
Scaling Deep Learning Without Increasing Batchsize

Alexander Heye
Data Analytics and Machine Learning

Cray, Inc
Seattle, Wa, USA
aheye@cray.com

Abstract—Deep learning has proven itself to be a difficult
problem in the HPC space. Though the algorithm can scale
very efficiently with a sufficiently large batchsize, the efficacy
of training tends to decreases as the batchsize grows. Scaling
the training of a single model may be effective in narrow fields
such as image classification, but more generalizable options
can be achieved when considering alternate methods of par-
allelism and the larger workflow surrounding neural network
training. Hyperparameter optimization, dataset segmentation,
hierarchical fine-tuning and model parallelism can all provide
significant scaling capacity without increasing batchsize and
can be paired with a traditional, single-model scaling approach
for a multiplicative scaling improvement. This paper intends to
further define and examine these scaling techniques in how they
perform individually and how combining them can provide
significant improvements in overall training times.

Keywords-Neural Networks; Deep Learning; High Perfor-
mance Computing; Data Analytics

I. INTRODUCTION

Deep learning has transformed the approach to tackling
some of the most difficult problems of the modern age.
This has been focused largely in the realms of computer
vision, automatic speech recognition and natural language
processing, however this has been expanding rapidly to other
fields traditionally dominated by statistical and simulation
based approaches.

As very large datasets grow and become more accessible,
deeper and more complex neural network models will be
used to gain further insights and drive large gains in pre-
dictive power. Computational resources become a limiting
factor in being able to fully explore the possible applications
of neural networks. The ability to utilize HPC systems can be
a solution, but for most modern techniques for scaling to this
level, the requirements on network topology and batchsize
will prevent applicability to a more broad range of problems.

Most efforts to bring Deep Learning to HPC scale have
focused on the training of a single neural network on a
large system[1]. There is a lot of value in this, however in
day-to-day development, more can be gained by combining
alternate approaches and focusing on scaling portions of
the workflow. By doing this a multiplicative increase in
parallel computation can be achieved, largely without any
concessions on network topology or batchsize. In this paper
I intend to dive deeper on some of these techniques and

illustrate the benefits through an example deep-learning
application.

II. HPC AND NEURAL NETWORKS

The best-known approaches to scaling neural network
training can be broken down into two ways of distributing
the training process. Either the dataset can be split among
compute units batch by batch or the model topology itself
can be stored and accessed across compute units. These
are referred to as data parallel and model parallel train-
ing respectively[2]. These techniques tend to be used for
different purposes as that each has its own limitations and
strengths which will be detailed in the following sections.

A. Data Parallelism

Data parallelism is by far the most common approach used
when scaling neural network training. It relies on replicated
model parameters being deployed on each compute node,
or worker, and each of these workers running the forward
and backward pass on different parts its own minibatch
in parallel. The gradients are then aggregated and applied
at some cadence after each worker completes it’s gradient
calculation. Depending on the method chosen, the master
set of parameters may be stored on one or more parameter
servers.

Generally, this gradient update is done synchronously.
This means that all workers must complete a forward pass,
backward pass and gradient update with the aggregated
parameters before a new batch is computed. This avoids
gradient calculations computed based on stale weights which
can hinder the overall training process. Here, stale weights
refers to a set of model parameters that are no longer in
sync with the master set.

This approach can, however, lead to poor utilization of
resources as the fastest worker must wait for the slowest
worker to complete it’s gradient update before moving for-
ward. Asynchronous updates can increase resource utiliza-
tion, however the likelihood of gradients calculated on stale
weights increases with increased asynchronicity, therefore
potentially slowing the converge rate of the final accuracy.

Data parallel training serves to scale the overall through-
put (individual samples per second) very effectively, how-
ever, with neural network training, an increase in throughput



does not guarantee faster training. Counterintuitively, when
training to a threshold loss rather than a set amount of
epochs or updates, an increase in throughput through data
parallelism can correlate to longer training times if executed
improperly. This is caused by the scaling of global batchsize
with the number of workers, decreasing the convergence rate
as each training step utilizes more data but shifts the weights
by the same amount.

