options for the aarch64 architecture.

B. Aries Write Combining

All of the memory spaces associated with the fast

memory access (FMA) are configured within an x86-64

processor to be a write combining space. ARM defines three

properties as follows:

• Gathering or non Gathering (G/nG): This property

determines whether multiple accesses can be

merged into a single bus transaction

• Re-ordering or non Re-ordering (R/nR): This

determines whether accesses to the same device

can be re-ordered with respect to each other

• Early Write Acknowledgement or non Early Write

Acknowledgement (E/nE): This determines

whether an intermediate write buffer between the

processor and the slave device being accessed is

allowed to send an acknowledgement of a write

completion

The combination of these three, GRE, which is the least

restrictive, provides the equivalent of the x86-64 write

combining in the aarch64 architecture [6].

This is done to improve performance in that it allows

multiple store instructions performed by software to be

combined into a single request packet between the processor

and Aries. Through write combining, multiple stores to

Aries FMA descriptor space may become combined into a

single request to Aries. Cray defined a ioremap_wc()

method for the aarch64 architecture to align with the x86-64

method.

C. IP Over Generic Fabric

Cray provides a reliable, redundant path, high speed IP

network over the Aries network. It is configured on the

system as an IP over generic fabric (IPoGIF) interface. The

socket buffer (SKB) is the fundamental data structure used

in the Linux networking code. Every packet sent or

received is handled using this data structure. When

initializing the SKBs, the ipogif driver is called. Cray

increased the size of the kernel configuration parameter,

CONFIG_FORCE_MAX_ZONEORDER, from 13 to 16,

which allows an allocation of up to 512MiB.

VII. RELIABILITY, AVAILABILITY, AND SERVICEABILITY

Cray supports a number of features that enable reliability,

availability, and serviceability (RAS) as follows:

• System Dump

• Node Heartbeat

• Node Health Checker

• ACPI Platform Error Interface (APEI)

• CoreSight

• Diagnostics

These features are described in the following sections.

A. System Dump

The cdump and crash utilities may be used to analyze

the memory on any Cray service node or CNL compute

node. The cdump command is used to dump node memory

to a file. After cdump completes, the crash utility can be

used on the dump file generated by cdump.

The cdump command executes on the SMW, which is an

x86-64 processor. The kexec-tools are updated to version

2.0.15 to enable aarch64 support. The fuse_vmcore script

fuse mounts remote node memory on the SMW and runs

kexec-tool and makedumpfile to create dump on the SMW.

Cray modified the kexec-tools and makedumpfile to run the

aarch64 specific code on the x86-64 SMW.

The crash utility was also updated to handle both

machine architectures automatically on the SMW. Cray

builds and installs two binaries for each machine

architecture: crash_arm64 and crash_x86_64. The crash

utility also automatically selects the correct machine type

and sets up the crash environment for the user.

B. Node Heartbeat

CLE updates an Aries MMR per node approximately

once per second to indicate that that node is alive, i.e. node

heartbeat. The HSS firmware executing on the blade

controller monitors this heartbeat. When the HSS firmware

detects that a heartbeat has stopped it notifies the SMW.

Cray’s original implementation used x86-64 specific

code instead of a more generic implementation. Cray

modified this code to be architecture agnostic.

C. Node Health Checker

The node health checker (NHC), sometimes referred to

as NodeKARE, is used under three circumstances as

follows:

1. Immediately after applications within a reservation

have terminated

2. Immediately after a reservation has terminated

3. When a node boots

NHC can also be configured to run only on abnormal

termination.

To support running NHC at boot time and after

applications and reservations complete, NHC uses two

separate and independent configuration files, which enable

NHC to be configured differently for these situations.

The NHC is invoked automatically upon the

termination of an application or the end of a batch system

reservation. Cleanup is therefore a two-stage process:

1. Application cleanup is performed following an

application exit.

2. Reservation-level cleanup is performed following

the termination of a batch system reservation.

System resources cannot be freed for reallocation until

both the application cleanup and reservation cleanup have

completed successfully. There were no changes required to

support the Cray XC50TM system with ARM processors.

