
Diagnosing Performance Issues in Cray ClusterStor Systems

Comprehensive Performance Analysis with Cray® View for ClusterStor™

Patricia Langer

Cray, Inc.

Bloomington, MN USA

planger@cray.com

I. INTRODUCTION

The size, scale and number of subsystems used in current
HPC deployments make it difficult for administrators to
monitor application performance and determine root cause
when system performance issues occur. Many factors can
contribute to poor application performance and system
problems, including component failures, resource
oversubscription or poorly-written applications. Isolating the
root cause of a performance issue can be challenging as data
needed to analyze the problem must be mined from multiple
sources across different system components and may require
privileged user access to retrieve. Additionally, system data
must be obtained in a timely manner or critical information
may be lost.

Due to the complexity of most storage system

deployments, it can take weeks or months to isolate a
performance problem, create a reproducible test case and
identify the root cause. Performance analysis requires
dedicated resources from both the customer site and Cray to
gather information and conduct evaluations. Time spent
isolating and debugging complex problems results in reduced
human and system productivity, and increased TCO, with a
direct, negative impact on corporate budgets.

To address significant challenges in storage performance

analysis, Cray has introduced View for ClusterStor[1], an
innovative tool that provides detailed visibility into resource
utilization by system applications, enabling more efficient
debugging, targeted optimizations and faster time to
resolution. View for ClusterStor enables system
administrators to:

• Identify poorly performing jobs by using real-
time and historical data

• Isolate performance problems by correlating
performance-impacting systemic events

• Observe system trends by analyzing data in
graphical and tabular formats

View for ClusterStor’s integration with storage components
enables the collection of performance and jobstats metrics,
system logs, and system events from the ClusterStor system,
metrics from the high-speed InfiniBand interconnect, and job
event details from the workload manager. This information is
aggregated and made available to administrators via the
View for ClusterStor GUI.

This paper demonstrates the innovations in View for
ClusterStor, as compared to traditional problem debugging
and root cause isolation methods, applied to a use case in the
form of a customer-reported problem. The use case first
considers how the customer and Cray used traditional tools
and debug methods to identify the root cause of a MetaData
Server (MDS) performance degradation. The use case then
examines how the same problem could be identified, much
more efficiently, using View for ClusterStor. Contrasting
traditional debug methods with the performance analytics
presented by View for ClusterStor makes a compelling case
that customer resources are maximized, and significant time
saved with the use of View for ClusterStor.

II. DESCRIPTION OF CUSTOMER USE CASE

During a standard application run, the customer identifies
significant performance degradation of their ClusterStor
MDS as a result of 100% utilization. Although system
applications are progressing, overall system performance is
significantly impacted, which negatively affects other
filesystem users.

The customer determines that performance degradation

occurs when a specific application is run on the attached
Cray Cluster system (CCS). No degradation is observed
when the same application is run on the attached Cray XC
system. OpenSHMEM[2] is used on the Cray Cluster system,
while Cray SHMEM[3] is used on the Cray XC. The
customer presumes that the MDS degradation is related to
SHMEM and reports it to Cray, indicating that the
application in question is using a simple file open pattern via
SHMEM.

 2

III. WALKTHROUGH OF TRADITIONAL ROOT CAUSE

ANALYSIS

A. Identification of the Problem (October 2017)

When the customer reports the system performance issue,

Cray Support is engaged, and a case is opened. Given the
asynchronous nature of the problem, the customer and Cray
Support coordinate the collection of logs and general support
information for review and to start root cause analysis.
Information is shared through the case. Several people are
involved with the case—Cray Support identifies what
information is needed, and the customer, using root access,
collects the requested information and provides it to Cray.
Information sharing, however, is limited to what can be
securely allowed offsite, given the customer’s security
policies.

While information and log collection are underway, the

customer successfully creates a reproducible test case and
shares it with Cray. This development proves to be a critical
step in the debug effort.

The customer and the on-site Cray team run the

reproducer, redirecting IO in different ways to help
determine behavioral differences based on how the
application is invoked.

• srun --output=/proj/users/$USER/shmem-%t.out –
error=all -n 1600 .slow-snx-shmem

This command invokes the reproducer piping output
to a non-Lustre filesystem (/proj) using SHMEM

• srun –output=/c/$USER/shmem-%t.out –error=all -
n 1600 .slow-snx-shmem

This command invokes the reproducer piping the
output to the Lustre filesystem (/c) using SHMEM

• srun --output=/c/$USER/mpi-%t.out –error=all -n
1600 .slow-snx-mpi

This command invokes the reproducer piping the
output to the Lustre filesystem (/c) using MPI

During the reproducer runs, the customer monitors the MDS
on /c (Lustre filesystem mount point) and notices that the %
CPU use increases when the “srun-snx-shmem” test case is
run with output redirected to /c. Based on this limited testing,
the customer and Cray team determine that redirecting IO to
a non-Lustre filesystem (/proj) appears to have no adverse
effects.