Increasing the step size, or learning rate, may appear to
be a simple solution, as that more data per batch should
allow for more confidence in updating the weights. This is
rarely the case however. With a large batchsize, the training
process becomes less stochastic and therefore the ability to
explore the error surface for a deeper local error minimun
begins to diminish. This decreases the ability of the network
to generalize to problems outside of the training dataset and
thus validation testing results will suffer.

B. Model Parallelism

Model parallel training refers to dividing the neural net-
work model in some way and locating each part on different
workers. There are many ways to do this, and how to go
about it depends on the end goal and the specific network
topology. If memory is a limiting factor for the size of
the neural network, the network parameters can be divided
among two or more workers. In this case, splitting the
network vertically by layers could suffice, and is generally
a popular tactic as it is intuitive and simple to implement
with no implications on model performance. The downside
is that in order to train synchronously, many of the workers
will sit idle much of the time while waiting for results from
lower layers.

In order to leverage model parallelism for an improvement
in training time, the network can be split horizontally rather
than vertically. In order to do this, the network would
need to be designed to allow layers to split into multiple
concurrent flows of execution, an example of which is
provided in Figure 1. In this case, execution for specified
layers will be executed on multiple workers decreasing the
walltime of each forward and backward pass. This does limit
communication between layers, and doing so regularity will
come at a cost to the scaling efficiency.

This technique has the benefit of not affecting the batch-
size, however load-balancing issues and increased communi-
cation costs limit the applicability. For large parallel systems,
this technique limits the amount of scaling by the number
of ways in which the model can be divided. As that most
networks are well below 100 layers in size, and splitting the
network horizontally too many times can have detrimental
effects on performance, generally each instance of model-
parallel training can only scaling to a dozen or so nodes at
most.

III. WORKFLOW SCALING

In order to optimize the scalability of deep learning, the
overall workflow should be taken into consideration. Though
distributing the training of a single network is very useful, it
is rarely the largest contributor to the overall time investment
for a developer. Datasets are regularly altered, varying
subsets are evaluated separately and many individual models
are trained to tune to the ideal configuration. By planning
ahead and parallelizing as much of the workflow as possible,
the overall time from initial investigation to an optimized,
well-tuned model can be brought down dramatically with
the aid of large HPC systems.

A. Hyperparameter Optimization

Designing a neural network leaves the developer or data
scientist with a lot of decisions when constructing the
network architecture and setting up the training process.
Many of these decisions come down to values known as
hyperparameters, an example set can be seen in Table I.
Hyperparameters can define the network itself, i.e number
of layers, activations functions or convolutional filter size, as
well as define the training process, i.e. learning rate, weight
decay or loss function. As the network and training options
grow in size, the space of possible hyperparameter combi-
nations grows exponentially. In order to explore enough of
this space to optimize the model, a form of hyperparameter
optimization (HPO) must be used.

HPO can come in many forms, from a naive hyperpa-
rameter sweep to a more directed optimization technique. A
properly executed HPO process has the ability to produce
large gains in accuracy as that an improperly tuned network
can have a significant detrimental effect on its efficacy.
Because of this, much of the time spent in developing a
deep learning application will be spent here. Since this
involves not only training a single model, but hundreds
or thousands, an optimized, scaled approach to HPO can
provide more benefit than even a well implemented large
scale data parallel training process.

