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Abstract— The Cray Linux Environment (CLE) supports the 

Cavium ThunderX2 ARM processor in the Cray® XC50TM 

system. This is the first ARM 64 processor that is supported by 

CLE. The port of CLE to ARM provides the same level of 

functionality, performance, and scalability that is available on 

other Cray XC systems.  This paper describes the functionality, 

performance, and lessons learned from the port of CLE to ARM. 
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I.  INTRODUCTION  

The Cray XC50TM system includes a new Cray Processor 

Daughter Card (PDC) which supports the Cavium 

ThunderX2 CN99xx ARM processor.   The Cray Linux 

Environment (CLE) is enhanced to support the ARM 

processor. 
The Cray Linux Environment (CLE) software stack 

provides robust services for the Cray XC50TM system 
components including the compute and service nodes. CLE 
includes the base operating system for the computational 
complexes, networking software stack, I/O software, and 
other specialized services. 

The Cray XCTM CLE architecture is organized around 
service nodes and compute nodes. Service nodes perform the 
functions needed to support users, administrators, and 
applications running on compute nodes. Above the operating 
system level are specialized daemons and applications that 
perform functions unique to each service node. 

CLE starts with a subset of a Linux distribution and Cray 
adds features for scalability and usability, as well as 
reliability, availability, and serviceability (RAS). By 
tailoring Linux to provide only those services required for 
applications, CLE greatly reduces the operating system 
footprint without sacrificing application functionality. CLE 
is designed to address scaling issues by minimizing 
operating system induced noise or jitter. 

The port of CLE to ARM provides the same level of 
functionality, performance, and scalability that is available 
on other processors in Cray XCTM systems. The process 
included porting existing functionality to the aarch64 
architecture, replacing functionality with new aarch64 
functionality, and in some cases no changes were required.  
This paper describes the functionality, performance, and 

lessons learned from the port of CLE to ARM.   Section II 
describes the basic hardware configuration.   BIOS 
initialization is covered in Section III. The compute node 
Linux (CNL) is described in Section IV followed by the 
managed services and network stack descriptions in Section 
V and VI respectively.  Reliability, availability, and 
serviceability (RAS) features are described in Section VII.  
Workload managers are discussed in Section VIII.   Section 
IX describes the changes required to support the aarch64 
architecture in Cray system management.  Power 
management changes are described in Section X. The Cray 
programming environment is described in Section XI.   
Initial performance is discussed in Section XII followed by 
lessons learned in Section XIII.   A summary is provided in 
Section XIV. 

II. BASIC HARDWARE CONFIGURATION 

The Cray PDC supports a four node, dual socket per node 

configuration.  Each compute blade supports two Cray 

PDCs.   The two sockets that comprise a single node are 

connected together via the interchip coherency interface 

(ICI).  Each node supports a PCIe Gen 3 x16 channel to the 

Cray Aries interconnect.  Each node also supports up to 8 

DDR4 memory channels.  Each ARM socket contains 32 

cores with four threads per core. So, a dual socket node 

contains 256 (2*32*4) logical CPUs. 

III. BIOS INITIALIZATION 

The BIOS is based on the ARMv8 UEFI BIOS from the 

Linaro open source [1].   On node power up, the M3 micro-

core ROM enables low level functionality needed by 

ARMv8, while the ARMv8 cores are being held in reset.  

The ARMv8 Boot firmware performs DDR initialization as 

well as other board specific initialization. It also performs 

ICI linkup and slave node discovery in the case of multi-

node configuration.  When the node is running, M3 

firmware performs monitoring and power management 

function. 

Cray added additional support for the Cray Aries 

interconnect initialization, high speed network boot support, 

and specific hardware error handling and reporting through 

the out-of-band (OOB) Cray Hardware Supervisory System 

(HSS). 



The initial BIOS execution on the first boot after a flash 

of the BIOS takes approximately fifteen minutes.   The 

subsequent boots require only 5 minutes because the 

memory training parameters are stored and reused.   When 

BIOS is flashed these values are cleared. 

IV. COMPUTE NODE LINUX (CNL) 

CNL has many of the positive attributes of a lightweight 

kernel (LWK), however it does not restrict services to the 

extent that many LWKs do. Instead, it provides low 

operating system overhead, while exposing standard Linux 

services and interfaces to applications. CNL not only 

provides standard page-based memory management for 

locally accessed memory, but also provides support for 

PGAS programming models.   There are a number of areas 

that involved additional work to support Cray XC50TM 

system including CPU performance counters, core 

specialization, and huge pages. 