B. Engaging Cray Engineering (November 2017)

At this point, a Cray Lustre engineer is engaged to
analyze the collected information and logs, results of the
reproducer runs, and additional data known about the case.

The Cray Lustre engineer inquiries about test runs in

which IO was redirected to different locations. Specifically,
for each test run, the engineer asks how the application was
invoked and the location to which the application output was
written. These inquiries and answers are entered into the
case.

C. Holiday and Vacation Period (November – December

2017)

No updates occurred in the case from mid-November
through December due to the holiday break and vacations.

D. Debug, Analysis and Identification of Root Cause

(January – February 2018)

Responses to the Cray engineer’s outstanding questions
are entered into the case. The responses confirm the
following:

• /c is the Lustre filesystem mount point

• Writing to something other than the Lustre
filesystem does not exhibit adverse behavior

The Cray engineer requests that the customer run the

following commands to gather additional MDS resource
utilization data. These commands must be run when the
reproducer is operating and the MDS is at 100% utilization.

• ps auxww | awk '/\[(mdt|ll_ost)/ {gsub(/ll_ost/,"ost");
print $8" "$11}' | sort | uniq -c -w6

• lctl get_param mds.MDS.mdt.stats | grep "req_"

• lctl get_param -n ldlm.services.ldlm_cbd.stats | grep
"ldlm_bl”

The ps auxww command lists the MDT threads and what
those threads are doing. The results will help determine if the
threads are running, if they are waiting on disk or if the
threads are sleeping, waiting on locks. Based on the results,
one can determine if the MDS is busy with CPU activity,
disk activity or waiting on protocols within the MDS system.

The lctl[4] (low level Lustre filesystem configuration

utility) command, using the get_param function with the
mds.MDS.mdt.stats parameter, gathers statistics from the
MDS. These results will help determine if MDS requests are
waiting and for how long. The results will show if the MDS
has a backlog of requests to process and if the MDS is
keeping up with the backlog. This information is one way to
determine if the MDS is overloaded with requests that it is
unable to process.

The lctl command, using the get_param function with the
ldlm.services.ldlm_cbd.stats parameter, collects MDS lock
information, including specific data that indicates lock
contention, and if any requests are blocked on locks.

 3

The results of the command runs are available within a
week. The Cray Lustre engineer analyzes the information
and concludes the following:

• ps command results indicate there is a lot of CPU
activity and not much disk activity

• lctl mds command results confirm there is a lot of
CPU activity

• lctl ldlm command results indicate there are no lock
contentions

These results indicate to the Cray Lustre engineer that the

root cause is neither MDS hardware nor software, and more
information is needed to determine what is consuming the
MDS resources and causing the degradation.

The Cray Lustre engineer reviews the original problem

report. As the test cases use different stdout pathways to the
Lustre filesystem, the Cray Lustre engineer focuses on the
differences between OpenSHMEM[2] and Cray SHMEM[3].

The Cray Lustre engineer summarizes the stdout

redirection data, shown in Table I.

TABLE I. SUMMARY OF STDOUT REDIRECTION TESTS

Command Performance

MPI output directed to Lustre (/c) Fast

SHMEM to Lustre (/c) Slow

MPI to non-Lustre (/proj) Fast

SHMEM to non-Lustre (/proj) Fast

SHMEM to Lustre (/c), but with logging hidden
(MXM_LOG_FILE)

Fast

With the information gathered to date, the Cray engineer

confirms there is a reasonable workaround to improve
system performance, but the root cause has not yet been
determined. The workaround is to write the application
output to a local /tmp filesystem and then move the output to
the Lustre filesystem.

• srun --output=/tmp/shmem-%t.out --error=all -n
1600 ./slow-snx shmem; mv /tmp/shmem-%t.out
/c/$USER/shmem-%t.out

The Cray Lustre engineer surmises, based on the

command results and other evidence, that SHMEM is using a
poor write pattern when the stdout log file is written to the
Lustre filesystem. To test this theory, the Cray Lustre
engineer asks the customer to re-run the lctl commands and
add one additional command (md_stats).