Simple techniques for hyperparameter sweeps include
random and grid search. In a grid search approach, a matrix
of possible hyperparameter combinations are selected where
the developer will select a few options for each and run all
the possibilities. With the example set of hyperparameter in
Figure I, assuming only 3 options per this would still require
the training of 310 networks, or just shy of 60,000 training
runs to explore the entire space. Increase this to 5 per and
that number is up to 9.8M training runs. Obviously, this is
not a reasonable expectation and chances are a sub-optimal
network will be chosen as compute resources limit the
amount of this space that can be explored. Random sweeps
take a similar approach, but rather than defining a matrix
of possibilities ahead of time, hyperparameters are chosen
at random for each run. This may increase the chances of
stumbling upon a good configuration, but again a lot of



Table I
DEFAULT HYPERPARAMETERS

Parameter Default Range

Optimizer Adam Adam, Ada, SGD, Mom.

Activation Function ReLU ReLU, ELU, tanh, sigmoid

Batchsize (BS) 100 Held Constant

Dropout Rate 0.4 [0.1, 0.9]

Learning Rate 1e-4 [1e-1, 1e-6]

Conv1 Filter Count 32 [2, 240]

Conv1 Filter Size 5 [1, 10]

Conv2 Filter Counts 256 [1, 256]

Conv2 Filter Sizes 5 [1, 10]

Fully Conn. Sizes 2048 [1, 2048]

compute would be wasted on very similar configurations
that are known to be low quality.

Other search techniques use optimization algorithms to
direct the selection of subsequent configuration choices,
therefore accelerating the search for an ideal architecture
and training approach. Bayesian techniques, such as those
applied by the tool Spearmint[3], utilize bayesian modeling
in the selection of future generations of models. Evolution-
ary techniques apply genetic algorithms to achieve a similar
result. These algorithms are iterative in nature, requiring
results from one generation to aid in the creation of a
new generation, therefore they cannot reach the same level
of parallelism as the random and grid sweep approaches,
however the total amount of resources monopolized by the
HPO process will decrease as that a desirable configuration
will be achieved more rapidly by applying these guided
techniques.

B. Ensemble Training

Ensemble neural networks provide further confidence in
the predictions made by neural networks. An ensemble of
neural networks will be trained independently while varying
hyperparameters, dataset, and/or initializations. The final
prediction is determined by a method of ensemble averaging
where each network may be assigned a weight toward
the final solution based on performance. When making a
prediction from such a system, not only will a prediction
be made, but a higher level of confidence can be prescribed
by analyzing the confidence of each individual network and
the proportion of networks that made a similar prediction.
It is common for an ensemble system to perform better on
average than any individual model would perform on its
own.

Because multiple networks will be training entirely in-
dependently with only minimal communication cost at the
end, this method can employed to boost resource utilization
while also boosting the over performance of the system.
This can easily be applied as part of the HPO process,
in the end choosing not only the best configuration, but

the top N configurations as your ensemble. The genetic
HPO algorithm can aid this further by provided N distinct
populations where the best is chosen from each. As each
population is optimized from a distinct starting point, there
would be more variability in the top performers and thus
more confidence can be provided by the ensemble result.

C. Transfer Learning and Subproblem Modeling

Transfer learning[4] and model fine-tuning can also pro-
vide a method for both boosting performance as well as
scaling ability. In transfer learning, a neural network can be
pre-trained with a dataset in a similar format. By designing
a hierarchy of transfer learning we aim to boost performance
while allowing multiple distinct networks to be training in
parallel.

An example of this can come from an application of
deep learning in precipitation forecasting. If the goal is to
predict the evolution of a storm from local radar images,
general image recognition can provide a great baseline for
understanding low level features of a radar image. Because
of this, a network pre-trained on imagenet may train faster on
the radar dataset as much of the underlying functionality is
already there leaving only the high level radar understanding
to be trained at the final layers.

This can broken down further into subproblems. In this
case, each location will have it’s own subset of radar images
and local features that need to be learned. A network can
be trained to predict precipitation based on the overarch-
ing dataset to gain fundamental knowledge of precipitation
trends creating a global model. From this, each local area
can fine-tune a model specific to that region, again only
needing to learn the high level specific features to that new
training set. Because it was able to inherit the learning from
the global dataset, it is likely that this will generalize better
to situations not seen in that location, but are present in the
larger dataset.

