
Alchemist: An Apache Spark to MPI Interface

Alex Gittens, Kai Rothauge, Michael W. Mahoney,
Shusen Wang, Michael Ringenburg, Kristyn Maschhoff,

Prabhat, Lisa Gerhardt, Jey Kottalam

CUG2018
Stockholm

Google trends popularity: MPI vs Hadoop

Why should MPI codes interface with Spark?

Spark Use Cases

Interactive
Analytics / BI

Many-task scientific
workflows (Kira)

Simple ML (log
regression)

Embarassingly
Parallel

GBs TBs

Sophisticated

Q: What about less embarrassingly parallel computations?
A: Use Spark and MPI

Example: linear algebra in Spark

Pros for MPI: Classical MPI-based linear algebra implementations will be faster
and more efficient

Faster development, easier reuse
One abstract uniform interface (RDD)
An entire ecosystem that can be used before and after the NLA computations
Spark can take advantage of available local linear algebra codes
Automatic fault-tolerance, out-of-core support

Pros for Spark:

Motivation

NERSC: Spark for data-centric workloads and scientific analytics
RISELab: characterization of linear algebra in Spark (MLlib, MLMatrix)
Cray: customers demand for Spark; understand performance concerns

Spark Architecture

Driver

Executor

Task Task Task

Executor

Task Task Task

Executor

Task Task Task

Part 94 Part 27 Part 83

Part 23 Part 11 Part 4 Part 95 Part 72 Part 48

RDD

Part 1

Part 2

…

Part 1562

Data parallel programming model
Resilient distributed datasets (RDDs); optionally cached in memory
Driver forms DAG, schedules tasks on executors

Spark Communication

Bulk Synchronous Programming Model:
Each overall job (DAG) broken into stages
Stages broken into parallel, independent tasks
Communication happens only between stages

RDD

Part 1

Part 2

…

Part 1562

RDD

Part 1

Part 2

…

Part 1562

Task

Task

Task

Stage 1

RDD

Part 1

Part 2

…

Part 649

RDD

Part 1

Part 2

…

Part 649

Task

Task

Task

Stage 2

Spark Overheads: the view of one task

task start delay = (time between stage start and when driver sends task to executor)

scheduler delay = (time between task being sent and time starts deserializing)+ (time
between task result serialization and driver receiving task’s completion message)

task overhead time = (fetch wait time) + (executor deserialize time) + (result serialization
time) + (shuffle write time)

time waiting until stage end = (time waiting for final task in stage to end)

task start delay
scheduler delay

part 1
task overheads

part 1

compute

scheduler delay
part 2

task overheads
part 2

time waiting
until stage end

Cori Phase I—NERSC supercomputer—specs:
• 1630 compute nodes,
• 128 GB/node, 32 2.3GHz Haswell cores/node
• Lustre Filesystem, Aries interconnect

Running times for NMF and PCA

Nodes / cores MPI Time

NMF
50 / 1,600 1 min 6 s
100 / 3,200
300 / 9,600

45 s
30 s

PCA
(2.2TB)

100 / 3,200 1 min 34 s
300 / 9,600
500 / 16,000

1 min
56 s

PCA
(16TB) 2 min 40 sMPI: 1,600 / 51,200

Spark: 1,522 / 48,704

Spark Time
4 min 38 s
3 min 27 s

70 s

Gap
4.2x
4.6x
2.3x

15 min 34 s
13 min 47 s
19 min 20 s

9.9x
13.8x
20.7x

69 min 35 s 26x

MPI vs Spark: Lessons Learned

With favorable data (tall and skinny) and well-adapted algorithms, Spark
LA is 2x-26x slower than MPI when IO is included

Spark overheads are orders of magnitude higher than the
computations in PCA (a typical iterative algorithm)

The large gaps in performance suggests interfacing MPI-based codes
with Spark

The Next Step: Alchemist

Since Spark is 4+x slower than MPI, propose sending the matrices to MPI codes,
then receiving the results
For efficiency, want as little overhead as possible (File I/O, RAM, network usage,
computational efficiency)

Alternative approaches:
1. Write to HDFS: slow file I/O, manual data layout
2. Other MPI-Spark bridges: assume sparse data sets, use RAM disk,

or write to file
3. Apache Ignite (and Alluxio, etc.): requires using C/C++ interfaces,

manual data layout, extra copy in memory, TCP/IP

Alchemist:
Uses in-memory transfer, transparently provides data
relayout, explicitly handles dense data sets

Alchemist Architecture

Main Challenges

Row-
distributed,

Spark

Block Cyclic,
NLA

Minimizing communication time between
Spark workers and Alchemist workers

Switching between the matrix
distribution schemes imposed by Spark
and MPI codes, as needed

