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Abstract—Future machine architectures are likely to have
higher core counts placing tougher demands on the parallel
IO routinely performed by codes such as Nektar++, an open-
source MPI-based spectral element code that is widely used
within the UK CFD community. There is a need therefore to
compare the performance of different IO techniques on today’s
platforms in order to determine the most promising candidates
for exascale machines. We measure file access times for three
IO methods, XML, HDF5 and SIONlib, over a range of core
counts (up to 6144) on the ARCHER Cray XC-30. The first
of these (XML) follows a file-per-process approach, whereas
HDF5 and SIONlib allow one to manage a single shared file,
thus minimising meta IO costs. We conclude that SIONlib
is the preferred choice for single-shared file as a result of
two advantages, lower decompositional overhead and a greater
responsiveness to Lustre file customisations.

Keywords-IO Performance; Cray XC30; Lustre; HDF5;
SIONlib

I. INTRODUCTION

Nektar++ [1] is an open-source MPI-based spectral el-
ement code widely used in the UK CFD community. The
code combines the accuracy of spectral methods with the ge-
ometric flexibility of finite elements, specifically, hp-version
FEM. It supports several scalable solvers for many sets of
partial differential equations, from (in)compressible Navier-
Stokes to the bidomain model of cardiac electrophysiology.
As part of the preparations to make Nektar++ ready for
Exascale platforms, we evaluate the performance benefit
achieved by two parallel IO libraries. Presently, Nektar++
performs XML-based IO operations involving one file per
process. This approach is expected to become untenable for
core counts in excess of 104 cores due to the increasing
burden associated with meta IO. For example, Nash et al.
[2] found that the time to write a checkpoint file increases
markedly for core counts greater than 1000: the communi-
cation overhead required to determine which elements are
to be written by each MPI process increases by a factor of
ten when the number of ARCHER nodes is increased from
32 to 256 (see Figure 6 of [2]). Another disadvantage of
file-per-process IO schemes is the fact that HPC resources
are often restricted by file count or inode limit, which is not
an issue for codes that use a single shared file.

We measure the IO performance achieved by three IO
methods, XML, HDF5 (v1.8.14) and SIONlib (v1.6.2).
HDF5 [3] is a hierarchical data format that allows parallel
file access. It is necessary however to record explicitly which

parts of a HDF5 dataset belong to which MPI process. The
SIONlib library [4] on the other hand, can record such details
automatically, removing the burden of having to manage file
decomposition within the application code.

Our study involves the checkpoint files produced by two
test cases. One we describe as small since it produces
checkpoint files that contain a moderate amount of data,
approximately 2.5 MB, derived from a mesh containing
150,302 elements. The other uses a much more detailed
mesh, featuring 3.5 million elements, that generates a dataset
roughly 5.5 GB in size. The first test case simulates the
flow of blood through an aortic arch [5] using an advection-
diffusion-reaction solver to simulate mass transport, whereas
the second case employs an incompressible Navier-Stokes
solver to model the flow of air around a racing car. We first
executed both test cases for a range of node counts, 2n,
where n is in the range 5 − 8, on the ARCHER platform
[6], a Cray XC-30 machine: each node has 24 cores. This
enabled us to generate the various checkpoint files that could
then be used by a specially written IO benchmarker.

In this paper, the problem size is the same for each node
count tested: hence, we reveal the IO performance associated
with strong scaling.

II. IO METHODS

The performance measurement tool mentioned in the
introduction is called FieldIOBenchmarker [2] and was
written to better understand the performance costs associated
with reading and writing checkpoint field files - it uses
the Nektar++ FieldIO class, which was subclassed for
each IO method covered by this paper. For example, the
FieldIOXml class reads and writes data through the use
of two routines called Import and Write. Each MPI process
reads and writes to a unique checkpoint file, which stores
the field definitions and field data that are handled by that
process.

The FieldIOHdf5 class supports the reading and writ-
ing of a single HDF5 checkpoint file that is accessed by all
MPI processes. This file features a top-level folder called
NEKTAR, which contains a sub-folder for every field type.
The values of the parameters that define a field type are
hashed so as to generate a unique sub-folder name — the
parameter values are then added as attributes of the field type
sub-folder. All other data are stored within several datasets
that reside within the top-level folder. For example, every



field that an MPI process might handle consists of elements,
where each element has an ID and is also associated with a
set of values: hence, there are datasets for element data and
element IDs. The must important dataset however concerns
the decomposition; this dataset allows every MPI process
to identify (via hash values) those field types it should be
handling and secondly, to determine the correct offset for
accessing the element datasets.