D. ACPI Platform Error Interface (APEI)

With introduction of the Cray XC50TM system compute

blade and its ARMv8 nodes, the Cray XC TM system RAS

infrastructure was modified to support a node type for which

the x86-64 machine check architecture (MCA) is replaced

by the aarch64 ACPI Platform Error Interface (APEI) [7].

A comprehensive description of APEI is out of scope for

this paper. However, a brief background is in order. Per

APEI, firmware on conformant, supporting platforms must

publish a hardware error source table (HEST) in host

memory. The HEST enumerates a platform's particular

error sources that are exposed to CLE by firmware through

the APEI interface [8].

Cray supports the in-band notification of errors to CLE.

CLE reports the error information via the out-of-band

(OOB) channel to HSS firmware executing on the blade

controller, which is forwarded to the SMW.

Cray also supports the ability for HSS firmware

executing on the blade controller to read uncorrectable

errors directly from the node firmware via the OOB

channel, thus providing a reliable reporting path even when

the node hangs or takes a double fault.

All hardware errors are aggregated to the SMW in the

hardware error log, hwerrlog, and can be viewed via the

SMW xthwerrlogd command.

E. CoreSight

The embedded CoreSight interface, eCSI, is used to

communicate with an aarch64 processor for system level

monitoring and debugging. The eSCI replaces the

embedded ITP interface for Intel processors. CoreSight

defines the internal debug topology and mechanism for

OOB debugging on ARM processors [9]. Cray leverages

the Open On-Chip Debugger, OpenOCD, [10] to interface

with CoreSight. OpenOCD provides several low-level

JTAG interfaces for a variety of debug devices, and it also

provides a command-line interface that offers a rich set of

primitives, such as reading and writing memory or registers.

Cray provides scaling and performance software on the

SMW that utilizes the OpenOCD interfaces on the blade

controller. Cray also wrote the JTAG driver that

communicates with the ARMv8 processor on the blade

controller.

The SMW eCSI command, xtcsi, is used to execute

scripts on the designated node. There are a number of

scripts available. Some of the basic scripts are as follows:

• csitest: tests the basic eCSI interface

• dump-memory-errors: gathers ECC memory error

information and counts

• memory-read: reads a block of memory

• rungdb: runs an instance of the gdb debugger [11]

on the target node

F. Diagnostics

Cray provides a number of online diagnostics that

validate the nodes functionality and performance [12] [13].

These diagnostic tests execute under CLE and are defined as

follows:

• Node NUMA Test (xtnumatest): A set of tests that

exercise and test the NUMA capability of an SMP

node.

• Node Memory Test (xtmemtester): A set of tests

that exercise and test all of node memory.

• Node Performance Test (xtcpuperf): Targets the

performance of the Processor utilizing DGEMM,

which is a double precision floating-point matrix

multiplication application and computational

performance test for the compute node processors.

At the end of an iteration, the performance is

measured in GFlops.

Cray also provides the workload test suite (WTS) utility,

xtsystest, that is comprised of a main top-level script named

test_suite.py, a default configuration file named

test_suite.ini, and a set of standard test modules. The test

modules are pre-compiled benchmarks and diagnostics

binaries that are delivered are part of CLE. The utility

sequentially executes the set of benchmarks, diagnostics,

and/or applications that are defined in the default

configuration file, or the set of tests defined in a custom,

user-defined configuration file. The tool provides a report

about the individual results of each test, as well as an overall

summary of all the tests that have been executed.

The Cray developed Aries network diagnostics are

supported on the Cray XC50TM system. The Aries FMA

and block transfer engine (BTE) concurrent test, xtfbc, is

designed to test the dedicated FMA and BTE logic blocks

concurrently, while stressing the shared hardware such as

the Processor Interface (PI), Network Interface (NICs),

Netlink (NL), network tiles, and high-speed links. The

FMA and BTE threads exchange data between like thread

types.

The Aries all-to-all performance test, xta2a, is used to

measure the performance on all-to-all communication for

sets of nodes corresponding to the physical structure of an

Cray XC50TM system: blades, chassis, groups, and the

whole system. The test is designed to run on as many nodes

as are available, reporting variation in performance over sets

of nodes of a given size. For example, one can run 512

instances of a blade level test on 2048 nodes and report

variation between them.