Our approach:
1. Communicate using row-partitioned matrices
2. Relayout only on the Alchemist side
3. Use Elemental library to handle implicit and

explicit relayout

Alchemist: A User’s View

Launch Alchemist before Spark

Start a Spark job
Start an Alchemist context in your Spark job

Alchemist: A User’s View

Create IndexedRowMatrix RDDs
Send over to Alchemist and store handles

Manipulate using Alchemist MPI interface and store handles

Retrieve results to IndexedRowMatrix RDDs

Communication Scheme

Spark
Worker

Alchemist
Worker

Spark
Worker

Alchemist
Worker

Spark
Worker

Alchemist
Worker

Spark
Worker

Alchemist
Worker

Spark
Worker

Alchemist
Worker

Spark
Worker

Alchemist
Worker

Spark
Worker

Alchemist
Worker

Spark
Worker

Alchemist
Worker

Alchemist
Worker

Alchemist
Worker

Alchemist
Worker

Alchemist
Worker

Alchemist
Worker

Alchemist
Worker

Alchemist
Worker

Alchemist
Worker

Send Compute Retrieve

Communication Times (1)

8 16 24 32 40 48 56
8 62.1 65.2 66.4 72.4 72.8 76.7 88.5

16 75.6 68.3 72.8 81.1 89.3 93.5

24 73 69.7 62.8 77.5 82

32 78.5 75.4 69.8 66.8
40 69.6 65.4 62.4

48 70.6 67.9

56 64.5

Alchemist Worker Nodes
Sp

ar
k

W
or

ke
r N

od
es

- Random Tall-and-Skinny 400GB matrix (5.12M-by-10K)
- Spark to Alchemist communication time (s)

Communication Times (2)

8 16 24 32 40 48 56
8 59.8 50.0 38.5 30.1 15.2 14.7 18.6

16 55.8 34.0 24.5 20.2 13.9 13.8
24 56.2 34.9 21.9 18.0 12.4
32 54.1 30.5 22.1 15.1
40 52.9 30.6 22.7
48 54.5 27.2
56 57.6

Alchemist Worker Nodes
Sp

ar
k

W
or

ke
r N

od
es

- Random Short-and-Fat 400GB matrix (5.12M-by-10K)
- Spark to Alchemist communication time (s)

Currently Interfaced Codes

Operations Implemented Library/Memory Cost
Matrix Send - / 1X

Matrix Retrieve - / 1X
Matrix Transpose Elemental / 2X
Matrix Multiply Elemental / 2X

KMeans - / 1X
SVD Elemental / 2X

Truncated SVD ARPACK / 2X
LSQR linear solver LibSkylark / 1X

Regularized CG linear solver LibSkylark / 1X
Kernel Solver (reg/clas, regularized) LibSkylark / 1X

HDF5 Reader - / 2X

Application: Matrix Multiplication

Impractical in Spark:
- Matrices/RDDs are row-partitioned
- One must be converted to column-

partitioned
- Requires an all-to-all shuffle that

often fails once the matrix is
distributed

Application: Matrix Multiplication

GB/nodes Send Mult Receive Alchemist Spark

0.8/1 5.90±2.17 6.60± 0.07 2.19± 0.58 14.68±2.69s 160.31±8.89s

12/1 16.66±0.88 75.69±0.42 19.43±0.45 111.78±1.26s 809.31±51.9s

56/2 32.50±2.88 178.68±24.8 55.83±0.37 267.02±27.38s -Failed-

144/4 69.40±1.85 171.73±0.81 66.80±3.46 307.94±4.57s -Failed-

- Generated random matrices and used same number of Spark and Alchemist
nodes
- Take-away: Spark’s multiply is slow even on one executor, and unreliable
once there are more

Application: SVD

Compare Alchemist
wrapper around
ARPACK with MLlib

Compute rank-20
decomposition of
random matrices

22 Spark nodes vs
8 Alchemist nodes (16
workers/node)

Application: SVD

Compare Alchemist
wrapper around
ARPACK with MLlib

Compute rank-20
decomposition of
random matrices

22 Spark nodes vs
8 Alchemist nodes (16
workers/node)

Application: SVD

Compare Alchemist
wrapper around
ARPACK with MLlib

Compute rank-20
decomposition of
random matrices

22 Spark nodes vs
8 Alchemist nodes (16
workers/node)

Future Work

PySpark interface
Container support
GEMM for row-partitioned matrix (avoid 2x memory overhead)
ScaLAPack redistribution support

Thank you
https://github.com/alexgittens/alchemist

https://github.com/alexgittens/alchemist

