Alchemist: An Apache Spark to MPI Interface

Alex Gittens, Kai Rothauge, Michael W. Mahoney,
Shusen Wang, Michael Ringenburg, Kristyn Maschhofft,
Prabhat, Lisa Gerhardt, Jey Kottalam

CUG2018
Stockholm

drise

UC Berkeley

Why should MPI codes interface with Spark?

Google trends popularity: MP| vs Hadoop

Spark Use Cases

Sophisticated +

regression)

I
|
I
I
|
|| Simple ML (log
l
|
I
I
|
I
I

Interactive
Analytics / Bl
Embarassingly Many-task scie.ntiﬁc
Parallel workflows (Kira)

Q: What about less embarrassingly parallel computations?
A: Use Spark and MPI

Example: linear algebra in Spark

Pros for Spark:

Faster development, easier reuse

One abstract unitorm interface (RDD)
An entire ecosystem that can be used before and after the NLA computations

Spark can take advantage of available local linear algebra codes
Automatic fault-tolerance, out-of-core support

Pros for MPI: Classical MPl-based linear algebra implementations will be faster
and more efficient

Motivation

- NERSC: Spark for data-centric workloads and scientitfic analytics
- RISELab: characterization of linear algebra in Spark (MLlib, MLMatrix)
> Cray: customers demand for Spark; understand performance concerns

Climale

/ Cancer Genomics, Energy Debugging, Smart Buildings

Sample
Clean

Basic Fluid Dynamics
4.3%

BlinkDB MLBase||SparkR

Strgepaa:\l:\'i(ng SparkSQL || GraphX MLlib

Astrophysics

2 0% _Cloud Physics
e 2.0%
s :

Weather Prediction / ApaChe Sp af'k VE'OX Model Servmg

5.0% / _IPCC ARS

Upper Atmosphere _// Tenr;?;id Omag%glzﬂph'l \Miscgl.gao:eous

4.2% .
FEBES 53,

Apache Mesos Yarn

Spark Architecture

- Data parallel programming model
-~ Resilient distributed datasets (RDDs); optionally cached in memory
~ Driver forms DAG, schedules tasks on executors

Spark Communication

....................................

..................................

Task
Task _Tas_k —
_Task
_Task _
_Task __
Stage 1 Stage 2

Bulk Synchronous Programming Model:

~ Each overall job (DAG) broken into stages

- Stages broken into parallel, independent tasks
- Communication happens only between stages

Spark Overheads: the view of one task

task start delay

scheduler delay

part 1

task overheads
part 2

task overheads
part 1

scheduler delay

part 2

< compute

time waiting

until stage end

task start delay = (time between stage start and when driver sends task to executor)

scheduler delay = (time between task being sent and time starts deserializing)+ (time
between task result serialization and driver receiving task’s completion message)

task overhead time = (fetch wait time) + (executor deserialize time) + (result serialization
time) + (shuffle write time)

time waiting until stage end = (time waiting for final task in stage to end)

Running times for NMF and PCA

Cori Phase —NERSC supercomputer—specs:
* 1630 compute nodes,

e 128 GB/node, 32 2.3GHz Haswell cores/node
» Lustre Filesystem, Aries interconnect

Nodes / cores MPI Time Spark Time | Gap
50/ 1,600 1 minb6s 4 min 38 s 4.2x
NMF |[100/ 3,200 45 s 3 min 27 s 4.6x
300/ 9,600 30 s 70 s 2.3%
PCA 100 / 3,200 1 min 34 s 15 min 34 s 9.9x
300/ 9,600 1T min 13mind/s | 13.8x
(2.2TB) | '550 716,000 56 s 19 min 20s | 20.7x
PCA ||MPI: 1,600/ 51,200 . .
(16TB) ||Spark: 1,522/ 48.704| 2 MN40s | oy min3os |1 20X

MPI vs Spark: Lessons Learned

- With tfavorable data (tall and skinny) and well-adapted algorithms, Spark
LA is 2x-26x slower than MPI when IO is included

o Spark overheads are orders of magnitude higher than the
computations in PCA (a typical iterative algorithm)

- The large gaps in performance suggests interfacing MPI-based codes
with Spark

The Next Step: Alchemist

Since Spark is 4+x slower than MPI, propose sending the matrices to MPI codes,
then receiving the results
For eftficiency, want as little overhead as possible (File I/0O, RAM, network usage,
computational efficiency)

Alternative approaches:
1. Write to HDFS: slow file I/O, manual data layout
2. Other MPI-Spark bridges: assume sparse data sets, use RAM disk,
or write to file
3. Apache Ignite (and Alluxio, etc.): requires using C/C++ interfaces,
manual data layout, extra copy in memory, TCP/IP

Alchemist:
Uses in-memory transfer, transparently provides data
relayout, explicitly handles dense data sets

Alchemist Architecture

Spor‘f(? Application 1 Hichemjst
Driver | ACl [+ ---F-----=-4--—-—--- o i Alchemist- i
_________ N Driver SIS Library Ml?l based
[| | i) I Interface A i
I‘W ACI W | ACI : R ;
N k
I W | ACI 1|~ 1| Worker |«|—| worker | Worker : .
1 3 S : I 5 Alchemist- MPl-based
: ™ |< : Library Librarv B
e T | [5 Interface B Y
SparK® Application 2 | || Worker [«—| Worker | Worker :
! [
| o - o - - = = -
I
Driver | ACl ¢+ - - -|- - -1 - s T tT—L ==»| Alchemist- MPI-based
1»l 4_‘_, I Siorary Library C
wlACI la--- i R | Worker Worker [«— Worker < > Interface C
I
<+ ---» |nter-Driver Socket Communication R > Dynamic linking

