Modernizing Cray® Systems Management
Use of Redfish® APIs on Next Generation Cray Hardware

Steven J. Martin, David Rush, Kevin Hughes, Matt Kelly
Cray Inc.
{stevem, rushd,khughes,mpkelly} @ cray.com

Abstract—This paper will give a high-level overview and
a deep dive into using a Redfish® [1] based paradigm and
strategy for low level hardware management on future Cray®
platforms. A brief overview of the Distributed Management
Task Force (DMTF) [2] Redfish systems management specifi-
cation is given, along with an outline of some of our motivations
for adopting an open specification for future Cray platforms.
Details and examples are also provided illustrating the use
of these open and accepted industry standard REST API
based mechanisms and schemas. The goal of modernizing
Cray hardware management, while still providing optimized
capabilities in areas such as telemetry that Cray has provided
in the past, is considered. This paper is targeted to system
administrators, systems designers, site planners, and anyone
else wishing to learn more about trends and considerations for
next-generation Cray hardware management.

Keywords-Redfish, DMTF, Hardware Management

I. INTRODUCTION

Cray® xc™ systems have used a tightly integrated and
proprietary systems management software stack. This pro-
prietary systems management software stack has served Cray
and Cray supercomputer customers well over the years, but
it has some limitations. The Cray XC software stack is not
seen as a platform that is open to customer integration and
collaboration. The proprietary stack is also less adaptable to
new capabilities over time.

Components of Shasta systems management ecosystem
are more modular, provide open interfaces, and include
enhanced security features. The Redfish based low level
management stack fits well into the overall Shasta design,
providing an authenticated REST [3] based API. Redfish
replaces Intelligent Platform Management Interface (IPMI)
on Commercial Off-The-Shelf (COTS) systems and Cray
proprietary interfaces with an emerging common industry
standard management approach.

This paper is organized as follows: In Section [, a more
in-depth look at the motivation to change from a proprietary
management stack to an open-standards based approach
is given. In Section [more background is given on the
DMTF (organization) and Redfish specification. Section
gives an overview of how endpoint discovery will be
implemented, when all controllers are running standards
compliant firmware without hard coded assumptions on
higher level software. Section [V] addresses examples of

control actions using Redfish. Section covers topics of
streaming telemetry and event notifications and includes
some Redfish examples. In Section [VII] we dive into the
world of standards based network boot options and how
Redfish support is an improvement over IPMI. Finally in
Section [VIII additional information on Redfish and third
party and open source tools are discussed.

This paper is targeted to system administrators, systems
designers, site planners, and anyone else wishing to learn
more about the next generation of Cray hardware manage-
ment.

II. MOTIVATION

As stated in Section [[| the current Cray XC and previous
systems are managed by a proprietary and tightly coupled
software stack. That software stack was first developed
starting in 2002 for the “Red Storm” system at Sandia
National Labs [4]-[l6] that later became the Cray® XT3,
Requirements and expectations for systems management
have evolved over the years since the initial development
of the Cray Hardware Supervisory System (HSS) which has
been the base for system management at Cray the past 15
years. In addition many of the unique features implemented
using proprietary HSS code for early Cray XT3 hardware
can now be implemented using non-proprietary and/or open
source technology. These opportunities are enabled both by
advancements in available open source software, and by the
underlying embedded controller hardware which supports
out-of-band (OOB) management software and firmware.

The Cray systems management group is chartered to
create a common system management environment that
supports all platform hardware elements used in building
Cray HPC systems. Our motivations for adopting the Redfish
open specification for future systems is to provide an open
and industry standards-based systems management approach
as a base for all hardware management going forward. The
choice of Redfish allows us to manage the custom hardware
we design using the same industry standard API as used
with COTS hardware.

Key goals of the new systems management environment
with Redfish at the hardware / firmware level include im-
proving the following:

« Interoperability

o Security

o Resiliency

o Extensibility

« Flexibility

o Scalability

o Diagnosability

o Upgradability

Redfish provides a common and standardized way of
managing Cray systems with a robust and well documented
set of REST APIs. Using a common and consistent service
delivery model will enable Cray to support customer-driven
and product-specific integrations.

III. DMTF AND REDFISH

About DMTF: (From the DMTF web site) “The DMTF
creates open manageability standards spanning diverse
emerging and traditional IT infrastructures including cloud,
virtualization, network, servers and storage. Member com-
panies and alliance partners worldwide collaborate on stan-
dards to improve the interoperable management of informa-
tion technologies. The organization is led by a diverse board
of directors from Broadcom Limited; CA Technologies; Dell
Inc.; Hewlett Packard Enterprise; Hitachi, Ltd.; HP Inc.;
Intel Corporation; Lenovo; NetApp; Software AG; Vertiv;
and VMware, Inc.”

About Redfish: (From the DMTF web site) “Designed
to meet the expectations of end users for simple and secure
management of modern scalable platform hardware, DMTFs
Redfish is an open industry standard specification and
schema that specifies a RESTful interface and utilizes JSON
and OData to help customers integrate solutions within their
existing tool chains. An aggressive development schedule is
quickly advancing Redfish toward its goal of addressing all
the components in the data center with a consistent APL.”

The DMTF recently announced adoption of Redfish by
International Organization for Standardization (ISO) and
the International Electrotechnical Commission (IEC) as
ISO/IEC 30115:2018. [7] In the announcement the DMTF
states “Redfish is a standard API designed to deliver sim-
ple and secure management for converged, hybrid IT and
the Software Defined Data Center (SDDC). Both human
readable and machine capable, Redfish leverages common
Internet and web services standards to expose information
directly to the modern tool chain.”