The job of creating the structure of the HDF5 file is
delegated to a single root process that also writes the decom-
position dataset having collected all the necessary metadata
from the other ranks. All MPI processes then write their
data to the appropriate locations within the element datasets.
During the importing of HDF5 data, each MPI process
uses the decomposition dataset to avoid reading parts of the
element datasets that belong to other processes. The design
of the FieldIOHdf5::Import routine incorporates a
degree of flexibility that allows the user to redefine the
mapping between processes and elements. This flexibility
incurs a cost in the form of additional reads: specifically,
the entire decomposition dataset has to be communicated to
all processes.

Finally, the FieldIOSIONlib class does not require
decompositional data to be recorded explicitly. The SIONlib
library itself records which MPI processes have written
which data to the checkpoint file: this permits each process
to simply loop over the fields it handles, writing out or
reading in the field definition, element IDs and element
data in turn. It is also possible for an MPI process to
impersonate another rank when opening a SIONlib file,
permitting element redistribution.

The size of the checkpoint file will vary with core count
and IO method. For example, SIONlib checkpoint files are
significantly larger than their HDF5 counterparts. This is
because the file format can be more tightly controlled using
the HDF5 method and so the resulting file is leaner: from
768 to 6144 cores, the size of the small HDF5 checkpoint
files increases slightly from 24.7 to 25MB. For the large
test case, the different HDF5 file sizes fluctuate closely
around 5.48GB. The SIONlib checkpoint file is formatted
according to the number of MPI processes that write to it.
The space reserved for an MPI rank is divided into chunks,
where each chunk is a multiple of the file system block size.
ARCHER uses a Lustre file system with a block size of
65,536 bytes. The SIONlib chunks are always one block in
size for the small (aorta) test case, whereas the larger (racing
car) checkpoint files require chunk sizes of 110, 55, 29 and
16 blocks for node (core) counts of 32 (768), 64 (1536),
128 (3072) and 256 (6144) respectively. This arrangement
guarantees that the section of the checkpoint file assigned to
any MPI process will not cross a file system block boundary.
The downside however is that SIONlib files will contain
some padding. This is particularly noticeable with the small
checkpoint file: the size is approximately 50.4MB for 32

nodes and then doubles for each successive doubling of node
count. The size of the large SIONlib checkpoint files does
not rise with node count, but, these files are twice as big as
their HD5 counterparts, coming in at around 11GB.

III. RESULTS

Sets of scaling runs were performed for each IO method,
where each run recorded the time taken to read and write
the data. Both IO operations were performed ten times
for each core count, allowing an average value for exe-
cution time to be plotted. The FieldIOBenchmarker
tool takes a parameter that specifies how many tests are
to be performed. Setting this parameter to ten can lead
to caching effects that result in fast file access times; to
counter this unrealistic circumstance, the count parameter
was set to one and FieldIOBenchmarker was instead
called ten times from within the submission script. Further,
the submission script was designed such that each iteration
exercised all three IO methods. Having each IO method
tested from separate scripts running at different times could
make comparisons difficult since the overall file system
load is expected to be varying continuously. All of this
performance data, containing 240 time measurements (4 core
counts × 3 IO methods × 2 IO operations × 10 tests),
was then bundled into a single dataset. Similarly formatted
datasets were then compiled on subsequent days in order
to sample how Nektar++ IO performance could be affected
by the different file system loads routinely experienced by
ARCHER.

Please note, the read and write times presented here are
taken from the perspective of Nektar++, and therefore do not
just cover the low-level IO operations, but also the necessary
housekeeping required to initialise the data structures for all
MPI ranks.

The Lustre file system on ARCHER controls access to a
set of 48 object storage targets (OSTs) and has a theoretical
peak performance of 30GB/s [7]. By default, each file is
split into 1 MiB stripes and then stored on one 1 OST. This
is fine for codes using one file per process; whereas a single
shared checkpoint file should in general have its stripe count
set to -1, allowing use of all available OSTs. However, we
found that when file sizes are sufficiently small the best IO
performance is achieved with the default Lustre settings.

HDF5 nominates a set of MPI ranks to act as data
aggregators: those processes collect the data from all the
other ranks before writing to file. The number of HDF5
file writers was 48 for the core counts tested. SIONlib also
funnels data to designated writers (or collectors) assuming
one has opened the file in collective mode; although, we
found that the number of SIONlib writers was fixed at
the lower value of 32. Furthermore, using a collective
SIONlib configuration would not be sufficient to yield the
best performance, since each writer actually performs many
writes instead of just one. As with HDF5, a SIONlib writer
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Figure 1. Scaling plots of average time (solid line) spent in
FieldIOSIONlib::Write for two SIONlib file access modes,
collective (pale purple) and collectivemerge (purple). The
dashed lines indicate the minimum times achieved.

gathers data from other MPI ranks, but then it writes each
rank’s data to the part of the checkpoint file reserved for
that rank. Thus, for high core counts, each SIONlib writer
will perform thousands of writes across different locations.
The solution is to add the collectivemerge tag to the
mode string that is used to open the SIONlib checkpoint file.
This forces each writer to output the collected data to one
part of the file only; the part reserved for that writer’s rank.
Figure 1 shows the dramatic improvement gained by using
collective merged writes.