A. Performance Counters 

With the Cray XC50TM system, CNL supports SLES 12 

SP3, kernel version 4.4 for the initial aarch64 release of 

CLE.  As part of the development effort, Cray updated the 

kernel to version 4.4.92-6.18.1, which added support for the 

power management unit (PMU) counters.   A number of 

these counters are utilized by the Cray Programming 

Environment (Cray PE) through the performance API 

(PAPI) [2]. 

B. Core Specialization 

Cray supports core specialization on the Cray XC50TM 

system.  Core specialization binds sets of Linux kernel-

space processes and daemons to one or more cores within a 

Cray compute node. This enables the software application to 

fully utilize the remaining cores within its cpuset. All 

possible overhead processing is restricted to the specialized 

cores within the reservation.  This has been shown to 

improve overall application performance.  There is a user 

level API that is supported in the libjob library. When core 

specialization is desired for a job, job_set_corespec() must 

be called between job_create() and job_set_affinity(). The 

core specialization requested here takes effect upon the 

successful job_set_affinity() call. The only aspect that takes 

effect immediately is that after this call, job_create() calls 

will fail until this job is destroyed. Core specialization is 

supported on a per application launch basis, i.e. using the 

Cray application level placement scheduler (ALPS) aprun 

or Slurm srun command. A single job can be made up of 

multiple application launches, both in parallel and 

sequentially.  CLE core specialization support in the Cray 

XC50TM system with ARM processors is on par with the 

x86-64 Cray XCTM systems. 

C. Huge Pages 

A translation lookaside buffer (TLB) is a cache of 

virtual-to-physical translations. Typically, this is a very 

scarce resource on a processor. Operating systems try to 

make best use of a limited number of TLB resources. This 

optimization is more critical now as bigger and bigger 

physical memories (several GBs) are more readily available. 

Huge pages (also known as large pages) in simplest 

terms are blocks of memory.  The huge page support in the 

Linux kernel is built on top of the multiple page size support 

that is provided by most modern architectures. For example, 

x86 CPUs normally support 4K and 2M (1G if 

architecturally supported) page sizes.  CLE supports 

dynamic or on-demand huge page allocation. In some cases 

(e.g. "HUGETLB_DEFAULT_PAGE_SIZE=64M aprun -

m256h") the kernel may have pre-allocated a number of 

physical huge pages as requested by aprun and will assign 

one of those huge pages to the user application at the 

requested user address. 

But if there are not any pre-allocated huge pages of the 

desired size, the kernel will attempt to allocate a huge page 

of the desired size via the kernel's "buddy allocator".  In 

both cases (pre-allocated via aprun at the start of the job, 

allocated at the time of a page fault during the job), the huge 

page is assigned to the job at the time of the page fault. 

The kernel has limited knowledge of "jobs" and their 

lifetimes, so from the kernel's point-of-view almost all huge 

page allocations are "dynamic".  The main distinction from 

the kernel's point-of-view is between "boot-time" allocation 

(which bypasses the kernel's "buddy allocator") and 

"runtime" allocation (all other cases that Cray has 

implemented).  Although the community and SLES kernels 

support "boot-time" allocation, this is not used in practice 

with CLE, so huge pages are always allocated 

"dynamically" at "runtime". 

CLE enhances Linux to support any huge page size 

(power of 2) from 4KiB to 2GiB by combining hardware 

natively sized pages.  CLE huge pages can be allocated 

dynamically at runtime.  CLE huge pages provide 

significant enhancements over the community and SLES 

kernel which only support 4KiB, 2MiB, and 1GiB huge 

pages.   CLE huge pages support in the Cray XC50TM 

system is on par with the x86 Cray XCTM systems. 

V. MANAGED SERVICES 

CLE managed services execute on the Cray XC50TM 

system service nodes. Service nodes run a version of Linux 

that has more features enabled than typically are on the 

compute nodes.  The features enabled may depend on the 

services being provided and are configurable.  The managed 

services execute on the standard x86-64 nodes within the 

Cray XC50TM system.  There are a number of managed 

services supported in the Cray XC50TM system as follows: 

• System Database 

• Boot Service 

• Netroot Service 

• Data Virtualization Service 

• DataWarp Service 



• Gateway Service 

• Lustre® Network Service 

• Login Service 

 

A. System Database 

The system database (SDB), which is a MySQL database, 

contains the CLE system database. The CLE database 

contains both persistent and non-persistent tables. The 

processor and service processor tables are non-persistent 

and are created from the HSS data at boot time. The CLE 

database tables track system configuration information. The 

SDB makes the system configuration information available 

to the application level placement scheduler (ALPS), which 

interacts with individual compute nodes running CNL. 

