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I. INTRODUCTION 

The size, scale and number of subsystems used in current 
HPC deployments make it difficult for administrators to 
monitor application performance and determine root cause 
when system performance issues occur. Many factors can 
contribute to poor application performance and system 
problems, including component failures, resource 
oversubscription or poorly-written applications. Isolating the 
root cause of a performance issue can be challenging as data 
needed to analyze the problem must be mined from multiple 
sources across different system components and may require 
privileged user access to retrieve. Additionally, system data 
must be obtained in a timely manner or critical information 
may be lost. 

  
Due to the complexity of most storage system 

deployments, it can take weeks or months to isolate a 
performance problem, create a reproducible test case and 
identify the root cause. Performance analysis requires 
dedicated resources from both the customer site and Cray to 
gather information and conduct evaluations. Time spent 
isolating and debugging complex problems results in reduced 
human and system productivity, and increased TCO, with a 
direct, negative impact on corporate budgets. 

 
To address significant challenges in storage performance 

analysis, Cray has introduced View for ClusterStor[1], an 
innovative tool that provides detailed visibility into resource 
utilization by system applications, enabling more efficient 
debugging, targeted optimizations and faster time to 
resolution. View for ClusterStor enables system 
administrators to: 

 

• Identify poorly performing jobs by using real-
time and historical data 

• Isolate performance problems by correlating 
performance-impacting systemic events 

• Observe system trends by analyzing data in 
graphical and tabular formats 

 
 
 
 

View for ClusterStor’s integration with storage components 
enables the collection of performance and jobstats metrics, 
system logs, and system events from the ClusterStor system, 
metrics from the high-speed InfiniBand interconnect, and job 
event details from the workload manager. This information is 
aggregated and made available to administrators via the 
View for ClusterStor GUI. 
 

This paper demonstrates the innovations in View for 
ClusterStor, as compared to traditional problem debugging 
and root cause isolation methods, applied to a use case in the 
form of a customer-reported problem. The use case first 
considers how the customer and Cray used traditional tools 
and debug methods to identify the root cause of a MetaData 
Server (MDS) performance degradation. The use case then 
examines how the same problem could be identified, much 
more efficiently, using View for ClusterStor. Contrasting 
traditional debug methods with the performance analytics 
presented by View for ClusterStor makes a compelling case 
that customer resources are maximized, and significant time 
saved with the use of View for ClusterStor. 

II. DESCRIPTION OF CUSTOMER USE CASE  

During a standard application run, the customer identifies 
significant performance degradation of their ClusterStor 
MDS as a result of 100% utilization. Although system 
applications are progressing, overall system performance is 
significantly impacted, which negatively affects other 
filesystem users.  

 
The customer determines that performance degradation 

occurs when a specific application is run on the attached 
Cray Cluster system (CCS). No degradation is observed 
when the same application is run on the attached Cray XC 
system. OpenSHMEM[2] is used on the Cray Cluster system, 
while Cray SHMEM[3] is used on the Cray XC. The 
customer presumes that the MDS degradation is related to 
SHMEM and reports it to Cray, indicating that the 
application in question is using a simple file open pattern via 
SHMEM. 
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III. WALKTHROUGH OF TRADITIONAL  ROOT CAUSE 

ANALYSIS 

A. Identification of the Problem (October 2017) 

 
When the customer reports the system performance issue, 

Cray Support is engaged, and a case is opened. Given the 
asynchronous nature of the problem, the customer and Cray 
Support coordinate the collection of logs and general support 
information for review and to start root cause analysis. 
Information is shared through the case. Several people are 
involved with the case—Cray Support identifies what 
information is needed, and the customer, using root access, 
collects the requested information and provides it to Cray. 
Information sharing, however, is limited to what can be 
securely allowed offsite, given the customer’s security 
policies. 

 
While information and log collection are underway, the 

customer successfully creates a reproducible test case and 
shares it with Cray. This development proves to be a critical 
step in the debug effort. 