VIII. WORKLOAD MANAGERS

The application level placement scheduler (ALPS) is a

Cray developed and supported mechanism for placing and

launching applications on compute nodes. ALPS provides

application placement, launch, and management

functionality and cooperates closely with third-party batch

systems for application scheduling across Cray systems. The

third-party batch systems make policy and scheduling

decisions, while ALPS provides a mechanism to place and

launch the applications contained within batch jobs.

ALPS application placement and launch functionality is

only for applications executing on compute nodes. ALPS

does not provide placement or launch functionality on

service nodes.

In addition to ALPS, Cray supports customer choice for

workload managers (WLMs). The following workload

managers are supported:

• SchedMD®: Slurm® [14]

• Altair: PBSPro [15]

• Adaptive Computing: Moab/Torque [16]

Cray supports an homogeneous environment (matched

x86-64 login/compute or aarch64 login/compute) for job

launch. Multiple program multiple data (MPMD) is not

supported at this time. If a WLM script executes anything

on the login node, it must be the same architecture type

(x86-64 or aarch64) as the intended compute nodes. A site

with a mixed system should set up different queues based on

the architecture type (x86-64 and aarch64).

IX. SYSTEM MANAGEMENT

The Cray system management services (CSMS) provides

system management tools and open source components to

support the deployment and configuration of Cray’s

traditional HPC software stack. The current process used by

Cray for creation of CLE images is based on the Image

Management and Provisioning System (IMPS). The toolset

supports the use of recipes, which ultimately define both a

set of RPMs to install to create the desired image, as well as

an optional set of additional commands to be executed

within the created root file system (via chroot).

The IMPS tools including imgbuilder, image, recipe,

pkgcoll, and repo collectively are used to describe image

recipes and build those recipes into boot images. The IMPS

image tools run on the SMW, which is x86-64 based.

To support the ability to create aarch64 images on an

x86-64 based SMW, Cray included the quick emulator

(QEMU) package from openSUSE on the SMW. Cray then

extended a number of the IMPS tools (e.g. recipe, pkgcoll,

and image) to understand an architecture type and to use

QEMU to correctly build the image for the chosen

architecture.

To create the full compute node image including Slurm

for CLE 6.0 SP6 takes a little more than nine minutes. This

is expected due to the high processing load during the

emulated portions of the image builds.

X. POWER MANAGEMENT

Power management for the Cray XC50TM system

includes monitoring power and energy in a variety of ways

and power capping (limiting the allowable power

consumption of a system, or a part of a system). It includes

specific features within HSS and CLE as well as a power

management interface between CLE and HSS.

Cavium supports OOB maximum frequency limit in the

M3 firmware. Cavium also support socket level power

capping as compared to Intel which only supports node level

power capping.

XI. CRAY PROGRAMMING ENVIRONMENT

The Cray XC50TM system with ARM processors includes

a fully integrated Cray programming environment (CPE)

with tools designed to maximize programmer productivity,

application scalability, and performance. This feature-rich,

easy-to-use programming environment facilitates the

development of scalable applications.

The Cray XC50TM system with ARM processors provides

for all of the common HPC programming models. It has full

support for porting and developing distributed memory

applications using MPI and Cray SHMEM. The Cray

XC50TM system with ARM processors also supports the

partitioned global address space (PGAS) programming

models, Unified Parallel C (UPC), Coarray C++, and

Fortran 2008 with coarrays, and shared memory

programming models such as OpenMP and Pthreads within

a node.

Cray MPI is derived from MPICH, an implementation of

MPI-3 by the Argonne National Laboratory Group, which is

highly optimized for the Aries interconnect. It includes full

MPI-3.1 (or later version) support. MPI 3.0 introduced non-

blocking collectives and RMA-3 one-sided communication

that has been optimized for the Aries Network. The Cray

MPI library is highly optimized for low latency and high

bandwidth, both on-node and off node, for point-to-point

and collective communication. Cray MPI has optimizations

for the Aries network optional accelerators, and many core

processors.