Cray Inc. has a participation level membership in the
DTMF. The DMTF has membership options for corpora-
tions, academic alliances, qualified government and end user
organizations. For information on DMTF membership go to
the DMTF website. https://www.dmtf.org/join/

IV. ENDPOINT DISCOVERY

Cray XC Series systems utilize an IPv4 address-
ing scheme containing several fixed network prefixes of

10.[1-5]1.0.0/16,& 10.128.0.0/14 with program-
matically derived interface IDs. Management controller
geolocation information is read from dedicated hardware
strapping pins and encoded into its IP address. Blade &
Cabinet Controller system daemons start on boot and initiate
network connections upward to the immediate parent con-
troller, which are well known IP addresses in the component
hierarchy, until they eventually connect with the top level
control system. The cabinet controller and top level control
software are able to map out physical component locations of
immediate subordinates by extracting location information
encoded in the source address of each TCP connection.
Endpoint discovery is an automatic feature of the Cray
XC management stack network topology and location-aware
hardware components.

In contrast to XC Series system management controllers,
Redfish control endpoints have no inherent knowledge of
upper level systems. Nor do they encode geolocation bits
into their IP address. Network connections are typically
initiated from the top down instead of bottom up. They
behave much like any other network server where applicable
services start on boot and accept requests forever.

Before upper level control systems can instruct Redfish
endpoints to do anything useful, endpoints must first be
discovered. The exact method in which endpoints are dis-
covered depends on several factors. Endpoint discovery is
somewhat complicated by the fact that any single method
or procedure will not be suitable for all component types.
For example, some components may be location-aware
while others are not. Firmware components may implement
varying revisions or optional features of the Redfish speci-
fication. Physical network topology and addressing schemes
may factor in as well.

In the case of COTS rack mounted equipment, a pre-
determined network cabling scheme may be employed. If
top of rack switch ports are assumed to connect to the
management controller of a given rack slot, then the switch’s
dynamically learned MAC address table may be of use. Info
collected from the MAC address table as show in [l can be
used to construct a DHCP configuration containing fixed
address mappings or pre-compute IEEE 64-bit Extended
Unique Identifier (EUI-64) [8] derived IPv6 addresses, when
deploying a Baseboard Management Controllers (BMC)
network configuration using IPv4/DHCP or IPv6/SLAAC
respectively. In either case, after a table relating physical
location, MAC address, and IP address has been derived,
name service records may be created.

Listing 1. Ethernet Switch MAC Address Table
SLICE—S1#show mac—address—table dynamic

Codes: *N — VLT Peer Synced MAC
] — Internal MAC Address used for Inter Process
Communication

Vlanld Mac Address Type Interface State
200 a4:bf:01:28:91:4¢ Dynamic Te 1/25 Active
200 a4:bf:01:38:ed:al Dynamic Te 1/26 Active

200 ad:bf:01:2c:f8:1d Dynamic Te 1/27 Active
200 a4:bf:01:3e:1d:fb Dynamic Te 1/28 Active
200 a4d:bf:01:51:25:6d Dynamic Te 1/29 Active
200 a4:bf:01:28:92:0f Dynamic Te 1/30 Active

The Redfish specification includes an optional feature in
which BMCs include a Simple Service Discovery Protocol
(SSDP) [9] responder to assist with endpoint discovery.
SSDP is defined as a component of the Universal Plug &
Play (UPnP) specification. It is a multicast protocol which
operates over IPv4/IPv6 networks. Upper level systems ini-
tiate an endpoint discovery search by sending an appropriate
payload via UDP to the SSDP multicast address. SSDP
enabled endpoints receive the search query and respond
with a message payload addressed to the source address of
the request. The previously unknown management controller
IPv4/IPv6 addresses are indicated in the source address
field of the respective response payloads. Search results
may include a controller hostname in SSDP result payload
LOCATION header.

SSDP helps greatly when implemented and equipment
is location aware. COTS equipment generally can not
identify its own physical location. In those cases, SSDP
only addresses the question of what’s out there. It does
not indicate where an endpoint is physically located. Cray
custom hardware is different. When a Cray custom cabinet
is installed, an operator enters a rack index into a front
panel display. Cray designed management controllers are
able to identify their physical chassis, blade location, and
rack indices. Location parameters are used to generate a
hostname based on a naming scheme similar to that of Cray
XC embedded controllers.

Finally, endpoint discovery involves more than locating
BMC IP addresses on the network and mapping them to
a physical location. Redfish is implemented using HTTPS
which requires an X.509 associated host server certificate
and private key. A well behaved HTTPS client must per-
form several tests to verify the endpoint who answered
is legitimate. The most basic part of server verification
involves searching for the hostname given in the request
URI in the Common Name or Subject Alternative Name -
DNS fields present in the X.509 server certificate. A client
must shutdown the connection if there is no match. Because
Redfish utilizes HTTP Basic Authentication, the verification
step is critically important in preventing credential disclosure
to untrusted 3rd parties. Therefore, name service records
(/fetc/hosts or DNS) must be created as well. Although not
strictly required, it is convenient to implement a naming
scheme which encodes physical location into the hostname.
The first BMC located in rack 7-U12 of a fictitious machine
named slice may be given DNS A/AAAA records con-
taining the hostname, x7s12b0.slice.example.com.
It may be troublesome for a human to remember what roles,
if any, the hostname x7s/2b0 is to fulfill. In some cases it
may also be convenient to define additional aliases along

with location-based hostnames.

V. REDFISH CONTROL ACTIONS

In this section, the topic of control actions using Redfish
is covered by example. First, we take a look at command
and response output from two COTS servers supporting
Redfish. Then, examples of chassis power control commands
running on “early” Cray next generation prototype hardware
are shown.

The listings shown include manual formatting and are
subject to automatic line wraps to meet layout requirements.
One of two command line tools are used in the examples
to interact with Redfish endpoints. The first tool shown is
the DMTF Redfish redfishtool, the second is the curl [10]
command line tool.

