

Weathering the storm – Lessons learnt in managing a 24x7x265 HPC delivery platform

Craig West HPC Systems Manager Bureau of Meteorology

Introduction

- We are Australia's national weather agency.
- Providing weather forecasting, extreme weather, space weather, flood/hydrology and climate advice
 - Aviation, maritime, military, agriculture, commercial groups
 - The public
 - The government
- Our teams
 - Scientific Computing Services
 - Systems Admins
 - Storage Admins
 - Applications Support
 - Optimisation Support
 - Model Build
 - National Operations Centre
 - IT Command Centre
 - Cray on-site staff

HPC on-call support

Model on-call support

What we have - XC

- Compute environment CLE 5.2UP04
 - Production 2 x 6 cabinet XC40-LC (pair of halls)
 - Development 3 cabinet XC40-AC
 - Test 1 cabinet XC40-AC

- Storage systems
 - Production 2 x 3 SSU Sonexion + 2 x 6 SSU Sonexion
 - Development 6 SSU Sonexion
 - Test 1 SSU Sonexion

What we have - CS

- CS400 Compute x 2 halls RHEL 7
 - 16 node cpu cluster
 - 4 gpu node
 - 3 service nodes
 - Local NVMe
- DDN Gridscaler 14K x 2
 - 10 enclosures
 - GPFS / Spectrum scale
- Also have a small test system with a few nodes and a DDN.
- New resource aimed at reducing need on MAMU nodes.
- Supports high I/O and integration with other platforms.

How we use it

• 24x7x365 Operations

- Focus on keeping business critical workloads running
- System design needs to be resilient
- Software applications need to understand system design
- Service Level Agreement with Cray
 - Maintain a production capability
- XC + CS = HPC service
 - Jobs run where they are most suited

Schedulers

- PBS Pro batch scheduler
 - A batch scheduler per system
 - 2 production halls are considered one system
 - 60,000 jobs in production per day, and growing
- Rose/Cylc and SMS workflow schedulers
 - Regular and on-demand workflows
 - Submit the scheduled and on-demand applications to PBS Pro
 - Monitors health of running jobs

Applications

- Built by a team of developers and tested through Dev and Pre-production
- Deployed by the HPC support team into production
- Provide capacity profiles
- Two primary types Scheduled and On-demand

- Responsibility of applications to backup their own data for storage failovers
- Automated builds from GIT
- Artifactory binaries

Capacity Management

- Current system x16 time bigger than previous
- 5+ year plan for new and updated weather models
- Capacity profiles for each application
- Predict production utilisation
 - Ensure capacity available for production
 - Provide some resources for non-production
 - Seasonal variation
- Plan for growth

Software lifecycle

Users

- People
 - Real users on our Development systems
 - Have access to view production environments (read only)
- Service accounts for applications
 - Automated accounts
 - Limited command set
 - Limited host access
 - Grouped by application area
 - Dev, Pre-prod, Prod

How we operate our systems

- Configuration management
 - Systems Admin two distinct groups
 - Cray hardware and OS support
 - Bureau staff OS support, integration, applications
- Operations
 - Staff work normal business hours
 - ITCC triggered callouts to on-call staff
 - Maintenance during business hours

How we manage the systems

- System monitoring and configuration
- Daily reporting with a summary per system
 - Cray provided functions where available (some custom)
- System monitoring
 - Gathers real-time settings
 - Compares the configuration
 - Does this daily with a summary per system
 - Comparison can be trigged between systems
- Change Process steps through the systems to minimize risk to production
 - Work through Test, Development, and Production

Git tracking

- Out of the factory our systems were different
 - For the production halls we needed them matched
 - Our Dev and Test systems also needed to be similar
- GIT differences
 - Generated as a part of our backup systems
 - Enables daily comparisons to any given system
 - Can compare differences between systems
 - White/blacklisting of files and directories
 - Tracks changes in an environment where two parties support the systems
 - SMW and CIMS
 - Sonexion
- Example: RSIP configuration

Backups

- Follow Cray recommended procedures, but with a tweak
 - Blue/Green/Red images
- Extensive backups done during patching cycles
- Customised process for off system backups
 - SMW & CIMS initiate their own and their sibling backups
 - Files pushed to external NFS target
 - NFS target snapshots and tape
- Lustre data is not backed up.
 - Applications replicate their necessary data
 - Data is generally short lived

Failovers - Compute

- Applications are not aware of which mode system is operating in
- Failover controlled by PBS Pro
- Change which Nodes assigned to each Queue
- Can suspend queues to drain halls, can also suspend workflows

Failovers - Storage

- Storage targets are configured in pairs, small and big pairs
- Writes are done to a primary, and the application copies only necessary information to a backup target.
- NWP Suites know about storage modes and automatically adapt as needed.

Failovers – Storage example

System and Storage Patching

- Take advantage of having a *similar* TDS
- Patch the Development system next (can be skipped if urgent)
- Patch only a non-production hall (hall is offline during patch)
- Test the patched system is stable as pre-prod
 - Get applications team to run many different models
- Move production to patched hall
- Following day patch the now non-production hall
- Verify the halls are again as similar as possible
- Storage patching is similar
 - Isolate affected target and unmount
 - Patch
 - Mount and test
 - De-isolate target

Testing

- Carried out often not regularly depends on weather!
- Compute failovers testing during hall patching
- Storage failovers tested during Sonexion upgrades
- Sustained System Performance (SSP)
 - Runs weekly, reported monthly
 - Run as part of patching
 - Has caught issues
- Applications in pre-prod are test cases for production.
- Applications test storage failovers

- We have a good track record for keeping operations working 24x7x365
 - Almost two years of operations
- We track what is happening to the system
 - During changes
 - Between systems
- Our Systems and Applications work together
- Resilience is in the system design
 - Two halls increase our production availability
- Forecasting the weather is a complex process
 - So is running the machines that support our forecasts

Thank you

Contact details: Craig.West@bom.gov.au