The DMAPP communication library is initially defined

as part of the CLE Network software stack in section VI.

DMAPP is typically not used directly within user

application software. The DMAPP API allows one-sided

communication libraries such as Cray SHMEM, and PGAS

compilers such as Coarray Fortran/C++ and UPC,

implemented on top of DMAPP, to realize much of the

hardware performance of the Aries interconnection network

while being reasonably portable to its successors.

Partitioned global address space (PGAS) is a parallel

programming model. It assumes a global memory address

space that is logically partitioned and a portion of it is local

to each process, thread, or processing element. The PGAS

model is the basis of Coarray Fortran/C++, Global Arrays,

SHMEM, and Chapel.

The process management interface (PMI) [17] provides

an interface between ALPS or native Slurm and Cray PE.

PMI provides the basic interaction between the process and

the resource manager. It also provides the mapping of the

of ranks to nodes and cores.

The Cray XC50TM system with ARM processors Cray

compiling environment (CCE) is the cornerstone innovation

of the Cray adaptive computing paradigm. This compiler

builds on a well-developed and sophisticated Cray

technology base that identifies regions of computation that

are either sequential scalar, vector parallel, or highly

multithreaded. Programs can be statically or dynamically

linked against performance-tuned scientific and runtime

libraries.

Support for the 64-bit ARMv8 Application Binary

Interface (ABI). There is full automatic vectorization

support. For the 64-bit and 128-bit ARMv8 vector widths

with a focus on 32-bit and 64-bit data. There is also

vectorization of reductions, conditional code, and other

idioms. Support for the commonly used ARMv8 intrinsics

is also included.

The Cray XC50TM system with ARM processors includes

a distribution of the GNU compiler collection (GCC) C,

C++, and Fortran compilers. The GNU development tool

chain and utilities that are provided as part of the standard

SUSE distribution are also available.

Cray PE typically supports building libraries for three

compilers per processor vendor. For Intel based systems

Cray PE supports CCE, GCC, and Intel. For aarch64

architectures Cray PE supports CCE, GCC, and ARM

Clang/Flang [18] [19]. Note that support for third party

compilers in this context means building Cray developed

libraries MPT (Message Passing Toolkit) and LibSci, some

third-party libraries including HDF (Hierarchical Data

Format) [20], NetCDF (Network Common Data Form) [21],

and FFTW (Fast Fourier Transform in the West) [22], and

interoperability with the Cray Performance Analysis Tool,

CrayPat, and Cray Apprentice2.

Cray compared 158 codes from standard benchmarks

such as SPEP, NPB, and other specific benchmarks that are

relevant to our customers. The comparison was between

Cray CCE and the latest ARM v18.1 (LLVM) and gcc v7.3

looking at C, C++, and Fortran programming languages.

Over 67% of the benchmarks executed faster using CCE

when compared to LLVM and over 60% of the benchmarks

executed faster when compared to gcc.

XII. PERFORMANCE

There have been initial performance numbers for various

system components outlined in various sections.

The initial performance numbers have been previously

made available by Professor Simon McIntosh-Smith at

Super Computing 2017 [23]. These numbers showed very

positive results on the alpha hardware and software.

XIII. LESSONS LEARNED

There have been various changes and lessons learned

described throughout this paper. However, there are a few

general suggestions for engineers when porting applications

to the Cray XC50TM system with ARM processors system.

The first lesson learned is that the ARMv8 processor is

less forgiving on alignment even with checking disabled.

When modifying existing code, engineers were instructed to

enable alignment checking. By default, Linux has alignment

checking disabled. There were a number of changes in

structures to change the declaration to a long instead of int

which aligned the structure on a 64-bit boundary.

The second lesson learned was between the C and C++

char type defaults. The x86 char defaults to a signed char

while the ARMv8 char defaults to unsigned char. Though

the difference seems minor, it has proven to be a significant

issue when porting applications from x86 to ARMv8. The

command line option “–h signedchars” can be used to force

ARMv8 to the x86 behavior.