IV. COMBINED NEURAL NETWORK SCALING

These scaling techniques can be very useful indepen-
dently, however each will hit a limiting factor requiring
either more work or concessions in the model design.
Individually, the limited factor of data parallelism tends
to a lack of convergence with large batchsizes. Model
parallelism is limited by the number of ways in which
the model can be split, especially in ways that allow truly
parallel computation. As we will see later, an intelligent
HPO algorithm can only train so many models in paral-
lel before the benefits of the smart optimization begin to
diminish. Brute force hyperparameter sweeps are likely to
waste a significant amount of compute resources as poorly
performing configurations can be evaluated repetitively.

If these techniques can be used in tandem, each at a level
in which the limiting factors have yet to take a toll, we
can achieve a higher level of efficiency when considering



Table II
BASELINE RUNS

Method Random Search

Total Training Runs 5000

Runs that hit thres. 5

Best overal run 98.63%

Mean runs to thres. 500

Mean Time/Run 765s

the broader development process and the total time to a
well-trained model. In the following sections, I will describe
how I intend to illustrate this point through some basic
experiments and analysis in order to provide some insight
into how best these techniques can be implemented.

V. EXPERIMENTS

To prove this point, I’ve developed a set of experiments
with a simple dataset to demonstrate the potential cumulative
benefits of multiple parallel techniques in training neural
networks. In this case, I will provide data on the effect of
using data parallelism, model parallelism and hyperparam-
eter optimization compared to a baseline of random search
and no training parallelism.

A set of baselines will be computed based on speedup
seen of a single training run for data and model parallelism
vs using neither on a single compute node. The speedups
seen here will be applied in tandem to determine the
combined speedup of implementing multiple tactics at once.

The primary focus of these tests is to determine the
advantage of parallelizing the full training process, including
not only a single training run but as many runs as it takes to
reach a sufficiently well trained model within a set number
of steps.

All tests noted here were performed on a Cray XC-30
system. Each node contained 2.7GHz Dual-Socket 24-Core
Intel IvyBridge generation CPUs and 64GB of DDR3 Mem-
ory. The Cray Urika-XC Analytics and Artificial Intelligence
Software Suite was used to run distributed Tensorflow and
Dask jobs as needed.

A. Dataset and Training

The experiments will run with the well-known and well-
tested MNIST dataset[5]. This dataset is comprised of 28x28
labeled images representing handwritten digits from zero to
nine. The goal is to accurately classify which digit each
image represents. An example set of these images can be
seen in Figure 1 as the input layer to the network at the
bottom.

MNIST is comprised of 60,000 labeled training images
and 10,000 labeled validation images. Each epoch of training
consists of the gradient calculation and application for the
equivalent of this entire training dataset. In the case of data
parallelism, this may not lead to each individual image being

Figure 1. Model Diagram

seen by the model each epoch however since each sample
is seen at random and the dataset is sufficiently large, this
should not be a problem. For the sake of these runs, the
training culminated at 5 epochs, keeping the amount of work
consistent for each training run and providing a consistent
cutoff point for determining whether or not the threshold
accuracy has been hit.

In a real world deep neural network, this number would
likely be much higher, on the order 100 epochs to a
trained model. When this combines with a larger dataset,
the training times can become quite large even with a lot of
compute resources. This experiment is intended to provide
an illustration of how much time can be saved which can
be extrapolated to these larger cases.

To determine a sufficiently difficult threshold to hit within
5 epochs, random search with a wide range of possibilities
for each hyper-parameter was applied 5000 times with
5000 different random hyperparameter configurations. The
threshold was set to 98.6% which conveniently was achieved
0.1% of the time, or 1 in 1000 runs. These results are listed
in Table II. The wide range in the possible configurations
listed in Table I was chosen to simulate an environment in
which a developer had no prior experience with this model
as would be more likely with a larger dataset and more
specialized neural network model.



