Alchemist: An Apache Spark to MPI Interface

Alex Gittens, Kai Rothauge, Michael W. Mahoney, Shusen Wang, Michael Ringenburg, Kristyn Maschhoff, Prabhat, Lisa Gerhardt, Jey Kottalam

> CUG2018 Stockholm

Why should MPI codes interface with Spark?

Google trends popularity: MPI vs Hadoop

Spark Use Cases

Q: What about less embarrassingly parallel computations? A: Use Spark and MPI

Example: linear algebra in Spark

Pros for Spark:

- Faster development, easier reuse
- One abstract uniform interface (RDD)
- An entire ecosystem that can be used before and after the NLA computations
- Spark can take advantage of available local linear algebra codes
- Automatic fault-tolerance, out-of-core support

Pros for MPI: Classical MPI-based linear algebra implementations will be faster and more efficient

Motivation

- NERSC: Spark for data-centric workloads and scientific analytics
- RISELab: characterization of linear algebra in Spark (MLlib, MLMatrix)
- Cray: customers demand for Spark; understand performance concerns

Spark Architecture

- Data parallel programming model
- Resilient distributed datasets (RDDs); optionally cached in memory
- Driver forms DAG, schedules tasks on executors

Spark Communication

Bulk Synchronous Programming Model:

- Each overall job (DAG) broken into stages
- Stages broken into parallel, independent tasks
- Communication happens only between stages

Spark Overheads: the view of one task

task start delay = (time between stage start and when driver sends task to executor)

scheduler delay = (time between task being sent and time starts deserializing)+ (time between task result serialization and driver receiving task's completion message)

task overhead time = (fetch wait time) + (executor deserialize time) + (result serialization time) + (shuffle write time)

time waiting until stage end = (time waiting for final task in stage to end)

Running times for NMF and PCA

Cori Phase I—NERSC supercomputer—specs:

- 1630 compute nodes,
- 128 GB/node, 32 2.3GHz Haswell cores/node
- Lustre Filesystem, Aries interconnect

	Nodes / cores	MPI Time	Spark Time	Gap
	50 / 1,600	1 min 6 s	4 min 38 s	4.2x
NMF	100 / 3,200	45 s	3 min 27 s	4.6x
	300 / 9,600	30 s	70 s	2.3x
PCA	100 / 3,200	1 min 34 s	15 min 34 s	9.9x
	300 / 9,600	1 min	13 min 47 s	13.8x
(2.2TB)	500 / 16,000	56 s	19 min 20 s	20.7x
PCA (16TB)	MPI: 1,600 / 51,200 Spark: 1,522 / 48,704	2 min 40 s	69 min 35 s	26x

MPI vs Spark: Lessons Learned

- With favorable data (tall and skinny) and well-adapted algorithms, Spark
 LA is 2x-26x slower than MPI when IO is included
- Spark overheads are orders of magnitude higher than the computations in PCA (a typical iterative algorithm)
- The large gaps in performance suggests interfacing MPI-based codes with Spark

The Next Step: Alchemist

- Since Spark is 4+x slower than MPI, propose sending the matrices to MPI codes, then receiving the results
- For efficiency, want as little overhead as possible (File I/O, RAM, network usage, computational efficiency)

Alternative approaches:

- 1. Write to HDFS: slow file I/O, manual data layout
- 2. Other MPI-Spark bridges: assume sparse data sets, use RAM disk, or write to file
- 3. Apache Ignite (and Alluxio, etc.): requires using C/C++ interfaces, manual data layout, extra copy in memory, TCP/IP

Alchemist:

Uses in-memory transfer, transparently provides data relayout, explicitly handles dense data sets

Alchemist Architecture

Main Challenges

- Minimizing communication time between
 Spark workers and Alchemist workers
- Switching between the matrix
 distribution schemes imposed by Spark
 and MPI codes, as needed

Our approach:

- 1. Communicate using row-partitioned matrices
- 2. Relayout only on the Alchemist side
- 3. Use Elemental library to handle implicit and explicit relayout

Alchemist: A User's View

Launch Alchemist before Spark

```
srun -N ${ALCHEMISTNODECOUNT}\ -n $((${ALCHEMISTNODECOUNT}*32/${OMP_NUM_THREADS}))
--cpus-per-task=${OMP_NUM_THREADS} -w $SPARK_WORKER_DIR/hosts.alchemist-
--output=$SPARK_WORKER_DIR/alchemistIOs/stdout_%t.log\
--error=$SPARK_WORKER_DIR/alchemistIOs/stderr_%t.log ./core/target/alchemist &
```

Start a Spark job Start an Alchemist context in your Spark job

```
val conf = new SparkConf().setAppName("Alchemist ADMM KRR Test")
val sc = new SparkContext(conf)
val al = new Alchemist(sc)
```