Another lesson learned for some users was that some user

applications used Intel’s timing instruction directly through

an ASM() intrinsic. This was replaced by either

gettimeofday(), MPI_wtime(), or omp_get_wtime(). In the

some of the Cray specific kernel features, Cray needed to

use a generic timer instead of gettime().

Finally, it is important to note that ARM is not

sequentially (or processor) consistent while x86 is. But this

is only an issue if the application is doing synchronization

without using any hardware provided mechanisms (i.e. just

using something like Dekker’s or Peterson’s algorithm

which use shared memory for synchronization won’t work).

XIV. SUMMARY

Cray has successfully ported CLE to the new Cavium

ThunderX2 ARM processor in the Cray® XC50TM system.

The focus was on creating a system that was feature

complete with comparable functionality to the Cray® XCTM

systems. The port uncovered a number of areas that were

specific to x86 architectures that needed to be updated to

support multiple architectures.

This paper has stepped through the various components

of CLE and described the functionality. It described the

required changes to support the new aarch64 architecture

whether it was a port or a replacement of specific

functionality. In some cases, no changes were required. It

also described the lessons learned along the way.

Cray has provided an ARM based system that provides

equivalent functionality with other Cray® XC50TM systems

in both usability, performance, and scalability.

REFERENCES

1. Cavium ThunderX2 CN99XX Reference Platform Firmware
Overview, Cavium, Revision 1.4, December 2017

2. Performance API, [Online], http://icl.cs.utk.edu/papi/index.html

3. Lustre filesystem, [Online], http://lustre.org

4. General Parallel File System (GPFS), [Online],
https://www.ibm.com/support/knowledgecenter/en/SSPT3X_3.0
.0/com.ibm.swg.im.infosphere.biginsights.product.doc/doc/bi_g
pfs_overview.html

5. DataWarp User Guide. Cray Inc. [Online].
http://docs.cray.com/PDF/XC_Series_DataWarp_User_Guide_
CLE60UP06_S-2558.pdf

6. ARM Cortex-A Series Programmer’s Guide for ARMv8-A,
Arm, [Online].
http://infocenter.arm.com/help/topic/com.arm.doc.den0024a/ind
ex.html

7. Cavium ThunderX2 CN99XX – Reliability, Accessibility, and
Serviceability Solution User Guide, Cavium, Revision 1.0,
August 2017

8. Advanced Configuration and Power Interface Specification,
Hewlett-Packard Corporation, Intel Corporations, Microsoft
Corporation, Phoenix Technologies Ltd., Toshiba Corporation,
Revision 4.0a, April 5, 2010

9. ARM CoreSight, [Online],
https://www.arm.com/products/system-ip/coresight-debug-trace

10. Open On-Chip Debugger (OpenOCD), [Online],
http://openocd.org/

11. GDB: The GNU Project Debugger, [Online],
https://www.gnu.org/software/gdb/

12. J. Schutkoske, “Cray XC System Level Diagnosability:
Commands, Utilities and Diagnostic Tools for the Next
Generation of HPC Systems ”, Proceedings of the Cray User
Group (CUG), 2014,
https://cug.org/proceedings/cug2014_proceedings/includes/files/
pap120.pdf

13. J. Schutkoske, “Cray XC System Node Level Diagnosability”,
Proceedings of the Cray User Group (CUG), 2015,
https://cug.org/proceedings/cug2015_proceedings/includes/files/
pap130.pdf