In Listing 2 the output for the “COTS-A” system
was generated using the DMTF Redfish redfishtool [11]]
application which lists the REST endpoints for sys-
tem ID BOQWF72600788. redfishtool walks the endpoint’s
Redfish URLs to find the requested data and ulti-
mately outputs the data from the URL https://COTS-
A/redfish/v1/Systems/BOQWF72600788.

Listing 2.
sms:~user> redfishtool.py —S Always
r COTS-A Systems —I BQWF72600788

Redfishtool Systems Status from and COTS-A Node
—u root —p XXXXXXXX —

{
"Description”: “Computer System”,
”1d”: "BQWF72600788” ,
7 Actions”: {
“#ComputerSystem . Reset™: {
"ResetType @Redfish. AllowableValues”: [
“On” |
"ForceOff”,
”GracefulShutdown”,
”GracefulRestart”,
"ForceRestart”,
“Nmi” |
”ForceOn”,
”PushPowerBotton”
1,
“target”:
”/redfish/v1/Systems/BQWF72600788/ Actions /
ComputerSystem . Reset”
}
s
"PowerState”: “On”
}
Listing 3. Redfishtool Systems Status from and COTS-B Node

sms:~user> redfishtool.py —S Always —u root —p XXXXXXXX —r
COTS—B Systems —I System.Embedded.]1
{

”PowerState”: “Off”,

"Description”: “Computer System which represents a
machine (physical or virtual) and the local
resources such as memory, cpu and other devices
that can be accessed from that machine.”,

”1d”: ”System.Embedded.1”,
”Actions”: {

"#ComputerSystem . Reset™: {
“target”:

”/redfish/v1/Systems/System.Embedded.1/ Actions/
ComputerSystem . Reset”,
”"ResetType @Redfish. AllowableValues”: [
”On”,
”ForceOff”,
”GracefulRestart”,
”PushPowerButton” ,
”Nmi”

Listing [uses redfishtool to “GET” the same level of
data from our second example “COTS-B” system. This
listing shows the same JavaScript Object Notation (JSON)
[12], [I13] data elements as listed for the “COTS-A” system.
Comparing the two demonstrates a few points:

o The ordering of JSON formatted data elements should
not be expected to be the same between vendors.
o Not all vendors, or systems from the same vendor
support all the same “ComputerSystem.Reset” actions.
o Example systems:
— Both support:
* ”On”
x " ForceOff”
* “GracefulRestart”
* "Nmi”
* ”PushPowerButton”
— The "COTS-A” system adds:
* "GracefulShutdown”
x "ForceRestart”
* “ForceOn”

The differences in reset actions for COTS-A and COTS-B
illustrates the flexibility Redfish offers. Only operations that
make sense are supported, yet this same flexibility causes
challenges for developers of higher level tool.

In Listing H] powering the "COTS-A” system on and off
using the Redfish API is demonstrated. Note that after the
“GracefulShutdown” was requested it took several calls (and
some time) for the systems “PowerState” to change from
“On” to “Off”.

Listing 4. Using Redfish to power On and off the “COTS-A” system

sms:~user> curl —u root :XXXXXXXX \
https://COTS-A/redfish/vl/Systems/BQWF72600788 \
| python —m json.tool | grep PowerState

”PowerState”: “Off”,

sms:~ user>

sms:~user> curl —u root :XXXXXXXX \
—H ’*Content—Type: application/json’ \
—d " {"ResetType”:"0On”}" \
https://COTS—A/redfish/v1/Systems/BQWF72600788 \
| python —m json.tool

”@odata. context”: 7/redfish/vl/$metadata#Message.Message

»

”@odata.type”: “#Message.v1_0_4.Message”,

”Message”: ”Successfully Completed Request”,
"Messageld”: "Base.l1.0.Success”,
”Resolution”: ”None”,

”Severity”: “OK”

sms:~ user>

sms:”user> curl —u root :XXXXXXXX \
https://COTS—A/redfish/vl/Systems/BQWF72600788 \
| python —m json.tool | grep PowerState

”PowerState”: ”On”,

sms:~ user>

sms:~user> curl —u root :XXXXXXXX\
—H ’Content—Type: application/json’\
—d "{"ResetType”:” GracefulShutdown”} "\
https://COTS—A/redfish/vi/Systems/BQWF72600788 |

python —m json.tool

{

”@odata.context”: “/redfish/vl/$metadata#Message.
Message” ,

”@odata.type”: “"#Message.v1_0_4. Message”,
“Message”: ”Successfully Completed Request”,
”Messageld”: “Base.1.0.Success”,
"Resolution”: ”None”,
”Severity”: "OK”

}

sms:~ user>
sms:~user> curl —u root :XXXXXXXX \
https://COTS-A/redfish/v1/Systems/BQWF72600788 \
| python —m json.tool | grep PowerState
”PowerState”: 7"On”,
sms:~ user>
sms:~user> curl —u root :XXXXXXXX \
https://COTS-A/redfish/vl/Systems/BQWF72600788 \
| python —m json.tool | grep PowerState
”"PowerState”: “"On”,
sms:~ user>
sms:~user> curl —u root :XXXXXXXX \
https://COTS-A/redfish/vl/Systems/BQWF72600788 \
| python —m json.tool | grep PowerState
”"PowerState”: “"On”,
sms:~ user>
sms:~user> curl —u root :XXXXXXXX \
https://COTS-A/redfish/vl/Systems/BQWF72600788 \
| python —m json.tool | grep PowerState
”"PowerState”: "Off”,
sms:~ user>

In the Redfish world much of the physical hardware is
modeled as different types of chassis. In the next generation
of highly optimized Cray systems each cabinet will support
multiple “Enclosure” chassis that provide physical power
and cooling support to front and rear module slots. Bulk
power rectifiers at the enclosure chassis level are enabled
via Redfish API control. When higher level software issues
a request to turn on rectifiers for an enclosure via the
Redfish API, platform firmware first verifies that cooling
is enabled, and if not, blocks the operation until cooling is
available. Assuming cooling and other environmental checks
are nominal, bulk power rectifiers are enabled. In Listing [3
output of a GET operation targeting a “Chassis Enclosure”
with bulk power turned off is presented. Listing [6] shows
a basic curl command line to enable Enclosure power, and
the change in output from a GET operation on a “Chassis
Enclosure” afterwards.