 
The customer and the on-site Cray team run the 

reproducer, redirecting IO in different ways to help 
determine behavioral differences based on how the 
application is invoked.  

 

• srun --output=/proj/users/$USER/shmem-%t.out –
error=all -n 1600 .slow-snx-shmem 
 
This command invokes the reproducer piping output 
to a non-Lustre filesystem (/proj) using SHMEM 

 

• srun –output=/c/$USER/shmem-%t.out –error=all -
n 1600 .slow-snx-shmem 
 
This command invokes the reproducer piping the 
output to the Lustre filesystem (/c) using SHMEM 
 

• srun --output=/c/$USER/mpi-%t.out –error=all -n 
1600 .slow-snx-mpi 
 
This command invokes the reproducer piping the 
output to the Lustre filesystem (/c) using MPI 
 

During the reproducer runs, the customer monitors the MDS 
on /c (Lustre filesystem mount point) and notices that the % 
CPU use increases when the “srun-snx-shmem” test case is 
run with output redirected to /c. Based on this limited testing, 
the customer and Cray team determine that redirecting IO to 
a non-Lustre filesystem (/proj) appears to have no adverse 
effects.  

B. Engaging Cray Engineering (November 2017) 

At this point, a Cray Lustre engineer is engaged to 
analyze the collected information and logs, results of the 
reproducer runs, and additional data known about the case.  

 
The Cray Lustre engineer inquiries about test runs in 

which IO was redirected to different locations. Specifically, 
for each test run, the engineer asks how the application was 
invoked and the location to which the application output was 
written. These inquiries and answers are entered into the 
case. 

C. Holiday and Vacation Period (November – December 

2017) 

No updates occurred in the case from mid-November 
through December due to the holiday break and vacations. 

D. Debug, Analysis and Identification of Root Cause 

(January – February 2018) 

Responses to the Cray engineer’s outstanding questions 
are entered into the case. The responses confirm the 
following: 
 

• /c is the Lustre filesystem mount point 

• Writing to something other than the Lustre 
filesystem does not exhibit adverse behavior 

 
The Cray engineer requests that the customer run the 

following commands to gather additional MDS resource 
utilization data. These commands must be run when the 
reproducer is operating and the MDS is at 100% utilization.  

 

• ps auxww | awk '/\[(mdt|ll_ost)/ {gsub(/ll_ost/,"ost"); 
print $8" "$11}' | sort | uniq -c -w6 

• lctl get_param mds.MDS.mdt.stats | grep "req_" 

• lctl get_param -n ldlm.services.ldlm_cbd.stats | grep 
"ldlm_bl” 
 

The ps auxww command lists the MDT threads and what 
those threads are doing. The results will help determine if the 
threads are running, if they are waiting on disk or if the 
threads are sleeping, waiting on locks. Based on the results, 
one can determine if the MDS is busy with CPU activity, 
disk activity or waiting on protocols within the MDS system.  

 
The lctl[4] (low level Lustre filesystem configuration 

utility) command, using the get_param function with the 
mds.MDS.mdt.stats parameter, gathers statistics from the 
MDS. These results will help determine if MDS requests are 
waiting and for how long. The results will show if the MDS 
has a backlog of requests to process and if the MDS is 
keeping up with the backlog. This information is one way to 
determine if the MDS is overloaded with requests that it is 
unable to process.  
 

The lctl command, using the get_param function with the 
ldlm.services.ldlm_cbd.stats parameter, collects MDS lock 
information, including specific data that indicates lock 
contention, and if any requests are blocked on locks. 
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The results of the command runs are available within a 
week. The Cray Lustre engineer analyzes the information 
and concludes the following:  

 

• ps command results indicate there is a lot of CPU 
activity and not much disk activity 

• lctl mds command results confirm there is a lot of 
CPU activity 

• lctl ldlm command results indicate there are no lock 
contentions 

 
These results indicate to the Cray Lustre engineer that the 

root cause is neither MDS hardware nor software, and more 
information is needed to determine what is consuming the 
MDS resources and causing the degradation. 