14. SchedMD Slurm, [Online], https://www.schedmd.com/

http://icl.cs.utk.edu/papi/index.html
http://lustre.org/
https://www.ibm.com/support/knowledgecenter/en/SSPT3X_3.0.0/com.ibm.swg.im.infosphere.biginsights.product.doc/doc/bi_gpfs_overview.html
https://www.ibm.com/support/knowledgecenter/en/SSPT3X_3.0.0/com.ibm.swg.im.infosphere.biginsights.product.doc/doc/bi_gpfs_overview.html
https://www.ibm.com/support/knowledgecenter/en/SSPT3X_3.0.0/com.ibm.swg.im.infosphere.biginsights.product.doc/doc/bi_gpfs_overview.html
http://docs.cray.com/PDF/XC_Series_DataWarp_User_Guide_CLE60UP06_S-2558.pdf
http://docs.cray.com/PDF/XC_Series_DataWarp_User_Guide_CLE60UP06_S-2558.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.den0024a/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.den0024a/index.html
https://www.arm.com/products/system-ip/coresight-debug-trace
http://openocd.org/
https://www.gnu.org/software/gdb/
https://cug.org/proceedings/cug2014_proceedings/includes/files/pap120.pdf
https://cug.org/proceedings/cug2014_proceedings/includes/files/pap120.pdf
https://cug.org/proceedings/cug2015_proceedings/includes/files/pap130.pdf
https://cug.org/proceedings/cug2015_proceedings/includes/files/pap130.pdf
https://www.schedmd.com/

15. Altair PBS Professional, [Online].
https://pbsworks.com/PBSProduct.aspx?n=PBS-
Professional&c=Overview-and-Capabilities

16. Adaptive Computing MOAB/Torque, [Online],
http://www.adaptivecomputing.com/products/open-
source/torque/

17. PMI v2 API, Argonne National Laboratory, [Online],
https://wiki.mpich.org/mpich/index.php/PMI_v2_API

18. Arm C/C++ Compiler, [Online],
https://developer.arm.com/products/software-development-
tools/hpc/arm-cpp-compiler

19. Arm Fortran Compiler, [Online],
https://developer.arm.com/products/software-development-
tools/hpc/arm-fortran-compiler

20. HDF5 Software Documentation, [Online],
https://support.hdfgroup.org/HDF5/doc/index.html

21. Network Common Data Form (NetCDF), [Online].
https://www.unidata.ucar.edu/software/netcdf/

22. Fast Fourier Transform in the West (FFTW), [Online],
http://www.fftw.org/

23. Professor Simon McIntosh-Smith, University of Bristol, UK,
[Online].
http://www.goingarm.com/slides/2017/SC17/GoingArm_SC17_
Bristol_Isambard.pdf

https://pbsworks.com/PBSProduct.aspx?n=PBS-Professional&c=Overview-and-Capabilities
https://pbsworks.com/PBSProduct.aspx?n=PBS-Professional&c=Overview-and-Capabilities
http://www.adaptivecomputing.com/products/open-source/torque/
http://www.adaptivecomputing.com/products/open-source/torque/
https://wiki.mpich.org/mpich/index.php/PMI_v2_API
https://developer.arm.com/products/software-development-tools/hpc/arm-cpp-compiler
https://developer.arm.com/products/software-development-tools/hpc/arm-cpp-compiler
https://developer.arm.com/products/software-development-tools/hpc/arm-fortran-compiler
https://developer.arm.com/products/software-development-tools/hpc/arm-fortran-compiler
https://support.hdfgroup.org/HDF5/doc/index.html
https://www.unidata.ucar.edu/software/netcdf/
http://www.fftw.org/
http://www.goingarm.com/slides/2017/SC17/GoingArm_SC17_Bristol_Isambard.pdf
http://www.goingarm.com/slides/2017/SC17/GoingArm_SC17_Bristol_Isambard.pdf

	I. Introduction
	II. Basic Hardware Configuration
	III. BIOS Initialization
	IV. Compute Node Linux (CNL)
	A. Performance Counters
	B. Core Specialization
	C. Huge Pages

	V. Managed Services
	A. System Database
	B. Boot Service
	C. Netroot Service
	D. Data Virtualization Service
	E. DataWarp Service
	F. Gateway Service
	G. Lustre® Network Service
	H. Login Service

	VI. Network Stack
	A. Aries PCIe Initialization
	B. Aries Write Combining
	C. IP Over Generic Fabric

	VII. Reliability, Availability, and Serviceability
	A. System Dump
	B. Node Heartbeat
	C. Node Health Checker
	D. ACPI Platform Error Interface (APEI)
	E. CoreSight
	F. Diagnostics

	VIII. Workload Managers
	IX. System Management
	X. Power Management
	XI. Cray Programming Environment
	XII. Performance
	XIII. Lessons Learned
	XIV. Summary
	References