Figure 2 presents the results generated by the small
checkpoint files. It shows that SIONlib achieved the fastest
read/write times for all core counts, but, although the major-
ity of the data points are close to the averages (enlarged data
points) there are many outlying (i.e., slower) readings also.
For example, the SIONlib results recorded for a core count
of 6144 contain two extreme outliers that are pointed to by
the vertical chevrons in Figure 2. A data point is judged
to be an outlier if it is beyond a certain distance from the
top of the third quartile. This distance is defined as twenty
times the inter-quartile range (IQR) for the read data and
12 IQR for the write data. The two SIONlib write outliers
are so extreme that the mean SIONlib write time for 6144
cores is in fact greater than the XML and HDF5 averages;
this is despite the fact that the fastest writes were recorded
by SIONlib. If we adjust the average read/write times by
discounting these extreme values, we see that SIONlib is the
best performing IO method, as shown in the bottom plots of
Figure 2.

The effects of file system contention are clearly seen in the
scatter plots presented in this paper. It is necessary therefore
to collect several datasets at different times within a 7-day
period; such a procedure should guarantee a representative
sample of the workloads experienced by the ARCHER sys-
tem. Contrary to Nash et al. [2], we find that the deterioration

in XML write speeds is closer to a factor of two rather than
ten: a simple explanation here is that the earlier result had
been influenced by outliers.

We repeated the measurements discussed above but this
time we used a more industrial test case, one that produces
checkpoint files approximately two thousand times larger
than those generated by the aorta mesh. For the large test
case, the SIONlib library continues to lead when it comes
to reading data, but it is now the slowest of the three IO
methods for writing data, see Figure 3 — although, SIONlib
manages to beat HDF5 at 6144 cores it is nearly three times
slower than the XML average. In fact, XML is now the
fastest writer for all core counts (Figure 3, bottom).

We next investigated the impact of changing the Lustre
settings for the checkpoint files. Just to recap, the default
settings (stripe count/size = 1/1MiB) were used for the
small checkpoint files regardless of IO method. We then
changed the Lustre stripe count to -1 for the single-shared
file IO methods (HDF5 and SIONlib) for the large test case,
enabling a checkpoint file to be striped across all available
OSTs, and compared the IO performance (Figure 3). As
noted previously, the actual writing and reading of data, is
handled by a (relatively) small group of processes: 48 in the
case of HDF5 and 32 for SIONlib — all other processes
simply send their data to the pool of designated writers. It
seemed sensible then to enlarge the Lustre stripe size for the
large checkpoint files to a value roughly equivalent to the
amount of data handled by each writer, which turns out to
be 256MiB for SIONlib and 128MiB for HDF5. In effect,
each HDF5/SIONlib writer could now write all of their data
within one stripe, allowing each writer to be assigned to one
unique OST.

The result of these adjustments is that the HDF5 read
times improved such that XML is now the slowest reader on
average (Figure 4). The HDF5 write performance however
is more or less unchanged. On the other hand, the SIONlib
write times have decreased noticeable, producing times
comparable to XML.

IV. SUMMARY AND CONCLUSIONS

The FieldIOBenchmarker tool has provided sets of
results that show the read and write times for Nektar++
checkpoint files using three IO methods, XML, HDF5 and
SIONlib. The first of these methods (XML) maintains one
checkpoint file per MPI process, whereas the other two use
a single shared checkpoint file.

We find that the relative performance of the IO methods
does depend on the size of the checkpoint file. The results
for the small 2.5MB checkpoint file exhibited significant
scatter: it was necessary to annotate the corresponding plots
to indicate the presence of extreme outliers (Figure 2). These
extreme values (8 out of 720) were recorded for all IO
methods; hence, we felt justified in recalculating the mean
performance with the outliers removed. SIONlib achieved
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Figure 2. Read and write times for the small (2.5MB) Nektar++ checkpoint files. Along the top row are scatter plots of read (left) and write (right) times
from three datasets (720 timing measurements in total) compiled on separate days. The data covers four core counts for three IO methods, XML (green),
HDF5 (red) and SIONlib (purple). The large data points represent average values. Some of the datasets contained extreme outliers, which are indicated
by vertical chevron pairs with the actual outlier values printed immediately above, see text for how these outliers were identified. The mean (solid) and
minimum (dashed) read and write times for the aforementioned datasets are shown in the bottom row. Note, the mean calculations in the bottom plots
exclude any outliers displayed in the top row.

the fastest IO times for all core counts. XML was the
slowest at writing (2.3 times the SIONlib result), but HDF5
showed the poorest read performance (1.7 times slower than
SIONlib).