 
The Cray Lustre engineer reviews the original problem 

report. As the test cases use different stdout pathways to the 
Lustre filesystem, the Cray Lustre engineer focuses on the 
differences between OpenSHMEM[2] and Cray SHMEM[3].  

 
The Cray Lustre engineer summarizes the stdout 

redirection data, shown in Table I. 

TABLE I.  SUMMARY OF STDOUT REDIRECTION TESTS 

Command Performance 

MPI output directed to Lustre (/c) Fast 

SHMEM to Lustre (/c) Slow 

MPI to non-Lustre (/proj) Fast 

SHMEM to non-Lustre (/proj) Fast 

SHMEM to Lustre (/c), but with logging hidden 
(MXM_LOG_FILE) 

Fast 

 
With the information gathered to date, the Cray engineer 

confirms there is a reasonable workaround to improve 
system performance, but the root cause has not yet been 
determined. The workaround is to write the application 
output to a local /tmp filesystem and then move the output to 
the Lustre filesystem. 

 

• srun --output=/tmp/shmem-%t.out --error=all -n 
1600 ./slow-snx shmem; mv /tmp/shmem-%t.out 
/c/$USER/shmem-%t.out 

 
The Cray Lustre engineer surmises, based on the 

command results and other evidence, that SHMEM is using a 
poor write pattern when the stdout log file is written to the 
Lustre filesystem. To test this theory, the Cray Lustre 
engineer asks the customer to re-run the lctl commands and 
add one additional command (md_stats). 

 

• ps auxww | awk '/\[(mdt|ll_ost)/ {gsub(/ll_ost/,"ost"); 
print $8" "$11}' | sort | uniq -c -w6 

• lctl get_param mds.MDS.mdt.stats | grep "req_" 

• lctl get_param -n ldlm.services.ldlm_cbd.stats | grep 
"ldlm_bl” 

• lctl get_param mdt.*.md_stats 

The lctl command, using the get_param function with the 
mdt.*.md_stats parameter, collects metadata operation 
statistics from all MDTs. This supplemental information 
provides the confirmatory clue to the Cray engineer 
regarding the root cause of the performance degradation. The 
md_stats command results, correlated and summarized in 
Table II, show that although several metadata operations 
could cause a problem, in this case the clear offender is sync. 

TABLE II.  MD STATS COMMAND RESULTS 

Operation MXM Workaround No Workaround Change 

open 4135 9883 239% 

close 4078 9575 235% 

unlink 961 6024 627% 

mkdir 4 2000 50000% 

rmdir 3 2000 66667% 

getaddr 31116 131598 423% 

statfs 201 2009 1000% 

sync 0 830725 infinite 

 

E. Root Cause (February 2018) 

The root cause is identified as the method by which the 
application is writing to the stdout log file, specifically, the 
high number of syncs to disk when writing stdout to the 
Lustre filesystem. For every write to stdout, a sync to disk 
occurs, resulting in 830,000 syncs over a 3-minute period or 
4600 syncs per second. 

 
Additional analysis is required to determine how to 

resolve the problem. Based on the collected data, the Cray 
engineer suspects that the problem is in SLURM’s output 
handling of srun. Until a resolution is implemented, the 
customer can use the identified workaround. The issue is 
handed back to Cray Support for analysis and to determine 
next steps. 