Table III
SINGLE NETWORK PARALLEL DL METHODS

Method Time/Iteration Speedup Nodes

Standard 1090s 1.0x 1

Model Parallel 718s 1.5x 4

Data Parallel 310s 3.5x 4

B. Model Architecture

In order to evaluate model parallelism, I’ve developed
a variant of a fairly standard convolutional neural network
(CNN) specifically designed to work well with model par-
allelism. This architecture is diagramed in Figure 1. In
this model, the second convolutional layer and first fully
connected layer are split into 4 distinct, independent sets of
layers.

These layers are created by splitting the set of activation
maps from the first convolutional layer into 4 equal size
tensors. These are then concatenated just before the final
fully-connected layer. This allows the bulk of the workload
to happen in parallel creating the option for a horizontally
model parallel network. The initial convolution and final
fully connected layer by necessity will still be computed
sequentially.

VI. RESULTS

A. Single Run Parallelism

In order to evaluate model and data parallelism in this
example neural network, three tests with the default hyper-
parameters listed in Table I were run. The baseline ran on
a single node with no parallelism applied.

The model parallel run utilized tensorflow’s builtin gRPC
distributed runtime[6] to split the execution of the second
round of convolutional layers and the first round of full-
connected layers on 4 separate nodes. Much of the process
still requires sequential execution including data preparation
as well as the initial and final layers, therefore it will not
reach a high level of scaling efficiency, however in this test,
even with a fairly basic network, we see a 1.5x improvement
in time of execution.

The data parallel test was performed with an MPI commu-
nication model developed by engineers at Cray, again within
the tensorflow framework. In this case, we run on 4 nodes to
provide a clear comparison to the model parallel approach
as well as to limit the necessary increase in batchsize. In this
case, as that only 5 epochs worth of data was trained on, we
see some deviation from ideal scaling due to startup costs of
loading and prepping data, however it still attains a speedup
of 3.5x that of the baseline. Allowing this approach to run
longer will lead to near ideal scaling efficiency, however
to keep things consistent and limit the run time of this
experiment, the decision was made to stick to the 5 epoch
equivalent.

B. Hyperparameter Optimization

Hyperparameter optimization has the ability to dramat-
ically decrease the number of training runs necessary to
produce a sufficiently well-trained model. In order to eval-
uate the ability of such an algorithm to do so, a genetic
HPO algorithm developed by engineers at Cray was used
on this neural network model to hit the threshold specified
in the Dataset and Training section. The range of each
hyperparameter evaluated matched that of the random search
(Table I) and the defaults where set to initially low values
and basic techniques (standard Stochastic Gradient Descent
(SGD) and sigmoid activation functions) such as to simulate
a network in which the developer has no prior knowledge
of which configuration would be most effective.

This algorithm defines a population of unique hyper-
parameter configurations. At random this population will
be mutated (random adjustments to the hyperparameters),
mated (combined with other high-performing configurations)
and evaluated generation by generation. This process will
allow some amount of random search of the space of
hyperparameters while on average also moving toward con-
figurations that are known to perform best.

To gain insight into how scaling this HPO algorithm
can speedup the process of tuning hyperparameters, tests
were run from 1-64 nodes by powers of 2. As the node
count increased, so did the population size so as to ensure
full utilization during each generation. Table IV shows the
results of this test. The first column lists the node counts.
The second shows the number of generations necessary
to reach the threshold (98.6% as before). This decreases
with increasing node counts as each subsequent generation
will have more information to determine a new set of test
configurations. The total number of networks trained by the
threshold are listed in column 3, also increasing as that
larger populations allow more unique individual runs per
generation. Column 4 shows total wall-time to the threshold
accuracy in seconds. Column 5 shows the speedup achieved
relative to random search. This is calculated based on both
the decreased number of total runs as well as the increase
in runs per second compared to a single node. Column 6
shows the final error after hitting convergence.