There were a number of changes required to support the 

new CPU type and core counts. 

B. Boot Service 

The Cray XCTM system supports the ability to efficiently 

bootstrap large numbers of nodes by leveraging the high-

speed network infrastructure to distribute image content to 

compute and service nodes.  The boot node is PXE booted 

from the system management workstation (SMW). The 

SMW boot manager process, bootmanager, recognizes that 

the boot node is being booted and is responsible for 

installing the appropriate files, creating the appropriate PXE 

boot configuration files and placing them into their proper 

locations, taking into consideration which partition and 

which boot node is being booted.  

The boot node daemon (BND) supports the high-speed 
boot of the compute and service nodes.  BND writes the 

kernel and the initramfs (in-memory root file system) 

images into each node's memory.  BND takes into 

consideration the identity (i.e. CPU family) of target nodes. 

The average boot time for CLE is approximately 200 

seconds with CLE 6.0 UP06 for a single node.   The Cray 

boot process executes the boot on multiple nodes in parallel 

so that as the system size increases the overall boot time 

does not increase.  

C. Netroot Service 

The Netroot service provides a scalable mechanism for 

the efficient projection of shared root file system images, as 

well as other file system images for binding in content, such 

as the Cray PE or Cray online diagnostics.  Netroot provides 

a mechanism that allows images to be booted on XC 

compute and/or service nodes without incurring the memory 

overhead by constructing a copy-on-write (COW) root file-

system from a scalable read-only network file system and 

tmpfs file system utilizing the OverlayFS support present in 

the SLES 12 and upstream kernels.  There were no changes 

required to support the Cray XC50TM system with ARM 

processors. 

D. Data Virtualization Service 

Cray’s I/O forwarding as well as file projection solution 

is provided by the Cray data virtualization service (DVS). 

DVS is a distributed network service that provides 

applications running on compute nodes transparent access to 

file systems residing on DVS service nodes and remote 

servers in the data center.  Cray DVS provides features to 

aid in the distribution of large I/O requests. 

DVS is a core service in CLE, used for Netroot fanout, 

serving the programming environment, and DataWarp 

(discussed next).  DVS currently uses Lustre® networking 

(LNET) and Lustre® network driver (LND) as its primary 

transport mechanism. There were no changes required to 

support the Cray XC50TM system with ARM processors. 

E. DataWarp Service 

DataWarp is an I/O accelerator technology that allocates 

storage dynamically in either private (dedicated) or shared 

modes. Storage performance quality of service can be 

provided to individual applications, based on the user’s 

policies. 

DataWarp can be used as a global storage cache for 

parallel file systems (PFS) such as Lustre® [3] or General 

Parallel File System (GPFS™) [4].  However, Cray 

currently only tests and supports Lustre with DataWarp.  In 

these scenarios, the applications I/O accelerator capabilities 

drive up the overall utilization of the parallel file system by 

buffering performance across this new tier. DataWarp 

improves overall application performance by decoupling 

application I/O from the corresponding PFS I/O, while also 

improving the performance and resiliency of conventional 

disk-based solutions [5].  There were no changes required to 

support the Cray XC50TM system with ARM processors. 

F. Gateway Service 

Cray XCTM systems must be easily integrated into 

customer site networks using gateway nodes.  Cray XCTM 

systems use a RFC 1918 “Private” IP network (e.g. 

10.x.x.x) internally, which often overlaps with customer site 

usage, and so a network address translation (NAT) 

mechanism is required.  This is provided by the traditional 

Linux NAT running on the network gateway nodes, or by 

utilizing RSIP (Realm Specific IP) which provides a similar 

function with different performance characteristics.  These 

gateway nodes are then statically allocated amongst the 

compute nodes.   There were no changes required to support 

the Cray XC50TM system with ARM processors. 

G. Lustre® Network Service 

In a Cray XCTM system with a Lustre® file system, the 

high-speed network (HSN) connecting the Lustre® clients 

on the compute nodes with the Lustre® servers is 

implemented using Lustre® networking (LNet), which 

provides the communication infrastructure required by the 

Lustre® file system. Disk storage is connected to the Lustre® 

MDS and OSS server nodes using direct attached storage or 



traditional storage area network (SAN) technologies.  There 

were no changes required to support the Cray XC50TM 

system with ARM processors. 