 

F. Summary of Use Case Timeline 

As demonstrated by this use case, complex problems take 
time to analyze and, typically, require engagement of a 
filesystem expert. This situation required an experienced 
Lustre engineer to help debug and diagnose the root cause. In 
cases involving multiple parties, an added complexity, the 
timeline from first identification of a problem to root cause 
determination can take several months. In this use case, the 
customer experienced performance degradation for more 
than four months before the root problem was isolated and a 
workaround identified. Table III summarizes the timeline of 
the debugging activity. 
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TABLE III.  DEBUG TIMELINE 

Timeframe Activity 

October 2017 Customer identifies a performance issue with 

the MDS 

Offending application is identified 

Problem reported to be related to SHMEM 

November 2017 Cray Lustre engineer engaged 

Metrics requested from the MDS and OSTs 

December 2017 Holiday and vacation period – no activity 

January 2018 Requested command output returned to Cray 

for analysis 

February 2018 Workaround is identified 

Data is collected which isolates the problem 

Root cause identified 

 

IV. WALKTHROUGH OF VIEW FOR CLUSTERSTOR ROOT 

CAUSE ANALYSIS 

View for ClusterStor gathers and persists available 
metrics, logs and events from the ClusterStor storage system, 
metrics from the high-speed InfiniBand network, and job 
event details. The collected Lustre performance data includes 
performance information for OSTs, MDTs and jobstats. Raw 
Lustre performance metrics are derived into usable (delta) 
metrics, which are also persisted. These metrics can then be 
graphed in tools such as Grafana. Lustre jobstats metrics are 
correlated with job event information, which includes the 
jobid, apid, start time, stop time, apname and userid. This 
information is also persisted and correlated with other 
collected data. 

 
As View for ClusterStor collects, derives and persists 

Lustre performance data, additional summary metrics are 
calculated and persisted on a per-job basis. These summary 
metrics provide the average IO size per job and the total 
metadata operations per job. Data is gathered every 5 to 30 
seconds and persisted for up to 4 weeks or more.  

 
System logs and events are persisted into Elasticsearch 

and served up through a UI for searching and refined 
filtering. Data is retained using a configurable retention 
policy, allowing administrators to view near-real time and 
historical information. 

View for ClusterStor’s GUI provides administrators with 
a visual representation of the collected data. The GUI home 
page provides a high-level overview of ClusterStor system 
performance. Administrators can selectively view details 
about running jobs, via the job summary table and can drill 
down to see details of OST and MDT usage per a selected 
job. These views can be customized to show data from the 
last 15 minutes, last hour, n days, weeks or months. View for 
ClusterStor utilizes features within Grafana to display 
metrics in pre-defined Grafana panels. In addition, 
administrators may create and save their own Grafana panels 

to view customized arrays of data rather than the default 
panels.  

 
Calculated job summary information is displayed in the 

job summary table (shown Figure 3), providing a visual 
method to identify jobs which are performing poorly, based 
on small IO patterns or abnormally high metadata operations.  

 
View for ClusterStor provides an alert and notification 

capability, delivering pre-defined alarm definitions. These 
alarms are site-customizable and extensible. When an alarm 
hits a defined threshold, an email notification is sent to the 
configured email alias, providing early notification of 
possible problems. 

 
Note that the data presented in this section is based on a 

reproduction of the customer test case. Actual customer data 
is not used or presented. 
 

A. Identification of the Problem (Day 1) 

 
Upon notification that there is an MDS performance 

issue, the administrator logs into the View for ClusterStor 
GUI and starts analysis. The home page shows a high-level 
performance summary for each ClusterStor system that is 
monitored by View for ClusterStor (Figure 1). 

 

 
Figure 1.  Home Page 

B. Debug, Analysis and Identification of Root Cause  

(Day 1) 

Based on the performance summary, the administrator 
determines that 1 of 163 running jobs has been flagged as 
(possibly) performing poorly.  

 
The Administrator navigates to the system overview page 

for further details on the overall IO and metadata 
performance of the system (Figure 2) and observes job write 
performance degradation starting around 14:45.  
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Figure 2.  System Overview 

The administrator returns to the home page and selects the 
Jobs link for the ClusterStor system, navigating to the table 
which summarizes all jobs running on the selected system 
(Figure 3). 
 