Listing 5. Redfish GET Enclosure Status
sms:~user> curl —u root :XXXXXXXX \
https://cmm7/redfish/vl/Chassis/Enclosure

”@odata. context”: 7/redfish/vl/$metadata#Chassis.Chassis
(Links , Status ,Id, ChassisType , Manufacturer , AssetTag ,
PowerState ,Name, Actions)”,

”@odata.etag”: "W/\71524072943\"",

”@odata.id”: ”/redfish/vl1/Chassis/Enclosure”,

”@odata.type”: "#Chassis.v1_4_0.Chassis”,

”Actions”: {

“#Chassis . Reset”: {

"ResetType@Redfish. AllowableValues”:
[”On”, "Off”, ”"ForceOff”],
“target”: ”/redfish/vl/Chassis/Enclosure/Actions/
Chassis . Reset”

}
)
”ChassisType”: “Enclosure”, “Id”: ”“Enclosure”,
“Links”: {
”Contains”: [
{ "@odata.id”: “/redfish/v1/Chassis/B0” },
{ "@odata.id”: "/redfish/v1l/Chassis/M2" },
{ "@odata.id”: "/redfish/vl/Chassis/B1” },
{ "@odata.id”: "/redfish/vl/Chassis/MI” },
{ "@odata.id”: /redfish/v1/Chassis/M0” }
{ "@odata.id”: “/redfish/v1/Chassis/B2” },
{ "@odata.id”: “/redfish/v1/Chassis/M3” },
{ "@odata.id”: "/redfish/v1l/Chassis/B3” },
1,
”ManagedBy” :
[{ "@odata.id”: “/redfish/vl/Managers/BMC” }]
”Manufacturer”: “Cray Inc”, “Name”: “Enclosure”,

"PowerState”: “Off”,
”Status™: { ”State”: “Enabled” }

}

Listing 6. Curl: Enclosure Power On
sms:~user> curl —u root :XXXXXXXX \
—H ’Content—Type: application/json’ \
—d "{"ResetType”:"0On"}" \
https://cmm7/redfish/vi/Chassis/Enclosure/Actions/
Chassis. Reset

sms:~user> curl —u root :XXXXXXXX \
https://cmm7/redfish/vl/Chassis/Enclosure | grep
PowerState
”PowerState”: ”On”,

Listing [7 shows a simplified shell script (using curl) that
enables the ability to “Get” chassis status as well as perform
the following supported “Chassis” power control related
“Reset Actions”:

e On
o Off
o ForceOff

By default the script targets the Enclosure chassis.

Listing 7. chassis-test.sh
#!/bin/sh
: ${ENDPOINT="https ://cmm7”}
: ${ID="Enclosure”}
: ${CURLOPTS="—u root :XXXXXXXX"}
BASE="redfish/v1/Chassis”
ACTION=$1
case ${ACTION} in
On) echo ”Turning On”
curl ${CURLOPTS} \
—H ’*Content—Type: application/json’ \
—d *{”ResetType”:"0On”}" \
${ENDPOINT }/${BASE}/${ID }/ Actions / Chassis . Reset ;;
Off) echo ”Turning Off”
curl ${CURLOPTS} \
—H ’Content—Type: application/json’ \
—d *{”ResetType”:” Off”}" \
${ENDPOINT }/${BASE}/${ID }/ Actions / Chassis . Reset ;;
ForceOff) echo "Forcing Off”
curl ${CURLOPTS} \
—H ’Content—Type: application/json’ \
—d "{"ResetType ”:” ForceOff”}’ \
${ENDPOINT }/${BASE}/${ID }/ Actions / Chassis . Reset ;;
Status) echo ”"Checking status”
curl ${CURLOPTS} \
${ENDPOINT } /${BASE}/${ID} :;

x) echo “Unknown action: ${ACTION}”;;

e€sac

In listing Bl redfishtool lists the “Chassis Collection” of
the targeted endpoint.

Listing 8. Chassis list

sms: user> redfishtool.py ${RFTOPTS} —r cmm7 Chassis list

” _Path”: ”/redfish/vl/Chassis”,
”Members@odata. count”: XX,
”Name”: ”Chassis Collection”,
”Members”: [
{”@odata.id”: ”/redfish/vl/Chassis/Enclosure”, ’
Enclosure™ },

{”@odata.id”: "/redfish/vl/Chassis/MI”, "1d”: "MI"},
{"@odata.id”: /redfish/vl/Chassis/M2”, "Id”: "M2"},
{”@odata.id”: ”/redfish/vl/Chassis/B2”, "Id”: "B2”},
{”@odata.id”: "/redfish/vl/Chassis/B0”, "Id”: "B0”},
{”@odata.id”: "/redfish/vl/Chassis/B1”, "Id”: "B1”},
{”@odata.id”: "/redfish/vl/Chassis/M0”, "Id”: "M0"},
{"@odata.id”: /redfish/vl/Chassis/B3”, "Id”: "B3"},
{”@odata.id”: ”/redfish/vl/Chassis/M3”, ”Id”: "M3"},

Treatment of Chassis in the Redfish specification enables
the script chassis-test.sh (shown above in Listing [7) to target
any of the chassis in the “Chassis Collection” by simply
setting (or overriding) the environment variable “ID”. This
should help illustrate how the regularity and consistency of
the Redfish specification can lead to simplification and code
reuse in debug tools and higher level systems management
software.