H. Login Service 

Login Services provide a user environment on nodes 

selected for use with application development and initiation 

of workloads within the Cray XC50TM system.  These 

services typically include providing access to the Cray PE, 

support for customer user account authentication such as 

through lightweight directory access protocol (LDAP), and 

other tools consistent with supporting a richer user 

environment than is found on compute nodes.  

Users access an Ethernet network server connection to 

the login nodes. Logins are distributed among the login 

nodes by a load-leveling service through the domain name 

service (DNS) that directs them to the least loaded login 

node. 

For Cray XC50TM system, the service nodes are all still 

x86-64 based nodes. Customers require the ability to 

compile their code natively on ARM based nodes. To 

support this requirement, Cray uses a repurposed compute 

node, which is ARM based, as a login node.   Instead of 

logging into the x86-64 login node and then the ARM login 

node, users are automatically routed to the ARM login node.  

There is a one-to-one mapping from the x86 login node to 

the repurposed compute login node. 

VI. NETWORK STACK 

The Cray Aries network software stack includes three 

kernel drivers and two user level libraries as follows: 

• Generic Hardware Abstraction Layer driver 

(GHAL) 

• Generic Network Interface (GNI) driver  

• User level Generic Network Interface (uGNI) 

library  

• Distributed Shared Memory Application (DMAPP) 

• IP over Generic Fabric (IPoGIF) 

 

The Cray XCTM system software stack is depicted in 

Figure 1.  The GNI API includes two sets of function calls. 

User-level high-performance applications use uGNI 

functions while kernel-level drivers use kGNI functions. 

 

 
Figure 1: Cray XC Communications Stack 

 

kGNI is a kernel module that presents to kernel-space 

code an API similar to that of uGNI. The GNI core provides 

low-level services to both uGNI and kGNI. kGNI and GNI 

core are both in the kGNI module. uGNI also provides 

additional functionality important for the communication 

clients such as MPI which is described in Section XI.  The 

generic Hardware abstraction layer (GHAL) isolates all 

software from the hardware specifics of the Cray Aries 

interconnect. 

Distributed Shared Memory Application (DMAPP) is a 

communication library which supports a logically shared, 

distributed memory (DM) programming model. DMAPP 

provides remote memory access (RMA) between processes 

within a job in a one-sided manner. One-sided remote 

memory access requests require no active participation by 

the process at the remote node; synchronization functions 

may be used to determine when side-effects of locally 

initiated requests are available.  DMAPP usage in the Cray 

Programming environment is described in Section XI. 

A. Aries PCIe Initialization 

During the initial bring up of the ARM processors, the 

Aries driver failed to load.  The problem was due to the fact 

that no resources were being assigned to the Aries device 

over PCIe.  It was determined that the Aries device had a 

class of zero in its config space and the kernel does not 

assign resources to an “unclassified” device.  The problem 

was resolved by setting the Aries device as 

PCI_CLASS_NETWORK_OTHER. 

There were a number of additional changes required in 

the network software stack centered on enabling the correct 

kernel configuration options for the aarch64 architecture. 

B. Aries Write Combining 

All of the memory spaces associated with the fast 

memory access (FMA) are configured within an x86-64 

processor to be a write combining space. ARM defines three 

properties as follows: 

• Gathering or non Gathering (G/nG):  This property 

determines whether multiple accesses can be 

merged into a single bus transaction 

• Re-ordering or non Re-ordering (R/nR):  This 

determines whether accesses to the same device 

can be re-ordered with respect to each other 

• Early Write Acknowledgement or non Early Write 

Acknowledgement (E/nE):  This determines 

whether an intermediate write buffer between the 

processor and the slave device being accessed is 

allowed to send an acknowledgement of a write 

completion 

 

The combination of these three, GRE, which is the least 

restrictive, provides the equivalent of the x86-64 write 

combining in the aarch64 architecture [6]. 

This is done to improve performance in that it allows 

multiple store instructions performed by software to be 



combined into a single request packet between the processor 

and Aries.  Through write combining, multiple stores to 

Aries FMA descriptor space may become combined into a 

single request to Aries.  Cray defined a ioremap_wc() 

method for the aarch64 architecture to align with the x86-64 

method. 