These data come from a single run each. As that the
genetic algorithm depends greatly on randomness, there are
some clear deviations from the trends in this data. This can
be seen clearly in the increase of generations between 4
nodes and 8 nodes. In this case, it can be assumed that
random mutations and initialization in the 4 node run quickly
put it on the path to an optimal configuration.

The final error at convergence for the majority of these
HPO runs was in fact higher than we were able to achieve
with random search. This is despite random search running
dramatically more total training runs (5000). This may indi-
cate the value of an optimized approach in that hyperparam-



Table IV
HPO SCALING

Nodes Gens Runs Time(s) Speedup Acc.

1 50 80 13,496 6.3x 98.60%

2 34 101 11,258 7.5x 98.67%

4 31 207 10,312 8.2x 98.69%

8 22 272 7,860 10.7x 98.66%

16 16 443 5,529 15.3x 98.69%

32 14 761 4,961 17.0x 98.90%

64 11 1187 3,855 21.9x 99.15%

eter configurations known to result in lower accuracy will
be avoided in future generations leading to more exploration
in both new areas of the hyperparameter space and within
areas known to show promise.

C. Combining Parallel Training Techniques

Based on the data compiled above, we can begin to un-
derstand the potential overall benefit to the training process
in terms of time to an optimally trained model. This can
be seen in Table V where the speedup of Hyperparameter
Optimization (HPO), Data Parallelism (DP) and Model
Parallelism (MP) are provided. The potential speedup is
calculated based on a number of assumptions, and it is
important to note that further work is necessary to validate
some of these assumptions.

The random search baseline assumes running on a single
node repetitively until the threshold is passed by a training
run. Assuming only 1 per 1000 runs on average reaches
the threshold as noted in Table II, then when starting from
scratch the assumption can be made that on average it will
take 500 runs to reach the threshold accuracy. This may be
generous in that random search will likely need to be run
many more times to provide enough confidence in that result.

The HPO alone speedup takes into account not only the
decrease in number of total runs necessary, but also the
number of nodes on which the runs each generation of the
genetic algorithm will be performed. The 8 node run from
Table IV was used for this evaluation as that it performed
well without testing an overly wide range of configuration.
Additionally, beyond 8 nodes, scaling efficiency based on
this metric begins to decrease below 100%. The utilization
rate never quite reaches 100% in this case due to the fact that
there are a variable sized number of unique configurations
per genration rather than a generation size being set by the
available workers. Therefore, the total speedup from running
on 8 nodes was only 5.8x that of running on a single node.
This was determined by calculating the number seconds per
run and determining the ratio of those numbers between 1
node and 8 nodes.

The addition of model and/or data parallelism should
increase the speedup by the multiplier listed in Table III, as
in the speedup for combined MP and DP is 3.5∗1.5 = 5.25x,

Table V
COMBINED SPEEDUP

Methods Runs Nodes BS Pot. Speedup

Random Search 500 1 100 1x

MP and DP 500 8 400 5x

HPO alone 272 8 100 11x

HPO and MP 272 32 100 16x

HPO and DP 272 32 400 38x

HPO, MP and DP 272 128 400 56x

rounded down to 5x in this table. This assumption limits us
to the 4 nodes used in the single training run tests per MP
and DP for the values listed here, however of course this
can be increased in practice.

VII. ANALYSIS

The baseline runs with random search hyperparameter
sweeps bring to light an important consequence of failing to
properly guide the HPO process. Despite the high number of
total training runs, the top performer still failed to outpace
the majority of genetic HPO runs listed in Table IV.

Single model training will continue to be dominated by
data parallelism due to its clear advantage in being able to
scale overall throughput. Even with some concessions and
adding development time, there is no argument that DP is the
best-known way to scale deep learning. This is evident by
the data gathered in Table III. Another takeaway, however, is
that even with a small model where the ratio of parallel work
to sequential work is limited, we are still able to see further
reduction in training time, without any affect on batchsize.
We can speculate that a much deeper network, say over 100
layers, with a higher ratio of parallel to sequential layers,
may come much closer to ideal scaling efficiency.

