
Alchemist: An Apache Spark to MPI Interface

Alex Gittens, Kai Rothauge, Michael W. Mahoney, 
Shusen Wang, Michael Ringenburg, Kristyn Maschhoff, 

Prabhat, Lisa Gerhardt, Jey Kottalam

CUG2018 
Stockholm



Google trends popularity: MPI vs Hadoop

Why should MPI codes interface with Spark?



Spark Use Cases

Interactive 
Analytics / BI

Many-task scientific 
workflows (Kira)

Simple ML (log 
regression)

Embarassingly 
Parallel

GBs TBs

Sophisticated

Q: What about less embarrassingly parallel computations?  
A: Use Spark and MPI



Example: linear algebra in Spark

Pros for MPI: Classical MPI-based linear algebra implementations will be faster 
and more efficient

Faster development, easier reuse 
One abstract uniform interface (RDD) 
An entire ecosystem that can be used before and after the NLA computations 
Spark can take advantage of available local linear algebra codes 
Automatic fault-tolerance, out-of-core support

Pros for Spark:



Motivation

NERSC: Spark for data-centric workloads and scientific analytics 
RISELab: characterization of linear algebra in Spark (MLlib, MLMatrix) 
Cray: customers demand for Spark; understand performance concerns



Spark Architecture
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Data parallel programming model 
Resilient distributed datasets (RDDs); optionally cached in memory 
Driver forms DAG, schedules tasks on executors



Spark Communication

Bulk Synchronous Programming Model: 
Each overall job (DAG) broken into stages 
Stages broken into parallel, independent tasks 
Communication happens only between stages
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Spark Overheads: the view of one task

task start delay = (time between stage start and when driver sends task to executor) 

scheduler delay = (time between task being sent and time starts deserializing)+ (time 
between task result serialization and driver receiving task’s completion message) 

task overhead time = (fetch wait time) + (executor deserialize time) +  (result serialization 
time) + (shuffle write time) 

time waiting until stage end = (time waiting for final task in stage to end)

task start delay
scheduler delay 

part 1
task overheads 

part 1

compute

scheduler delay 
part 2

task overheads 
part 2

time waiting 
until stage end



Cori Phase I—NERSC supercomputer—specs:  
• 1630 compute nodes,  
• 128 GB/node, 32 2.3GHz Haswell cores/node  
• Lustre Filesystem, Aries interconnect

Running times for NMF and PCA

Nodes / cores MPI Time

NMF
50 / 1,600 1 min 6 s
100 / 3,200
300 / 9,600

45 s
30 s

PCA 
(2.2TB)

100 / 3,200 1 min 34 s
300 / 9,600
500 / 16,000

1 min
56 s

PCA 
(16TB) 2 min 40 sMPI: 1,600 / 51,200

Spark: 1,522 / 48,704

Spark Time
4 min 38 s
3 min 27 s

70 s

Gap
4.2x
4.6x
2.3x

15 min 34 s
13 min 47 s
19 min 20 s

9.9x
13.8x
20.7x

69 min 35 s 26x



MPI vs Spark: Lessons Learned

With favorable data (tall and skinny) and well-adapted algorithms, Spark 
LA is 2x-26x slower than MPI when IO is included 

Spark overheads are orders of magnitude higher than the 
computations in PCA (a typical iterative algorithm) 

The large gaps in performance suggests interfacing MPI-based codes 
with Spark



The Next Step: Alchemist

Since Spark is 4+x slower than MPI, propose sending the matrices to MPI codes, 
then receiving the results 
For efficiency, want as little overhead as possible (File I/O, RAM, network usage, 
computational efficiency)

Alternative approaches: 
1. Write to HDFS: slow file I/O, manual data layout 
2. Other MPI-Spark bridges: assume sparse data sets, use RAM disk, 

or write to file 
3. Apache Ignite (and Alluxio, etc.): requires using C/C++ interfaces, 

manual data layout, extra copy in memory, TCP/IP 

Alchemist:
Uses in-memory transfer, transparently provides data 
relayout, explicitly handles dense data sets