C. IP Over Generic Fabric 

Cray provides a reliable, redundant path, high speed IP 

network over the Aries network.  It is configured on the 

system as an IP over generic fabric (IPoGIF) interface.  The 

socket buffer (SKB) is the fundamental data structure used 

in the Linux networking code.  Every packet sent or 

received is handled using this data structure.  When 

initializing the SKBs, the ipogif driver is called.    Cray 

increased the size of the kernel configuration parameter, 

CONFIG_FORCE_MAX_ZONEORDER, from 13 to 16, 

which allows an allocation of up to 512MiB. 

VII. RELIABILITY, AVAILABILITY, AND SERVICEABILITY 

Cray supports a number of features that enable reliability, 

availability, and serviceability (RAS) as follows: 

• System Dump 

• Node Heartbeat 

• Node Health Checker 

• ACPI Platform Error Interface (APEI) 

• CoreSight 

• Diagnostics 

 

These features are described in the following sections. 

A. System Dump 

The cdump and crash utilities may be used to analyze 

the memory on any Cray service node or CNL compute 

node. The cdump command is used to dump node memory 

to a file. After cdump completes, the crash utility can be 

used on the dump file generated by cdump. 

The cdump command executes on the SMW, which is an 

x86-64 processor.  The kexec-tools are updated to version 

2.0.15 to enable aarch64 support.  The fuse_vmcore script 

fuse mounts remote node memory on the SMW and runs 

kexec-tool and makedumpfile to create dump on the SMW.  

Cray modified the kexec-tools and makedumpfile to run the 

aarch64 specific code on the x86-64 SMW.   

The crash utility was also updated to handle both 

machine architectures automatically on the SMW.  Cray 

builds and installs two binaries for each machine 

architecture: crash_arm64 and crash_x86_64.  The crash 

utility also automatically selects the correct machine type 

and sets up the crash environment for the user.  

B. Node Heartbeat 

CLE updates an Aries MMR per node approximately 

once per second to indicate that that node is alive, i.e. node 

heartbeat.  The HSS firmware executing on the blade 

controller monitors this heartbeat.   When the HSS firmware 

detects that a heartbeat has stopped it notifies the SMW. 

Cray’s original implementation used x86-64 specific 

code instead of a more generic implementation.   Cray 

modified this code to be architecture agnostic. 

C. Node Health Checker 

The node health checker (NHC), sometimes referred to 

as NodeKARE, is used under three circumstances as 

follows: 

1. Immediately after applications within a reservation 

have terminated 

2. Immediately after a reservation has terminated 

3. When a node boots 

 

NHC can also be configured to run only on abnormal 

termination. 

To support running NHC at boot time and after 

applications and reservations complete, NHC uses two 

separate and independent configuration files, which enable 

NHC to be configured differently for these situations. 

The NHC is invoked automatically upon the 

termination of an application or the end of a batch system 

reservation. Cleanup is therefore a two-stage process:  

1. Application cleanup is performed following an 

application exit. 

2. Reservation-level cleanup is performed following 

the termination of a batch system reservation. 

 

System resources cannot be freed for reallocation until 

both the application cleanup and reservation cleanup have 

completed successfully.  There were no changes required to 

support the Cray XC50TM system with ARM processors. 

D. ACPI Platform Error Interface (APEI) 

With introduction of the Cray XC50TM system compute 

blade and its ARMv8 nodes, the Cray XC TM system RAS 

infrastructure was modified to support a node type for which 

the x86-64 machine check architecture (MCA) is replaced 

by the aarch64 ACPI Platform Error Interface (APEI) [7]. 

A comprehensive description of APEI is out of scope for 

this paper.  However, a brief background is in order.  Per 

APEI, firmware on conformant, supporting platforms must 

publish a hardware error source table (HEST) in host 

memory.  The HEST enumerates a platform's particular 

error sources that are exposed to CLE by firmware through 

the APEI interface [8]. 

Cray supports the in-band notification of errors to CLE.   

CLE reports the error information via the out-of-band 

(OOB) channel to HSS firmware executing on the blade 

controller, which is forwarded to the SMW. 

Cray also supports the ability for HSS firmware 

executing on the blade controller to read uncorrectable 

errors directly from the node firmware via the OOB 

channel, thus providing a reliable reporting path even when 

the node hangs or takes a double fault.  