• ps auxww | awk '/\[(mdt|ll_ost)/ {gsub(/ll_ost/,"ost");
print $8" "$11}' | sort | uniq -c -w6

• lctl get_param mds.MDS.mdt.stats | grep "req_"

• lctl get_param -n ldlm.services.ldlm_cbd.stats | grep
"ldlm_bl”

• lctl get_param mdt.*.md_stats

The lctl command, using the get_param function with the
mdt.*.md_stats parameter, collects metadata operation
statistics from all MDTs. This supplemental information
provides the confirmatory clue to the Cray engineer
regarding the root cause of the performance degradation. The
md_stats command results, correlated and summarized in
Table II, show that although several metadata operations
could cause a problem, in this case the clear offender is sync.

TABLE II. MD STATS COMMAND RESULTS

Operation MXM Workaround No Workaround Change

open 4135 9883 239%

close 4078 9575 235%

unlink 961 6024 627%

mkdir 4 2000 50000%

rmdir 3 2000 66667%

getaddr 31116 131598 423%

statfs 201 2009 1000%

sync 0 830725 infinite

E. Root Cause (February 2018)

The root cause is identified as the method by which the
application is writing to the stdout log file, specifically, the
high number of syncs to disk when writing stdout to the
Lustre filesystem. For every write to stdout, a sync to disk
occurs, resulting in 830,000 syncs over a 3-minute period or
4600 syncs per second.

Additional analysis is required to determine how to

resolve the problem. Based on the collected data, the Cray
engineer suspects that the problem is in SLURM’s output
handling of srun. Until a resolution is implemented, the
customer can use the identified workaround. The issue is
handed back to Cray Support for analysis and to determine
next steps.

F. Summary of Use Case Timeline

As demonstrated by this use case, complex problems take
time to analyze and, typically, require engagement of a
filesystem expert. This situation required an experienced
Lustre engineer to help debug and diagnose the root cause. In
cases involving multiple parties, an added complexity, the
timeline from first identification of a problem to root cause
determination can take several months. In this use case, the
customer experienced performance degradation for more
than four months before the root problem was isolated and a
workaround identified. Table III summarizes the timeline of
the debugging activity.

 4

TABLE III. DEBUG TIMELINE

Timeframe Activity

October 2017 Customer identifies a performance issue with

the MDS

Offending application is identified

Problem reported to be related to SHMEM

November 2017 Cray Lustre engineer engaged

Metrics requested from the MDS and OSTs

December 2017 Holiday and vacation period – no activity

January 2018 Requested command output returned to Cray

for analysis

February 2018 Workaround is identified

Data is collected which isolates the problem

Root cause identified

IV. WALKTHROUGH OF VIEW FOR CLUSTERSTOR ROOT

CAUSE ANALYSIS

View for ClusterStor gathers and persists available
metrics, logs and events from the ClusterStor storage system,
metrics from the high-speed InfiniBand network, and job
event details. The collected Lustre performance data includes
performance information for OSTs, MDTs and jobstats. Raw
Lustre performance metrics are derived into usable (delta)
metrics, which are also persisted. These metrics can then be
graphed in tools such as Grafana. Lustre jobstats metrics are
correlated with job event information, which includes the
jobid, apid, start time, stop time, apname and userid. This
information is also persisted and correlated with other
collected data.

As View for ClusterStor collects, derives and persists

Lustre performance data, additional summary metrics are
calculated and persisted on a per-job basis. These summary
metrics provide the average IO size per job and the total
metadata operations per job. Data is gathered every 5 to 30
seconds and persisted for up to 4 weeks or more.

System logs and events are persisted into Elasticsearch

and served up through a UI for searching and refined
filtering. Data is retained using a configurable retention
policy, allowing administrators to view near-real time and
historical information.

View for ClusterStor’s GUI provides administrators with
a visual representation of the collected data. The GUI home
page provides a high-level overview of ClusterStor system
performance. Administrators can selectively view details
about running jobs, via the job summary table and can drill
down to see details of OST and MDT usage per a selected
job. These views can be customized to show data from the
last 15 minutes, last hour, n days, weeks or months. View for
ClusterStor utilizes features within Grafana to display
metrics in pre-defined Grafana panels. In addition,
administrators may create and save their own Grafana panels

to view customized arrays of data rather than the default
panels.

Calculated job summary information is displayed in the

job summary table (shown Figure 3), providing a visual
method to identify jobs which are performing poorly, based
on small IO patterns or abnormally high metadata operations.

View for ClusterStor provides an alert and notification

capability, delivering pre-defined alarm definitions. These
alarms are site-customizable and extensible. When an alarm
hits a defined threshold, an email notification is sent to the
configured email alias, providing early notification of
possible problems.

Note that the data presented in this section is based on a

reproduction of the customer test case. Actual customer data
is not used or presented.