VI. TELEMETRY

Along with changes to use Redfish as the low level
hardware control interface on Shasta, there are correspond-
ing changes with resect to telemetry data collection and
publishing.

For data collection, just like on the XC, there are various
types of telemetry data available in Shasta. Note that the
same data that is accessible today on the XC will also be
provided with Shasta. An example of this telemetry data
includes:

« Power/energy data
e Thermal data
o Alerts and events

The current DMTF Redfish specification provides two
methods of telemetry data collection, synchronous and asyn-
chronous, depending on the APIs supported by the Redfish
endpoint.

A. Asynchronous Collection (event subscription based)

For Cray capability class machines, where Cray controls
the Redfish software stack within the embedded controllers,
all telemetry data can be accessed via either method. To
provide a scalable mechanism for streaming telemetry, Cray
will provide all data as an asynchronous update available
via the Redfish EventService APIL.

Telemetry Setup: Telemetry Collector(s):
+ Redfish API used to register * Generic, or specific URL system
telemetry collectors with all managementendpoints
Redfish endpoints Targets for Redfish endpoints to POST
event and telemetry data onto

Redfish
(Chassis) (Node)

Redfish Redfish

(Switch)
Endpoint

Endpoint Endpoint

Figure 1: Redfish telemetry setup

The event service is an alert mechanism used in Redfish
allowing consumers to subscribe to updates from the end-
point. This event data will be sent out through HTTPS to a
user supplied target (Cray-provided for capability class sys-
tems). This allows telemetry data to be pointed dynamically
to the desired destination.

Figure [Tl illustrates a telemetry setup and delivery pattern
using the Redfish EventService subscription method. The
“Telemetry Setup” and “Telemetry Collector(s)” represent
higher level management software. The setup is persistent
and will generate a very low volume control API traffic
pattern. Collectors for the streaming telemetry case see
steady, continuous, and relatively constant load. System size
and telemetry collection rates will be used to scale-out the
number of collectors needed on large systems. Provisioning
of collectors dedicated for asynchronous (less predictable)
events will be possible to help insure that error events get
adequate priority. In addition to possible scaling benefits,
specialization of collectors by the type of telemetry they
handle may lead to better efficiency.

The Redfish EventService is clearly documented [14]].

The EventService examples in this section all target the
system “COTS-B”, because unlike the examples in Section
[Vl the APIs used in this Section are not provided by the
Redfish implementation on the “COTS-A” system.

The code in Listing O]is using the redfishtool to look at the
“EventService” base REST URL for the “COTS-B” system.

Listing 9. redfishtool: EventService GET
sms:~user> redfishtool.py —S Always —u root —p XXXXXXXX \
—r COTS-B raw GET /redfish/vl/EventService

"DeliveryRetryAttempts”: 3,
”Subscriptions”:
”@odata.id”: ”/redfish/vl/EventService/Subscriptions”

"EventTypesForSubscription”: [
”StatusChange”,
”ResourceUpdated”,
”ResourceAdded”,
”ResourceRemoved” ,

" Alert”

1,

”Actions”: {
“"#EventService.SubmitTestEvent™: {

"EventType@Redfish. AllowableValues”: [
”StatusChange”,
”ResourceUpdated”,
”ResourceAdded”,
”ResourceRemoved”,
”Alert”
]

arget”: ”/redfish/vl/EventService/Actions/
EventService . SubmitTestEvent”

}

odata.type”: "#EventService.vl_0_2.EventService”,

”Id”: ”"EventService”,

”@odata.id”: ”/redfish/vl/EventService”,

”DeliveryRetrylIntervallnSeconds”: 30,

"Description”: “Event Service represents the properties
for the service”,

”Status”:

”State”: ”Disabled”,

”Health”: ”0Ok”,

”HealthRollUp”: ”Ok”

}

»

”Name”: “Event Service”,

”@odata.context”: ”/redfish/vl/$metadata#EventService.
EventService”,

"EventTypesForSubscription@odata.count”: 5,

”ServiceEnabled”: false ,

“IgnoreCertificateErrors”: ”Yes”

To add a subscription, send an HTTPS POST to the
endpoint with a correctly formatted a JSON payload as in
the example provided in Listing [I0l

Listing 10. Curl: EventService Subscription
sms~user> curl —u root :XXXXXXXX —X POST \
https://COTS—B/ redfish/vl/EventService/Subscriptions/

”Destination”: “http ://SMS-Telemetry/TelemetryEndpoint”,
”Context”: "power”,
“EventTypes”: [

”Alert”,

”Status Change”,

Value

1,
”Protocol”: ”Redfish”

}

A subscription ID (GUID) for this event subscription is
returned upon successfully subscribing to the event, of the
form: 74c8eca0-28b9-11e8-adc7-74e6e2fb6114.

Once the subscription has been set up with a target
endpoint, any time there is a change of the type specified
in the JSON payload, a Redfish event will be sent via an
HTTPS POST command to the target endpoint specified in
the subscription.

To see a list of all subscriptions, send an HTTPS GET
command to this same endpoint with no JSON payload, as
in the following example:

Listing 11. Curl: EventService Subscription GET
sms:~user> curl —u root :XXXXXXXX \
https://COTS—B/redfish/vl/EventService/Subscriptions

”@odata. context”: ”/redfish/vl/$metadata#
EventDestinationCollection .
EventDestinationCollection”,

"@odata.id”: ”/redfish/vl/EventService/Subscriptions”,

”@odata.type”: "#EventDestinationCollection.
EventDestinationCollection”,

"Description”: “List of Event subscriptions”,

”Members”: |

{

”@odata.id”: ”/redfish/vl/EventService/Subscriptions
/74 c8ecal —28b9 —11e8—adc7 —T74e6e2fb6114”

1,
”Members@odata. count”: 1,
”Name”: “Event Subscriptions Collection”

To remove a subscription and stop receiving telemetry
data, send an HTTPS DELETE command to the endpoint
specifying the subscription ID, as in the following example:

Listing 12. Curl: EventService Subscription Remove
curl —u root :XXXXXXXX \
—X DELETE https://COTS—B/redfish/vl/EventService/
Subscriptions/dad9b3fe —174c—11e8—a98f —64006
ac4a60a

B. Synchronous Collection (polling based)

For COTS white box servers in Cray cluster solutions,
the implementation is constrained to use whatever the ven-
dor provides in their Redfish stack. Where asynchronous
telemetry collection is supported, it will function in the
DMTF specified manner as shown. However in cases with
COTS servers where asynchronous telemetry collection is
not supported, the various pieces of telemetry data can be
collected synchronously by polling the Redfish endpoint, as
shown below.