From this data, HPO scaling clearly comes to the forefront
in providing a true speedup in neural network training. Even
beyond data parallelism, having an efficient HPO algorithm
in your toolbox can not only allow efficient parallel training,
but also decrease the amount of total work necessary to opti-
mize a neural network. Table IV shows that although random
variation can have an affect, in general more compute nodes
will decrease the time to a well-trained model, and on top
of that can likely lead to a better configuration that can be
found through brute-force hyperparameter sweeps.

From Table V, the main takeaway is that we are able to
scale the training and optimization of a deep neural network
to 128 nodes, providing 56x improvement from the baseline,
all while only increasing the global batchsize by a factor
of 4. Because the increase in global batchsize is kept to a
minimum, 4x the local batchsize as opposed to 128x the
local batchsize, any effect on the convergence rate will be
insignificant. This provides a developer with more flexibility
in model and training design while still making full use of
available compute resources.



VIII. CONCLUSION AND FUTURE WORK

This initial look at combined deep learning scaling ap-
proaches leaves room for further work to verify these
assumptions and determine how far this approach can gen-
eralize. A deeper model and larger dataset should show that
the gains we see with MNIST on a basic CNN will be only
more evident with a larger computational load. On top of
this, a real-world dataset and unique model designed to take
advantage of combined parallelism could be developed to
evaluate HPO techniques when the model is less well-known
and tested.

Currently, the limiting factor to combining scaling tech-
niques is that they are not regularly supported in widely
available toolkits. A tool that would allow model and data
parallel training that can integrate with HPO algorithms as
well as ensemble networks could allow further evaluation
of the possible decrease in time to a well-trained model and
more importantly, make this accesible to more deep learning
practitioners.

When attempting to tackle the enormous problem of
bringing Deep Learning to an HPC scale, the problem of
exploding batchsizes cannot be ignored. Weve provided a
number of techniques based on a standard DL workflow
that can expand on traditional approaches to neural net-
work scaling, most without affecting the batchsize. When
considering the scaling of neural network training, it is
important to always consider this holistic approach to the
overall workflow.

REFERENCES

[1] Thorsten Kurth, Jian Zhang, Nadathur Satish, Ioannis
Mitliagkas, Evan Racah, Mostofa Ali Patwary, Tareq Malas,

Narayanan Sundaram, Wahid Bhimji, Mikhail Smorkalov,
Jack Deslippe, Mikhail Shiryaev, Srinivas Sridharan, Prabhat,
Pradeep Dubey Deep Learning at 15PF: Supervised and Semi-
Supervised Classification for Scientific Data Proceedings of
the International Conference for High Performance Computing,
Networking, Storage and Analysis, 2017.

[2] J. Dean, et. al., Large Scale Distributed Deep Networks,
Neural Information Processing Systems (NIPS), 2012.

[3] Jaskper Snoek, et. al., Practical Bayesian Optimization of
Machine Learning Algorithms Neural Information Processing
Systems (NIPS), 2012.

[4] Sinno Jialin Pan, Qiang Yang, A Survey of Transfer Learning
IEEE Transactions on Knowledge and Data Engineering.

[5] LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-
based learning applied to document recognition Proceedings
of the IEEE, 86, 22782324, 1998.

[6] Martn Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo,
Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy Davis,
Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Good-
fellow, Andrew Harp, Geoffrey Irving, Michael Isard, Rafal
Jozefowicz, Yangqing Jia, Lukasz Kaiser, Manjunath Kudlur,
Josh Levenberg, Dan Man, Mike Schuster, Rajat Monga,
Sherry Moore, Derek Murray, Chris Olah, Jonathon Shlens,
Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker,
Vincent Vanhoucke, Vijay Vasudevan, Fernanda Vigas, Oriol
Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan
Yu, and Xiaoqiang Zheng. TensorFlow: Large-Scale Machine
Learning on Heterogeneous Distributed Systems Software

available from tensorflow.org, 2015.