All hardware errors are aggregated to the SMW in the 

hardware error log, hwerrlog, and can be viewed via the 

SMW xthwerrlogd command. 

E. CoreSight 

The embedded CoreSight interface, eCSI, is used to 

communicate with an aarch64 processor for system level 

monitoring and debugging.  The eSCI replaces the 

embedded ITP interface for Intel processors.  CoreSight 

defines the internal debug topology and mechanism for 

OOB debugging on ARM processors [9].  Cray leverages 

the Open On-Chip Debugger, OpenOCD, [10] to interface 

with CoreSight.  OpenOCD provides several low-level 

JTAG interfaces for a variety of debug devices, and it also 

provides a command-line interface that offers a rich set of 

primitives, such as reading and writing memory or registers.  

Cray provides scaling and performance software on the 

SMW that utilizes the OpenOCD interfaces on the blade 

controller.   Cray also wrote the JTAG driver that 

communicates with the ARMv8 processor on the blade 

controller.   

The SMW eCSI command, xtcsi, is used to execute 

scripts on the designated node.   There are a number of 

scripts available.  Some of the basic scripts are as follows: 

• csitest:  tests the basic eCSI interface 

• dump-memory-errors: gathers ECC memory error 

information and counts 

• memory-read:  reads a block of memory 

• rungdb:  runs an instance of the gdb debugger [11] 

on the target node 

F. Diagnostics 

Cray provides a number of online diagnostics that 

validate the nodes functionality and performance [12] [13].   

These diagnostic tests execute under CLE and are defined as 

follows: 

• Node NUMA Test (xtnumatest): A set of tests that 

exercise and test the NUMA capability of an SMP 

node. 

• Node Memory Test (xtmemtester): A set of tests 

that exercise and test all of node memory. 

• Node Performance Test (xtcpuperf): Targets the 

performance of the Processor utilizing DGEMM, 

which is a double precision floating-point matrix 

multiplication application and computational 

performance test for the compute node processors. 

At the end of an iteration, the performance is 

measured in GFlops. 

 

Cray also provides the workload test suite (WTS) utility, 

xtsystest, that is comprised of a main top-level script named 

test_suite.py, a default configuration file named 

test_suite.ini, and a set of standard test modules. The test 

modules are pre-compiled benchmarks and diagnostics 

binaries that are delivered are part of CLE. The utility 

sequentially executes the set of benchmarks, diagnostics, 

and/or applications that are defined in the default 

configuration file, or the set of tests defined in a custom, 

user-defined configuration file. The tool provides a report 

about the individual results of each test, as well as an overall 

summary of all the tests that have been executed. 

The Cray developed Aries network diagnostics are 

supported on the Cray XC50TM system.  The Aries FMA 

and block transfer engine (BTE) concurrent test, xtfbc, is 

designed to test the dedicated FMA and BTE logic blocks 

concurrently, while stressing the shared hardware such as 

the Processor Interface (PI), Network Interface (NICs), 

Netlink (NL), network tiles, and high-speed links.  The 

FMA and BTE threads exchange data between like thread 

types.   

The Aries all-to-all performance test, xta2a, is used to 

measure the performance on all-to-all communication for 

sets of nodes corresponding to the physical structure of an 

Cray XC50TM system: blades, chassis, groups, and the 

whole system. The test is designed to run on as many nodes 

as are available, reporting variation in performance over sets 

of nodes of a given size.   For example, one can run 512 

instances of a blade level test on 2048 nodes and report 

variation between them. 

VIII. WORKLOAD MANAGERS 

The application level placement scheduler (ALPS) is a 

Cray developed and supported mechanism for placing and 

launching applications on compute nodes. ALPS provides 

application placement, launch, and management 

functionality and cooperates closely with third-party batch 

systems for application scheduling across Cray systems. The 

third-party batch systems make policy and scheduling 

decisions, while ALPS provides a mechanism to place and 

launch the applications contained within batch jobs. 

ALPS application placement and launch functionality is 

only for applications executing on compute nodes. ALPS 

does not provide placement or launch functionality on 

service nodes. 

In addition to ALPS, Cray supports customer choice for 

workload managers (WLMs). The following workload 

managers are supported: 

• SchedMD®: Slurm® [14] 

• Altair: PBSPro [15] 

• Adaptive Computing: Moab/Torque [16] 

 

Cray supports an homogeneous environment (matched 

x86-64 login/compute or aarch64 login/compute) for job 

launch.  Multiple program multiple data (MPMD) is not 

supported at this time.  If a WLM script executes anything 

on the login node, it must be the same architecture type 

(x86-64 or aarch64) as the intended compute nodes.  A site 

with a mixed system should set up different queues based on 

the architecture type (x86-64 and aarch64). 