Listing 13. Curl: Poll (GET) COTS-A Server Power
sms:~user> curl —u root :XXXXXXXX \
https ://COTS-A/redfish/vl/Chassis/Baseboard/Power#/

PowerControl/0
{
”@odata.context”: ”/redfish/vl/$metadata#Power.Power”,
”@odata.id”: ”/redfish/vl/Chassis/Baseboard/Power”,
”@odata.type”: “"#Power.vI_2_1.Power”,
”Id”: "Power”,
”Name”: “Power”,
”PowerControl”: [
”@odata.id”: ”/redfish/vl/Chassis/Baseboard/Power#/
PowerControl/0”,
”Memberld”: 707,
”Name”: ”Server Power Control”,
”PowerConsumedWatts”: 19,
"PowerMetrics”: {
”AverageConsumedWatts”: 149,
“IntervallnMin”: 18250,
”MaxConsumedWatts”: 341,
"MinConsumedWatts”: 2
”RelatedItem”: [
{
”@odata.id”: ”/redfish/v1/Systems/BQWF72600788”
IR
{
”@odata.id”: ”/redfish/vl/Chassis/Baseboard”
}
1
}
1,
}

Listing 14. Curl: Poll (GET) COTS-B Server Power
curl —u root :XXXXXXXX \
https ://COTS—B/redfish/vl/Chassis/System.Embedded .1/
Power

”@odata.context”: ”/redfish/vl/$metadata#Power.Power”,

"@odata.id”: ”/redfish/v1/Chassis/System.Embedded.1/
Power”,

”@odata.type”: “#Power.v1_0_2.Power”,

”Description”: “Power”,

”1d”: ”Power”,

”Name”: “Power”,

"PowerControl”: [

”@odata.id”: ”/redfish/vl/Chassis/System.Embedded.1/
Power/PowerControl”,

”MemberID”: ”"PowerControl”,

”Name”: ”System Power Control”,

"PowerAllocatedWatts”: 750,

"PowerAvailableWatts”: 0,

"PowerCapacityWatts”: 980,

”PowerConsumedWatts”: 11,

"PowerLimit”: {
”CorrectionInMs”: 0,
"LimitException”: ”"HardPowerOff”,
“LimitInWatts”: 180

"PowerMetrics”: {
”AverageConsumedWatts”: 26,
”IntervallnMin”: 60,
”MaxConsumedWatts”: 26,
”MinConsumedWatts”: 26

}

"PowerRequestedWatts”: 510,

”RelatedItem”: [

”@odata.id”: ”/redfish/vl/Chassis/System.

Embedded.1”
3
{
”@odata.id”: "/redfish/vl/Systems/System.
Embedded.1”
}

1

”»

elatedItem@odata.count”: 2

C. Telemetry Publication

Along with the changes in how telemetry data is collected
using Redfish APIs and JSON data formats, there are also
changes to the way it is published in Cray platform software.
The telemetry collector pulls the data from the hardware
via communications with the Redfish endpoint, whether via
synchronous or asynchronous method, and then this data is
published onto a streaming telemetry bus. This telemetry bus
is used by the Cray capability class systems management to
make this data available internally, as well as to customer
provided systems. Figure [2| shows a high level view of
telemetry collection from Redfish onto a telemetry bus.

D. Upcoming DMTF Telemetry Model Specification

To expand the capability of the Redfish telemetry spec-
ification, the DMTF has a work-in-progress project that is
nearing approval for a new telemetry model [15].

This specification proposes a general model for describing
metrics characteristics, metrics reports, and triggers that will
work with existing metrics properties.

H Publishos power
(" tclometrcata

ade Contraters
Pudlshes
Ol— aierimert Regfsh
teemety dats

Conpute
Blafies

Message Bus

tolemety

Figure 2: Redfish telemetry onto a telemetry bus

The proposal provides for a new Redfish root level service
called the TelemetryService in the Redfish specification, as
outlined below:

Listing 15. Proposed TelemetryService

”@Redfish. Copyright”: ”Copyright 2014—2016 Distributed
Management Task Force, Inc. (DMIF). All rights
reserved.”,

”@odata. context”: ”/redfish/vl/$metadata#
TelemetryService . TelemetryService”,

”@odata.type”: "#TelemetryService.1.0.0. TelemetryService

”@odata.id”: ”/redfish/vl/TelemetryService”,
”Id”: ”"TelemetryService”,
”Name”: “Telemetry Service”,
"Status”: {
”State”: “Enabled”,
”Health”: “OK”

}

5

etricDefinitions”:
”@odata.id”: ”/redfish/vl/TelemetryService/
MetricDefinitions”

”MetricReportDefinitions”:
”@odata.id”: "/redfish/vl/TelemetryService/
MetricReportDefinitions”

}

»

etricReports™: {
”@odata.id”: ”/redfish/vl/TelemetryService/
MetricReports”

}

"Triggers”™: {
”@odata.id”: ”/redfish/vl/TelemetryService/ Triggers”

}
}

This proposal also provides for common metric definitions
and statistics, metric report definitions, metric reports, and
triggers.