Alchemist: A User's View

Create IndexedRowMatrix RDDs Send over to Alchemist and store handles

```
val alMatA = AlMatrix(al, Ardd)
val alMatB = AlMatrix(al, Brdd)
```

Manipulate using Alchemist MPI interface and store handles

```
val alMatX = al.SkylarkADMMKRR(alMatA, alMatB, regression, lossfunction, regularizer,
  kernel, kernelparam, kernelparam2, kernelparam3, lambda, maxiter, tolerance,
  rho, seed, randomfeatures, numfeaturepartitions)
```

Retrieve results to IndexedRowMatrix RDDs

```
var solXrdd = alMatX.getIndexedRowMatrix()
```

Communication Scheme

Communication Times (1)

- Random Tall-and-Skinny 400GB matrix (5.12M-by-10K)
- Spark to Alchemist communication time (s)

Alchemist Worker Nodes

		8	16	24	32	40	48	56
Jes	8	62.1	65.2	66.4	72.4	72.8	76.7	88.5
Nodes	16	75.6	68.3	72.8	81.1	89.3	93.5	
er –	24	73	69.7	62.8	77.5	82		
Spark Worker	32	78.5	75.4	69.8	66.8			
	40	69.6	65.4	62.4				
	48	70.6	67.9					
Sp	56	64.5						

Communication Times (2)

- Random Short-and-Fat 400GB matrix (5.12M-by-10K)
- Spark to Alchemist communication time (s)

Alchemist Worker Nodes

		8	16	24	32	40	48	56
クリング	8	59.8	50.0	38.5	30.1	15.2	14.7	18.6
	16	55.8	34.0	24.5	20.2	13.9	13.8	
- D	24	56.2	34.9	21.9	18.0	12.4		
ב ב ב ב	32	54.1	30.5	22.1	15.1			
>	40	52.9	30.6	22.7				
Z	48	54.5	27.2					
ر آ	56	57.6						

spark Worker Nodes

Currently Interfaced Codes

Operations Implemented	Library/Memory Cost
Matrix Send	- / 1X
Matrix Retrieve	- / 1X
Matrix Transpose	Elemental / 2X
Matrix Multiply	Elemental / 2X
KMeans	- / 1X
SVD	Elemental / 2X
Truncated SVD	ARPACK / 2X
LSQR linear solver	LibSkylark / 1X
Regularized CG linear solver	LibSkylark / 1X
Kernel Solver (reg/clas, regularized)	LibSkylark / 1X
HDF5 Reader	- / 2X

Application: Matrix Multiplication

Impractical in Spark:

- Matrices/RDDs are row-partitioned
- One must be converted to columnpartitioned
- Requires an all-to-all shuffle that often fails once the matrix is distributed

```
' Spark Matrix Multiply
val sparkMatC = sparkMatA.toBlockMatrix()
    multiply(sparkMatB.toBlockMatrix()).
    toIndexedRowMatrix
// Alchemist Matrix Multiply
val alMatA = AlMatrix(al, sparkMatA)
val alMatB = AlMatrix(al, sparkMatB)
val alMatC = al.matMul(alMatA, alMatB)
val alRes = alMatC.getIndexedRowMatrix()
```

Application: Matrix Multiplication

GB/nodes	Send	Mult	Receive	Alchemist	Spark
0.8/1	5.90±2.17	6.60± 0.07	2.19± 0.58	14.68±2.69s	160.31±8.89s
12/1	16.66±0.88	75.69±0.42	19.43±0.45	111.78±1.26s	809.31±51.9s
56/2	32.50±2.88	178.68±24.8	55.83±0.37	267.02±27.38s	-Failed-
144/4	69.40±1.85	171.73±0.81	66.80±3.46	307.94±4.57s	-Failed-

- Generated random matrices and used same number of Spark and Alchemist nodes
- Take-away: Spark's multiply is slow even on one executor, and unreliable once there are more

Application: SVD

Compare Alchemist wrapper around ARPACK with MLlib

Compute rank-20 decomposition of random matrices

22 Spark nodes vs 8 Alchemist nodes (16 workers/node)

```
val alMatA = AlMatrix(al, rdd)
val (alU, alS, alV) = al.truncatedSVD(alMatA, k)
val alUreturned = alU.getIndexedRowMatrix()
val alSreturned = alS.getIndexedRowMatrix()
val alVreturned = alV.getIndexedRowMatrix()
```

Application: SVD

Compare Alchemist wrapper around ARPACK with MLlib

Compute rank-20 decomposition of random matrices

22 Spark nodes vs 8 Alchemist nodes (16 workers/node)

Application: SVD

Compare Alchemist wrapper around ARPACK with MLlib

Compute rank-20 decomposition of random matrices

22 Spark nodes vs 8 Alchemist nodes (16 workers/node)

Future Work

- PySpark interface
- Container support
- GEMM for row-partitioned matrix (avoid 2x memory overhead)
- ScaLAPack redistribution support

Thank you

https://github.com/alexgittens/alchemist