We should also mention that setting the stripe count to
-1 for the single-shared file IO methods worsened the IO
speeds for HDF5 and SIONlib, indicating, perhaps, that
we had reached the core count limit for the partitioning
of the aortic arch mesh [5]. This motivated further IO
benchmarking but this time using 5.5 GB checkpoint files,
which were sufficiently large to justify using a stripe count
of -1, permitting the checkpoint data to be striped across all
available OSTs (45 on the ARCHER system) — the stripe
size remained at 1MiB. Another benefit of handling greater
data volumes was the disappearance of extreme outliers
(Figures 3 and 4), which had complicated the previous

results.

Again, SIONlib was the clear winner for reading, with the
average read taking around a quarter of the HDF5 and XML
times. The picture was very different for file writing however
(see Figure 3): XML was clearly the fastest with a mean
write time of 1.6 seconds at 6144 cores, followed by SIONlib
at 6.8s and HDF5 at 8.5s. In response, we increased
the stripe size for SIONlib and HDF5 to 256MiB and
128MiB. The intention here was to create the possibility
for each SIONlib/HDF5 aggregator to read/write their data
to a dedicated OST using a single stripe. These changes
improved the HDF5 read speeds by over 30%. The HDF5
write performance was more or less unchanged; conversely,
the mean SIONlib write time (at 6144 cores) had dropped
by two thirds to 2.4 seconds (Figure 4). The minimum write
times at 6144 cores for SIONlib and XML were even closer
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Figure 3. Read and write times for the large (5.5GB) Nektar++ checkpoint files. Along the top row are scatter plots of read (left) and write (right) times
from three datasets (720 timing measurements) compiled over several days. The data includes timings taken at four core counts for three IO methods,
XML (green), HDF5 (red) and SIONlib (purple). The large data points represent average values. The mean (solid) and minimum (dashed) read and write
times for the aforementioned datasets are shown in the bottom row.

than the mean results, being 1.5 and 1.3 seconds respectively.
When opening HDF5 files it is possible to specify addi-

tional access properties; unfortunately, none of the properties
described in the HDF5 User’s Guide ( [3]) related to Lustre
stripe sizes, so there seems to be no obvious way for allow-
ing HDF5 to take advantage of the stripe size customisation.
It might be possible however to improve the HDF5 read
performance. We noted in Section II that the design of
the HDF5 read routine required all processes to read the
entire decomposition dataset. In reality, HDF5 ensures that
only a subset of the MPI ranks (the aggregators) actually
read the dataset, which is then communicated to the other
processes. Nevertheless, the format of the HDF5 file could
be altered such that every MPI rank could directly access
its own dataset offsets, but one must also bare in mind that
a checkpoint read is generally performed just once during
a simulation making this code improvement a low priority
task.

We have demonstrated that SIONlib is the superior single-
shared file IO method compared to HDF5 within the context
of Nektar++ checkpoint file operations. SIONlib perfor-
mance is expected to exceed XML for higher (> 10, 000)
core counts due to the increasing burden of meta IO oper-
ations. This prediction is foreshadowed by the write times
associated with the aorta checkpoint file (Figure 2, right):
at 6144 cores, the data handled by each process is no more
than half a KB and so, a large part of the time spent writing
XML files will be due to meta IO, making XML slower than
SIONlib.

Maximising the SIONlib write performance requires the
use of the collectivemerge mode when opening the
checkpoint file. This means that it is now less convenient
to re-read the checkpoint data: reading in merged data
requires that the original writers self identify and then
partition the data stored in their area according to the
original source, i.e., MPI rank. Therefore, should SIONlib
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Figure 4. This figure follows the format of Figure 3, but this time the Lustre custom stripe sizes have been customised for the HDF5 (128 MiB) and
SIONlib (256 MiB) checkpoint files.

be preferred over HDF5, it will be necessary to extend the
FieldIOSIONlib class to allow reformatting of a merged
checkpoint file in preparation for a simulation restart. For-
tunately, any such reformatting would be a one-off cost.

Lastly, the reader should note that the IO performance of
the FieldIOHdf5::write routine is hampered some-
what by the need to collate decompositional data. If one
assumes a static element partition (i.e., no load balancing
during the simulation) then the content of the decompo-
sition dataset would only need to be written once; this
improvement should bring the HDF5 performance in line
with SIONlib.
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