 
 

Figure 3.  Job Summary Table 

The table shows all jobs active for the last 15 minutes. 
One job is flagged as a possible poor performer (apid 
2183675). The administrator notes the userid of the user who 
launched the job, when the job started and ended, the 
application name and the IO and metadata summary metrics. 
Based on this data, the administrator determines that 
metadata operations in the flagged job are high as compared 
to other running jobs. The administrator clicks on the apid 
link for job 2183675 to view additional job metadata details 
(Figure 4). 

Error! Reference source not found. 
 

 
 

Figure 4.  Job Details 

From this screen, the administrator confirms that job 
2183547 is writing small IO and metadata operations are 
high during the job run. The administrator observes that for 
this job, sync operations number in the millions; sync is 
identified as the root cause. 

C. Root Cause Summary 

Within 5 to 10 minutes of first analyzing data in View for 
ClusterStor, the administrator identified a poorly performing 
job on the ClusterStor system, located the specific job that 
appeared to be the culprit, and viewed IO and metadata 
operation details for the job that confirmed the problem was 
caused by unusually high sync metadata operations being 
executed by the application. No reproducer was required for 
the analysis and the administrator isolated the root cause 
without engaging a filesystem expert. With root cause 
determined, the administrator can contact the user and 
inform them that their application is causing performance 
degradation of the ClusterStor system. The user will need to 
review their application to determine the source of the large 
number of syncs and how to resolve the problem. 

V. CUSTOMIZING VIEW FOR CLUSTERSTOR GRAFANA 

PANELS 

The administrator may create a customized Grafana panel 
to show details of multiple jobs. As shown in Figure 5, the 
customized panels can display data for both a job which is 
performing well and a job which is performing poorly (due, 
in this case, to a high number of syncs). As observed in these 
graphs, a job which is performing poorly can, because of 
resource contention, adversely impact a job which is 
performing optimally. 
 

 
 

Figure 5.  Customized Grafana Panels Showing Details for Multiple Jobs 

VI. SUMMARY/CONCLUSION 

Providing the tools to monitor and collect relevant 
metrics and information in a timely manner is critical to 
problem resolution. Putting this information into the hands of 
onsite administrators is very powerful way to reduce lost 
productivity and limit the resources, measured in time and 
expense, needed to determine the root cause of a 
performance problem. 
 

In the case of a poorly-written application, traditional 
methods to debug and isolate root cause may require the use 
of several resources, working over several months, to bring a 
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case to resolution. This extended timeframe reflects days, 
and possibly weeks, needed to gather information and collect 
logs, transfer the data and wait for analysis, conduct next 
steps and, finally, perform confirmatory testing. 

 
View for ClusterStor collects the necessary metrics and 

data in a timely manner and correlates it with other 
information to provide a comprehensive picture of system 
health. As demonstrated by the use case presented in this 
paper, View for ClusterStor reports the state of all jobs 
running on the system (optimal IO and non-optimal IO) and 
enables an administrator to quickly identify poorly 
performing jobs. Because a broad set of system data is 
readily available and presented in easy-to-use graphs and 
tables, administrators have the critical information and 
metrics necessary to effectively isolate possible causes, 
greatly reducing the need to create a reproducible use case 
and saving significant time and effort to successfully debug 
performance issues. 

VII. DEFINITIONS 

[1] https://www.cray.com/products/storage/clusterstor/view 
[2] OpenSHMEM is an effort to create a specification for 

a standardized API for parallel programming in the 
Partitioned Global Address Space. Along with the 
specification, the project is also creating a reference 
implementation of the API. 

[3] SHMEM (from Cray's “shared memory” library) is a 
family of parallel programming libraries, providing 
one-sided, RDMA, parallel-processing interfaces for 
low-latency distributed-memory supercomputers. 

[4] lctl is the Low Level Lustre filesystem configuration 
utility. lctl is used to directly control Lustre via an ioctl 
interface, allowing various configuration, maintenance 
and debugging features to be accessed. lctl can be 
invoked in interactive mode by issuing the lctl 
command. 

 

 

https://www.cray.com/products/storage/clusterstor/view