< ----» |nter-Worker Socket Communication <t » MPI Communication

Main Challenges

~ Minimizing communication time between
Spark workers and Alchemist workers

Row-
distributed,

- Switching between the matrix
distribution schemes imposed by Spark
and MPI| codes, as needed

Our approach:
1. Communicate using row-partitioned matrices
2. Relayout only on the Alchemist side Block Cyelic,

NLA
3. Use Elemental library to handle implicit and

explicit relayout

Alchemist: A User's View

Launch Alchemist before Spark

ST url

Start a Spark job
Start an Alchemist context in your Spark job

Alchemist: A User's View

Create IndexedRowMatrix RDDs
Send over to Alchemist and store handles

~ £ ~TMA+ A ATMA+D A~ e TAceLiim A~ = A~n ~raot1larizer
- ddJd. \ddlil latA , d 1MatB , F'EEIesSS 10SSTUNCL1ION, reguLarlzer,

kernel, kernelparam, kernelparam2, kernelparam3, lambda, maxiter, tolerance,

-
)

rho, seed, randomfeatures, numfeaturepartitions)

Retrieve results to IndexedRowMatrix RDDs

L) l‘\ /‘ . -—l'— “'. u"’ F an ol o -—"— T L~ p— F » 4 " —‘ |_." F - i vl". A po— -'.— p— : » y y ".

e 1ad LA = | (1EXECIROWHNIA X | J

A A - e F N\ » | 8 -— b alis '.__4-'_ e 7N S '.__,-J_ l " Yy - - - L /" % 3 J
5

\ /

Communication Scheme

Send Compute Retrieve

|
I—_——'I—_——_l—_——'I

Communication Times (1)

- Random Tall-and-Skinny 400GB matrix (5.12M-by-10K)
- Spark to Alchemist communication time (s)

Alchemist Worker Nodes

Spark Worker Nodes

8 16 24 32 40 48 96
8 62.1 652 664 | /24 | 728 | /6.7 | 88.5
16 /56 | 68.3 | /728 | 81.1 | 89.3 | 93.5
24 /3 69.7 | 62.8 | /7.5 82
32 /8.5 | /5.4 | 69.8 @ 66.8
40 69.6 @ 654 | 624
48 /0.6 | 67.9
956 64.5

Communication Times (2)

- Random Short-and-Fat 400GB matrix (5.12M-by-10K)

- Spark to Alchemist communication time (s)

Spark Worker Nodes

Alchemist Worker Nodes

8 16 24 32 40 48 56
8 59.8 | 50.0 | 38.5 30.1 | 15.2 | 14.7 | 18.6
16 | 55.8 340 | 245 202 | 13.9 | 13.8
24 | 56.2 | 349 | 21.9 | 180 12.4
32 | 54.1 | 30.5 | 22.1 | 15.1
40 | 52.9 | 30.6 | 22.7
48 | 545 | 27.2
56 | 57.6

Currently Interfaced Codes

Operations Implemented Library/Memory Cost
Matrix Send -/ 11X
Matrix Retrieve -/ 1X

Matrix Transpose
Matrix Multiply
KMeans
SVD
Truncated SVD

LSQR linear solver
Reqularized CG linear solver

Kernel Solver (reg/clas, regularized)
HDF5 Reader

Elemental / 2X
Elemental / 2X
-/ 1X
Elemental / 2X
ARPACK / 2X
LibSkylark / 1X
LibSkylark / 1X
LibSkylark / 1X

-/ 2X

Application: Matrix Multiplication

Impractical in Spark:

- Matrices/RDDs are row-partitioned

- One must be converted to column-
partitioned

- Requires an all-to-all shuffle that

often fails once the matrix is
distributed

Application: Matrix Multiplication

GB/nodes Send Mult Receive Alchemist Spark
0.8/1

12/1
56/2
144/4

- Generated random matrices and used same number of Spark and Alchemist
nodes

- Take-away: Spark’s multiply is slow even on one executor, and unreliable
once there are more

Application: SVD

Compare Alchemist

wrapper around

ARPACK with MLIib i (a1, rad)
al (alU, alS, alV) = al.truncatedSVD(alMatA, k)

= alU.getIndexedRowMatrix()
alS.getIndexedRowMatrix()
alV.getIndexedRowMatrix()

Compute rank-20
decomposition of
random matrices

22 Spark nodes vs
8 Alchemist nodes (16
workers/node)

Application: SVD

B Spark => MPlsend time [MPI compute time
Com pare Alchemist MPI => Spark send time

wrapper around >00s
ARPACK with MLlib

23.8s

375s

Compute rank-20
decomposition of 250s
random matrices

125s
22 Spark nodes vs

8 Alchemist nodes (16 Os
workers/node) 25GB 50GB 100GB 200GB 400 GB

Application: SVD

| Alchemist execution time | Spark execution time
2000s

Compare Alchemist

wrapper around
ARPACK with MLIib >

1500s
Compute rank-20
decomposition of 1000s
random matrices

22 Spark nodes vs o00s
8 Alchemist nodes (16 -
workers/node) Os —— 0.0

25GB 50GB 100 GB 200 GB 400 GB

Future Work

PySpark interface

Container support
GEMM for row-partitioned matrix (avoid 2x memory overhead)

ScalAPack redistribution support

Thank you

https://github.com/alexqittens/alchemist

https://github.com/alexgittens/alchemist