VII. REDFISH & NETWORK BOOT

Redfish does not define a boot protocol. It does provide
a mechanism to select a boot source and then trigger a
(re)boot. Capabilities are similar to those provided by IPMI,
only more flexible. Those familiar with IPMI will find the
standard PXE, HDD boot options work as expected. The
boot source can be overridden once or permanently. A major
enhancement over IPMI which Redfish provides is the ability

to specify a one time boot option by Unified Extensible
Firmware Interface (UEFI) [16], [17] device path. The
device path can identify any bootable component supported
by firmware. If a system has multiple network interfaces, the
desired interface can be selected directly via UEFI device
path and reset. This is an improvement over the PXE option,
which doesn’t allow specifying specifically which network
device to use. Selecting a specific network boot interface is
a requirement when a computer system is connected to more
than one PXE capable network.

Not all Redfish enabled BMCs support an identical list of
boot options. As can be seen in Listing supported boot
source options must be discovered.

Listing 16. Boot Source Selection

“"Boot”: {
”BootSourceOverrideEnabled”: ”Once”,
”BootSourceOverrideTarget”: “None”,

"BootSourceOverrideTarget@Redfish. AllowableValues”
!
”None” ,
"Pxe”,
”Cd”,
"Floppy”,
”Hdd”,
"BiosSetup”,
»Utilities”,
"UefiTarget”,
”SDCard”
1

» 359

efiTargetBootSourceOverride”:

In contrast to the Cray XC Series, next generation com-
pute nodes include a node-visible management Ethernet
interface. This additional standard Ethernet interface, com-
bined with Redfish based node management, and support
for standardized UEFI Network Bootstrap Programs (NBP)
enable a standardized network boot paradigm on Cray’s
custom, density optimized, hardware platform.

A popular NBP, iPXE [18]], allows downloading boot
image content using multiple transfer protocols including
HTTP. Additionally, iPXE may be scripted. Those two prop-
erties make implementing a dynamic boot server straight
forward. One such possibility involves scripting iPXE such
that it submits, via HTTP, the boot device hardware MAC
address as part of a chain loading procedure. A boot script
server can use the submitted MAC address as a database
key, look up presently assigned boot content, and respond
with the final boot script.

Listing 17. iPXE Stage 1 Boot Script

#lipxe
chain http://192.168.10.10:8000/chainload ?mac=${net0/mac}

The initial chain loading script (see Listing [[7) is a
static two line file that can execute on all nodes. iPXE will
generally download and execute it via TFTP. When using
DHCPv4, this script is listed in the “filename” parameter. In
this example iPXE is instructed to chainload another script

from an HTTP server located at IP address 192.168.10.10.
The MAC address of network device O is sent along as a
URL-encoded form.

Upon receiving the form submission, a boot script server
may dynamically generate relevant parameters and construct
a second stage boot script such as the one show in Listing[18]
Lines beginning with kernel and initrd inform iPXE where
kernel & initrd content should be downloaded along with
any applicable kernel command line arguments. File transfer
protocol, host, and port number are assumed by iPXE to
be relative to those specified in the stage 1 boot script
if omitted. The additional parameter bootmac, while not
required, is a convenient hint informing the booted operating
system which network device it booted from.

Listing 18. iPXE Stage 2 Boot Script

#lipxe

kernel /image/default/vmlinuz initrd=initrd.gz bootmac=02:
E0:1D:96:4C:00

initrd /image/default/initrd.gz

boot

The use of iPXE is only one of several options available
for booting Cray next generation compute platforms, the
intent with Shasta is to allow for supporting a wide range
of industry standard boot mechanisms.

VIII. CRAY AND 3RD PARTY TOOL INTEGRATION

While Redfish offers a rich set of control and monitoring
functionality, it does so at a fairly low level. All Redfish
control and query operations can be done using the curl
command, for example, from the command line. While
useful, this usage model is less than ideal for administering
a large system.

The Redfish industry-standard REST interface provides
excellent opportunities for integration with tools which can
take care of the underlying operations, hiding details from
the administrator, as well as allowing for scaling in larger
systems.

Cray will implement tools to simplify administration
tasks. These tools will provide for various operations such
as powering nodes on and off, checking states of various
hardware components, setting up monitoring and telemetry,
etc.

Cray Redfish based administration tools can be used to
do the following:

« Discover Redfish endpoints/URLs

« Hide the details of the underlying Redfish operations

o Fanning out and parallelizing multiple Redfish opera-

tions for scaling purposes

e Setting up asynchronous eventing and streaming

telemetry collection parameters

Endpoint discovery was covered in detail in Section
of this paper. Data from the endpoint discovery process will
be stored in a Cray management database table for use by
higher level systems management software.

Generally a control operation performed by a system
administrator, such as turning nodes on, will target multiple
devices. One example of this is turning all nodes of the
system on for the first time after a site wide power outage,
and booting the system. The Cray hardware management
system will parallelize these operations rather than doing
them serially. This allows for scaling to very large systems.
Cray software will also parallelize operations such that site
level constraints for power and cooling are not violated when
managing systems with ramp rate constraints.

In addition to Cray-supplied tools, sites can implement
their own tools and utilities coded to the well documented
Redfish APIs. Redfish was design to be “DevOps” friendly
with a wide range of options for new code development
using modern programming languages.

In addition, there are 3rd party/open source tools available
which work with Redfish. For example, DMTF [19] has a
selection of tools which utilize Redfish to control hardware,
check for conformity to the Redfish standards, monitor
Redfish message streams, etc.

This flexibility allows for an environment in which Cray
customers can use Cray tools, 3rd party tools, open source
tools, in-house developed tools, or any combination thereof
to administer and monitor a Cray system. If a site needs a
very specific tool, there is no need to ask Cray engineering to
implement said tool; the site can potentially use an existing
non-Cray tool, or develop their own.