Alchemist Architecture



Main Challenges

Row-
distributed, 

Spark

Block Cyclic, 
NLA

Minimizing communication time between 
Spark workers and Alchemist workers

Switching between the matrix 
distribution schemes imposed by Spark 
and MPI codes, as needed

Our approach: 
1. Communicate using row-partitioned matrices 
2. Relayout only on the Alchemist side 
3. Use Elemental library to handle implicit and 

explicit relayout



Alchemist: A User’s View

Launch Alchemist before Spark

Start a Spark job 
Start an Alchemist context in your Spark job 



Alchemist: A User’s View

Create IndexedRowMatrix RDDs 
Send over to Alchemist and store handles

Manipulate using Alchemist MPI interface and store handles 

Retrieve results to IndexedRowMatrix RDDs 



Communication Scheme
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Communication Times (1)

8 16 24 32 40 48 56
8 62.1 65.2 66.4 72.4 72.8 76.7 88.5

16 75.6 68.3 72.8 81.1 89.3 93.5

24 73 69.7 62.8 77.5 82

32 78.5 75.4 69.8 66.8
40 69.6 65.4 62.4

48 70.6 67.9

56 64.5

Alchemist Worker Nodes
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- Random Tall-and-Skinny 400GB matrix (5.12M-by-10K) 
- Spark to Alchemist communication time (s) 



Communication Times (2)

8 16 24 32 40 48 56
8 59.8 50.0 38.5 30.1 15.2 14.7 18.6

16 55.8 34.0 24.5 20.2 13.9 13.8
24 56.2 34.9 21.9 18.0 12.4
32 54.1 30.5 22.1 15.1
40 52.9 30.6 22.7
48 54.5 27.2
56 57.6

Alchemist Worker Nodes
Sp

ar
k 

W
or

ke
r N

od
es

- Random Short-and-Fat 400GB matrix (5.12M-by-10K) 
- Spark to Alchemist communication time (s) 



Currently Interfaced Codes

Operations Implemented Library/Memory Cost
Matrix Send - / 1X

Matrix Retrieve - / 1X
Matrix Transpose Elemental / 2X
Matrix Multiply Elemental / 2X

KMeans - / 1X
SVD Elemental / 2X

Truncated SVD ARPACK / 2X
LSQR linear solver LibSkylark / 1X

Regularized CG linear solver LibSkylark / 1X
Kernel Solver (reg/clas, regularized) LibSkylark / 1X

HDF5 Reader - / 2X



Application: Matrix Multiplication

Impractical in Spark: 
- Matrices/RDDs are row-partitioned 
- One must be converted to column-

partitioned 
- Requires an all-to-all shuffle that 

often fails once the matrix is 
distributed



Application: Matrix Multiplication

GB/nodes Send Mult Receive Alchemist Spark

0.8/1 5.90±2.17 6.60± 0.07 2.19± 0.58 14.68±2.69s 160.31±8.89s

12/1 16.66±0.88 75.69±0.42 19.43±0.45 111.78±1.26s 809.31±51.9s

56/2 32.50±2.88 178.68±24.8 55.83±0.37 267.02±27.38s -Failed-

144/4 69.40±1.85 171.73±0.81 66.80±3.46 307.94±4.57s -Failed-

- Generated random matrices and used same number of Spark and Alchemist 
nodes 
- Take-away: Spark’s multiply is slow even on one executor, and unreliable 
once there are more



Application: SVD

Compare Alchemist 
wrapper around 
ARPACK with MLlib 

Compute rank-20 
decomposition of 
random matrices 

22 Spark nodes vs 
8 Alchemist nodes (16 
workers/node)
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Future Work

PySpark interface 
Container support 
GEMM for row-partitioned matrix (avoid 2x memory overhead) 
ScaLAPack redistribution support



Thank you
https://github.com/alexgittens/alchemist

https://github.com/alexgittens/alchemist