IX. SYSTEM MANAGEMENT 

The Cray system management services (CSMS) provides 

system management tools and open source components to 

support the deployment and configuration of Cray’s 

traditional HPC software stack. The current process used by 

Cray for creation of CLE images is based on the Image 

Management and Provisioning System (IMPS). The toolset 

supports the use of recipes, which ultimately define both a 

set of RPMs to install to create the desired image, as well as 

an optional set of additional commands to be executed 

within the created root file system (via chroot). 

The IMPS tools including imgbuilder, image, recipe, 

pkgcoll, and repo collectively are used to describe image 

recipes and build those recipes into boot images.  The IMPS 

image tools run on the SMW, which is x86-64 based.  

To support the ability to create aarch64 images on an 

x86-64 based SMW, Cray included the quick emulator 

(QEMU) package from openSUSE on the SMW.   Cray then 

extended a number of the IMPS tools (e.g. recipe, pkgcoll, 

and image) to understand an architecture type and to use 

QEMU to correctly build the image for the chosen 

architecture.   

To create the full compute node image including Slurm 

for CLE 6.0 SP6 takes a little more than nine minutes.   This 

is expected due to the high processing load during the 

emulated portions of the image builds. 

X. POWER MANAGEMENT 

Power management for the Cray XC50TM system 

includes monitoring power and energy in a variety of ways 

and power capping (limiting the allowable power 

consumption of a system, or a part of a system). It includes 

specific features within HSS and CLE as well as a power 

management interface between CLE and HSS.  

Cavium supports OOB maximum frequency limit in the 

M3 firmware.  Cavium also support socket level power 

capping as compared to Intel which only supports node level 

power capping. 

XI. CRAY PROGRAMMING ENVIRONMENT 

The Cray XC50TM system with ARM processors includes 

a fully integrated Cray programming environment (CPE) 

with tools designed to maximize programmer productivity, 

application scalability, and performance. This feature-rich, 

easy-to-use programming environment facilitates the 

development of scalable applications. 

The Cray XC50TM system with ARM processors provides 

for all of the common HPC programming models. It has full 

support for porting and developing distributed memory 

applications using MPI and Cray SHMEM. The Cray 

XC50TM system with ARM processors also supports the 

partitioned global address space (PGAS) programming 

models, Unified Parallel C (UPC), Coarray C++, and 

Fortran 2008 with coarrays, and shared memory 

programming models such as OpenMP and Pthreads within 

a node. 

Cray MPI is derived from MPICH, an implementation of 

MPI-3 by the Argonne National Laboratory Group, which is 

highly optimized for the Aries interconnect. It includes full 

MPI-3.1 (or later version) support. MPI 3.0 introduced non-

blocking collectives and RMA-3 one-sided communication 

that has been optimized for the Aries Network.  The Cray 

MPI library is highly optimized for low latency and high 

bandwidth, both on-node and off node, for point-to-point 

and collective communication. Cray MPI has optimizations 

for the Aries network optional accelerators, and many core 

processors. 

The DMAPP communication library is initially defined 

as part of the CLE Network software stack in section VI. 

DMAPP is typically not used directly within user 

application software. The DMAPP API allows one-sided 

communication libraries such as Cray SHMEM, and PGAS 

compilers such as Coarray Fortran/C++ and UPC, 

implemented on top of DMAPP, to realize much of the 

hardware performance of the Aries interconnection network 

while being reasonably portable to its successors. 

Partitioned global address space (PGAS) is a parallel 

programming model.  It assumes a global memory address 

space that is logically partitioned and a portion of it is local 

to each process, thread, or processing element. The PGAS 

model is the basis of Coarray Fortran/C++, Global Arrays, 

SHMEM, and Chapel. 

The process management interface (PMI) [17] provides 

an interface between ALPS or native Slurm and Cray PE.  

PMI provides the basic interaction between the process and 

the resource manager.  It also provides the mapping of the 

of ranks to nodes and cores.  

The Cray XC50TM system with ARM processors Cray 

compiling environment (CCE) is the cornerstone innovation 

of the Cray adaptive computing paradigm. This compiler 

builds on a well-developed and sophisticated Cray 

technology base that identifies regions of computation that 

are either sequential scalar, vector parallel, or highly 

multithreaded. Programs can be statically or dynamically 

linked against performance-tuned scientific and runtime 

libraries. 