IX. CONCLUSION

This paper has described the motivation, strategy, and
basic concepts of using the DMTF’s Redfish standard APIs
to deliver an open standard and secure low level system
management infrastructure. The Redfish framework Cray
is utilizing allows for a very powerful, flexible, and open
system for controlling and monitoring the next generation
of Cray systems. This paper is intended to show that we
are not only thinking about the use of Redfish, and open
standards but that we are in fact doing so. We hope that this
paper is informative, and that it will encourage future dialog
with members of the Cray User Group and the wider HPC
community.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

REFERENCES

“The DMTF Redfish Developer Hub,” (Accessed 3.Apr.18).
[Online]. Available: https://redfish.dmtf.org/

“DMTF: The Distributed Management Task Force,”
(Accessed 3.Apr.18). [Online]. Available: https://www.dmtf.
org/

“REST: REpresentational State Transfer,” (Accessed
3.Apr.18). [Online]. Available: https://en.wikipedia.org/wiki/
Representational_state_transfer

“Red Storm (computing),” (Accessed 8.Apr.18). [On-
line]. Available: https://en.wikipedia.org/wiki/Red_Storm_
%28computing%29

“Sandia National Laboratories and Cray Inc. finalize
contract for new supercomputer,” (Accessed 8.Apr.18). [On-
line]. Available: https://share-ng.sandia.gov/news/resources/
releases/2002/comp-soft-math/redstorm.html

“Sandia Red Storm supercomputer exits world stage,”
(Accessed 8.Apr.18). [Online]. Available: https://share-ng.
sandia.gov/news/resources/news_releases/red- storm-exits/

“ISO/IEC 30115:2018,” (Accessed 26.Apr.18).
Available: https://www.iso.org/standard/53235.html

[Online].

“Rfc 2373: Ip version 6 addressing architecture,” (Accessed
7.May.18). [Online]. Available: https://www.ietf.org/rfc/
rfc2373.txt

“SSDP: Simple Service Discovery Protocol,” (Accessed
18.Apr.18). [Online]. Available: https://en.wikipedia.org/
wiki/Simple_Service_Discovery_Protocol

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

“curl,” (Accessed 23.Apr.18). [Online]. Available: https://en.
wikipedia.org/wiki/CURL

“DMTF Redfishtool: GitHub,” (Accessed 3.Apr.18). [Online].
Available: https://github.com/DMTF/Redfishtool/blob/master/
README.md

“Rfc 8259: The javascript object notation (json) data
interchange format),” (Accessed 3.Apr.18). [Online].
Available: https://tools.ietf.org/html/rfc8259

“Ecma standard: Ecma - 404, (Accessed 18.Apr.18).
[Online]. Available: http://www.ecma-international.org/
publications/filesssECMA-ST/ECMA-404.pdf

“DMTF Redfish: DSP0266,” (Accessed 19.Apr.18). [Online].
Available: http://redfish.dmtf.org/schemas/DSP0266_1.1.html

“DMTF Redfish: DSP-IS0002,” (Accessed 19.Apr.18).
[Online]. Available: https://www.dmtf.org/documents/redfish/
redfish-telemetry-proposal-09a

“Unified Extensible Firmware Interface Forum,” (Accessed
7.May.18). [Online]. Available: http://www.uefi.org/

“Redfish Configuration of UEFI HII Settings,” (Accessed
7.May.18). [Online]. Available: http://www.uefi.org/sites/
default/files/resources/UEFI_Plugfest_Redfish_Fall_2016.pdf

“IPXE,” (Accessed 9.May.18). [Online]. Available: https://
ipxe.org/

“DMTF: GitHub,” (Accessed 3.Apr.18). [Online]. Available:

https://redfish.dmtf.org/
https://www.dmtf.org/
https://www.dmtf.org/
https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/Red_Storm_%28computing%29
https://en.wikipedia.org/wiki/Red_Storm_%28computing%29
https://share-ng.sandia.gov/news/resources/releases/2002/comp-soft-math/redstorm.html
https://share-ng.sandia.gov/news/resources/releases/2002/comp-soft-math/redstorm.html
https://share-ng.sandia.gov/news/resources/news_releases/red-storm-exits/
https://share-ng.sandia.gov/news/resources/news_releases/red-storm-exits/
https://www.iso.org/standard/53235.html
https://www.ietf.org/rfc/rfc2373.txt
https://www.ietf.org/rfc/rfc2373.txt
https://en.wikipedia.org/wiki/Simple_Service_Discovery_Protocol
https://en.wikipedia.org/wiki/Simple_Service_Discovery_Protocol
https://en.wikipedia.org/wiki/CURL
https://en.wikipedia.org/wiki/CURL
https://github.com/DMTF/Redfishtool/blob/master/README.md
https://github.com/DMTF/Redfishtool/blob/master/README.md
https://tools.ietf.org/html/rfc8259
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://redfish.dmtf.org/schemas/DSP0266_1.1.html
https://www.dmtf.org/documents/redfish/redfish-telemetry-proposal-09a
https://www.dmtf.org/documents/redfish/redfish-telemetry-proposal-09a
http://www.uefi.org/
http://www.uefi.org/sites/default/files/resources/UEFI_Plugfest_Redfish_Fall_2016.pdf
http://www.uefi.org/sites/default/files/resources/UEFI_Plugfest_Redfish_Fall_2016.pdf
https://ipxe.org/
https://ipxe.org/

	Introduction
	Motivation
	DMTF and Redfish
	Endpoint Discovery
	Redfish Control Actions
	Telemetry
	Asynchronous Collection (event subscription based)
	Synchronous Collection (polling based)
	Telemetry Publication
	Upcoming DMTF Telemetry Model Specification

	Redfish & Network Boot
	Cray And 3rd Party Tool Integration
	Conclusion
	References