A. Identification of the Problem (Day 1)

Upon notification that there is an MDS performance

issue, the administrator logs into the View for ClusterStor
GUI and starts analysis. The home page shows a high-level
performance summary for each ClusterStor system that is
monitored by View for ClusterStor (Figure 1).

Figure 1. Home Page

B. Debug, Analysis and Identification of Root Cause

(Day 1)

Based on the performance summary, the administrator
determines that 1 of 163 running jobs has been flagged as
(possibly) performing poorly.

The Administrator navigates to the system overview page

for further details on the overall IO and metadata
performance of the system (Figure 2) and observes job write
performance degradation starting around 14:45.

 5

Figure 2. System Overview

The administrator returns to the home page and selects the
Jobs link for the ClusterStor system, navigating to the table
which summarizes all jobs running on the selected system
(Figure 3).

Figure 3. Job Summary Table

The table shows all jobs active for the last 15 minutes.
One job is flagged as a possible poor performer (apid
2183675). The administrator notes the userid of the user who
launched the job, when the job started and ended, the
application name and the IO and metadata summary metrics.
Based on this data, the administrator determines that
metadata operations in the flagged job are high as compared
to other running jobs. The administrator clicks on the apid
link for job 2183675 to view additional job metadata details
(Figure 4).

Error! Reference source not found.

Figure 4. Job Details

From this screen, the administrator confirms that job
2183547 is writing small IO and metadata operations are
high during the job run. The administrator observes that for
this job, sync operations number in the millions; sync is
identified as the root cause.

C. Root Cause Summary

Within 5 to 10 minutes of first analyzing data in View for
ClusterStor, the administrator identified a poorly performing
job on the ClusterStor system, located the specific job that
appeared to be the culprit, and viewed IO and metadata
operation details for the job that confirmed the problem was
caused by unusually high sync metadata operations being
executed by the application. No reproducer was required for
the analysis and the administrator isolated the root cause
without engaging a filesystem expert. With root cause
determined, the administrator can contact the user and
inform them that their application is causing performance
degradation of the ClusterStor system. The user will need to
review their application to determine the source of the large
number of syncs and how to resolve the problem.

V. CUSTOMIZING VIEW FOR CLUSTERSTOR GRAFANA

PANELS

The administrator may create a customized Grafana panel
to show details of multiple jobs. As shown in Figure 5, the
customized panels can display data for both a job which is
performing well and a job which is performing poorly (due,
in this case, to a high number of syncs). As observed in these
graphs, a job which is performing poorly can, because of
resource contention, adversely impact a job which is
performing optimally.

Figure 5. Customized Grafana Panels Showing Details for Multiple Jobs

VI. SUMMARY/CONCLUSION

Providing the tools to monitor and collect relevant
metrics and information in a timely manner is critical to
problem resolution. Putting this information into the hands of
onsite administrators is very powerful way to reduce lost
productivity and limit the resources, measured in time and
expense, needed to determine the root cause of a
performance problem.

In the case of a poorly-written application, traditional
methods to debug and isolate root cause may require the use
of several resources, working over several months, to bring a

 6

case to resolution. This extended timeframe reflects days,
and possibly weeks, needed to gather information and collect
logs, transfer the data and wait for analysis, conduct next
steps and, finally, perform confirmatory testing.

View for ClusterStor collects the necessary metrics and

data in a timely manner and correlates it with other
information to provide a comprehensive picture of system
health. As demonstrated by the use case presented in this
paper, View for ClusterStor reports the state of all jobs
running on the system (optimal IO and non-optimal IO) and
enables an administrator to quickly identify poorly
performing jobs. Because a broad set of system data is
readily available and presented in easy-to-use graphs and
tables, administrators have the critical information and
metrics necessary to effectively isolate possible causes,
greatly reducing the need to create a reproducible use case
and saving significant time and effort to successfully debug
performance issues.

VII. DEFINITIONS

[1] https://www.cray.com/products/storage/clusterstor/view
[2] OpenSHMEM is an effort to create a specification for

a standardized API for parallel programming in the
Partitioned Global Address Space. Along with the
specification, the project is also creating a reference
implementation of the API.

[3] SHMEM (from Cray's “shared memory” library) is a
family of parallel programming libraries, providing
one-sided, RDMA, parallel-processing interfaces for
low-latency distributed-memory supercomputers.

[4] lctl is the Low Level Lustre filesystem configuration
utility. lctl is used to directly control Lustre via an ioctl
interface, allowing various configuration, maintenance
and debugging features to be accessed. lctl can be
invoked in interactive mode by issuing the lctl
command.

https://www.cray.com/products/storage/clusterstor/view