Support for the 64-bit ARMv8 Application Binary 

Interface (ABI).  There is full automatic vectorization 

support. For the 64-bit and 128-bit ARMv8 vector widths 

with a focus on 32-bit and 64-bit data.   There is also 

vectorization of reductions, conditional code, and other 

idioms.  Support for the commonly used ARMv8 intrinsics 

is also included. 

The Cray XC50TM system with ARM processors includes 

a distribution of the GNU compiler collection (GCC) C, 

C++, and Fortran compilers. The GNU development tool 

chain and utilities that are provided as part of the standard 

SUSE distribution are also available. 

Cray PE typically supports building libraries for three 

compilers per processor vendor. For Intel based systems 



Cray PE supports CCE, GCC, and Intel. For aarch64 

architectures Cray PE supports CCE, GCC, and ARM 

Clang/Flang [18] [19]. Note that support for third party 

compilers in this context means building Cray developed 

libraries MPT (Message Passing Toolkit) and LibSci, some 

third-party libraries including HDF (Hierarchical Data 

Format) [20], NetCDF (Network Common Data Form) [21], 

and FFTW (Fast Fourier Transform in the West) [22], and 

interoperability with the Cray Performance Analysis Tool, 

CrayPat, and Cray Apprentice2. 

Cray compared 158 codes from standard benchmarks 

such as SPEP, NPB, and other specific benchmarks that are 

relevant to our customers.   The comparison was between 

Cray CCE and the latest ARM v18.1 (LLVM) and gcc v7.3 

looking at C, C++, and Fortran programming languages.  

Over 67% of the benchmarks executed faster using CCE 

when compared to LLVM and over 60% of the benchmarks 

executed faster when compared to gcc. 

XII. PERFORMANCE 

There have been initial performance numbers for various 

system components outlined in various sections.   

The initial performance numbers have been previously 

made available by Professor Simon McIntosh-Smith at 

Super Computing 2017 [23].  These numbers showed very 

positive results on the alpha hardware and software.   

XIII. LESSONS LEARNED 

There have been various changes and lessons learned 

described throughout this paper.  However, there are a few 

general suggestions for engineers when porting applications 

to the Cray XC50TM system with ARM processors system.  

The first lesson learned is that the ARMv8 processor is 

less forgiving on alignment even with checking disabled. 

When modifying existing code, engineers were instructed to 

enable alignment checking. By default, Linux has alignment 

checking disabled.  There were a number of changes in 

structures to change the declaration to a long instead of int 

which aligned the structure on a 64-bit boundary. 

The second lesson learned was between the C and C++ 

char type defaults.   The x86 char defaults to a signed char 

while the ARMv8 char defaults to unsigned char.   Though 

the difference seems minor, it has proven to be a significant 

issue when porting applications from x86 to ARMv8.  The 

command line option “–h signedchars” can be used to force 

ARMv8 to the x86 behavior. 

Another lesson learned for some users was that some user 

applications used Intel’s timing instruction directly through 

an ASM() intrinsic.   This was replaced by either 

gettimeofday(), MPI_wtime(), or omp_get_wtime().  In the 

some of the Cray specific kernel features, Cray needed to 

use a generic timer instead of gettime(). 

Finally, it is important to note that ARM is not 

sequentially (or processor) consistent while x86 is.  But this 

is only an issue if the application is doing synchronization 

without using any hardware provided mechanisms (i.e. just 

using something like Dekker’s or Peterson’s algorithm 

which use shared memory for synchronization won’t work). 

XIV. SUMMARY 

Cray has successfully ported CLE to the new Cavium 

ThunderX2 ARM processor in the Cray® XC50TM system.  

The focus was on creating a system that was feature 

complete with comparable functionality to the Cray® XCTM 

systems.  The port uncovered a number of areas that were 

specific to x86 architectures that needed to be updated to 

support multiple architectures.   

This paper has stepped through the various components 

of CLE and described the functionality.  It described the 

required changes to support the new aarch64 architecture 

whether it was a port or a replacement of specific 

functionality.  In some cases, no changes were required.  It 

also described the lessons learned along the way.  

Cray has provided an ARM based system that provides 

equivalent functionality with other Cray® XC50TM systems 

in both usability, performance, and scalability.  
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