
Improving Nektar++ IO
Performance for Cray XC

Architecture
Michael Bareford, ARCHER CSE Team

michael.bareford@epcc.ed.ac.uk

With thanks to Nick Johnson and Michèle Weiland
EPCC, University of Edinburgh

Contents
• Introduction

• Nektar++
• IO Methods (XML, HDF5, SIONlib)
• ARCHER, Cray XC30

• Test Cases
• Small, Aortic Arch, ~ 2.5 MB
• Large, Road Racing Car, ~ 5.5 GB

• Nektar++ IO Classes
• Checkpoint file formats

• Results and Conclusions

Nektar++ v4.4.0 (MPI)
http://www.nektar.info

An open-source spectral element code that combines the
accuracy of spectral methods with the geometric flexibility of
finite elements, specifically, hp-version FEM.

Supports several scalable solvers for many sets of partial
differential equations, from (in)compressible Navier-Stokes
to the bidomain model of cardiac electrophysiology.

Nektar++

http://www.nektar.info/

Nektar++ IO Methods
1. XML, one checkpoint file per process

2. HDF5 (v1.8.14), single-shared checkpoint file

3. SIONlib (v1.6.2), single-shared checkpoint file

https://www.hdfgroup.org

https://apps.fz-juelich.de/jsc/sionlib/docu/index.html
Meta-data concerning decomposition is
recorded automatically.

Necessary to record explicitly which parts of a
HDF5 dataset belong to which MPI process.

Performance expected to degrade significantly above 104 cores due to meta IO.
And HPC resources can be restricted by file count (inode limit).

https://www.hdfgroup.org/
https://apps.fz-juelich.de/jsc/sionlib/docu/index.html

www.archer.ac.uk

Introducing ARCHER
Advanced Research Computing High End Resource

Introducing ARCHER
Cray XC30 MPP, 4920 Compute Nodes

Dual Intel Xeon processors (Ivy Bridge), 24 cores, 64 GB

Lustre File System
48 Object Storage Targets (OSTs)
Default striping is 1 MiB stripe stored on 1 OST
Theoretical peak performance of 30 GB/s

Strong scaling tests run over a range of core (node) counts.
768 (32), 1536 (64), 3072 (128) and 6144 (256)

Simulates blood flow through a
(rabbit’s) aortic arch .

Advection-diffusion-reaction solver
(mass transport).

Total checkpoint data approx. 2.5 MB

Small Test Case: Aortic Arch

Vincent, Plata, Hunt et al.,
J R Soc Interface. 2011

Mesh contains ~150k elements
(tetrahedra)

Simulates air flow around a road racing car (www.elementalcars.co.uk)
using Incompressible Navier Stokes solver.

Mesh contains ~3.5 million elements
(tetrahedra and prisms)

Large Test Case: Racing Car

Courtesy of Elemental Automatic Group and Imperial

Total checkpoint data approx. 5.5 GB

http://www.elementalcars.co.uk/

Nektar++ FieldIO Hierarchy

FieldIO

virtual import(...)
virtual write(...)

FieldIOXml FieldIOHdf5 FieldIOSIONlib

Nektar++ FieldIO Hierarchy

FieldIOFieldIOXml

FieldIOHdf5

FieldIOSIONlib

hdf5.h sion.h

SIONFile

H5.h
File, Attribute
DataSet,
DataSpace,
...

HDF5 Checkpoint File Format

HDF5 Checkpoint File Format

...

p1 p2 pn

f1 f2

d1 d2

Dataset Format

...

... dm

processes

fields

data

Nektar++ Class: FieldIOHdf5
The job of creating the structure of the HDF5 file is delegated to a single root process.

Root process writes the decomposition data having collected all the necessary metadata
from the other processes. Then scatters dataset indexes to all other processes.

All MPI processes write collectively to the appropriate locations within the element datasets.

Possible for each process to perform one write no matter how many fields it is handling.
This is done through the use H5S_SELECT_OR to access a dataset at multiple locations
using just one write operation.

Nektar++ Class: FieldIOHdf5
The job of creating the structure of the HDF5 file us delegated to a single root process.

Root also writes the decomposition data having collected all the necessary metadata from
the other processes.

All MPI processes write collectively to the appropriate locations within the element datasets.
Possible for each process to perform one write no matter how many fields it is handling.
This is done through the use H5S_SELECT_OR to write data for more than one field
at the same time.

The import routine offers the capability for the caller to redefine the mapping
between processes and elements. This flexibility incurs a cost in the form of extra
reads: specifically, the entire decomposition dataset has to be communicated to all
processes.

Although HDF5 will buffer decomposition data.

1D-NEGF
CIAO

Code_Saturne
dynQCD

JuSPIC
KKRnano

PMG+PFASST
MPAS-A

CoreNeuron

16k 32k 64k 128k 256k 448k
 1

 2

 4

 8

 16

 32

 64

sp
e
e
d
-u

p

1 2 4 8 16 28
cores
racks

hp-fRG
ICON

psOpen
SHOCK

SLH
pe

PP-Code
ParFlow+p4est

ZFS
ideal

FE2TI

FEMPAR

Gysela

IMD

JURASSIC

LAMMPS(DCM)

MP2C
0.5

0.6

0.7

0.8

0.9

1.0

16k 32k 64k 128k 256k 448k

e
ffi
c
ie
n
c
y

1 2 4 8 16 28

cores

racks

muPhi

NEST

OpenTBL

pe

PEPC

TERRA-NEO

ideal

Figure 5. Strong and weak scaling of High-Q Club member application codes on JUQUEEN.

Compared to a single rack, ideal strong scaling has a speed-up of 28⇥ on 28 racks and weak

scaling has 100% e�ciency. Of the 18 codes showing strong scalability, ten maintained scaling

e�ciency above 80%, and only three were below 65% e�ciency

Many High-Q Club member codes demonstrated very good strong-scaling speed-up close to

28⇥, with dynQCD standing out with superlinear speed-up of 52⇥ due to its exceptional ability

to exploit caches as problem size per thread decreases. ICON only achieved a modest 12⇥ speed-

up, and while this is less than 50% of the ideal, clear reduction in overall time to completion

was shown.

Size of dataset was often critical for successful strong scaling to 28 racks, as diminishing

per-rank computation can be overwhelmed by growing communication costs. Scaling of MPAS-A

with a dataset of 65 million grid cells was only demonstrated to 24 racks (with worse performance

for 28 racks), however, simulations using a 2 km global mesh with more than 147 million grid

D. Brömmel, W. Frings, B.J.N. Wylie, B. Mohr, P. Gibbon, T. Lippert

2018, Vol. 5, No. 1 69

Strong Scaling of High-Q Club member application codes on

JUQUEEN (Blue Gene/Q)

The High-Q Club: Experience with Extreme-scaling Application Codes

Brommel, et al. 2018

MPAS-A

KKRnano

Why SIONlib?

Nektar++ Class: FieldIOSIONlib
No need to record decompositional data explicitly: the SIONlib library does that for us.

Each process simply loops over the fields it handles, writing out or reading in the field
definition, element IDs and element data in turn.

Collective writes need extra care if processes are handling different number of fields.
For the racing car test case, most processes will be handling two field types (prisms and
tetrahedrons), but some may be handling prisms only.

A quick solution is for those prism-only processes to output a second field with dummy
data (a single byte). Of course, only the number of sion_coll_fwrite calls need to
match between processes not the amount of data written.

SIONlib Checkpoint File Format
p1 pn

bk1 bk2

...

... bk16

ck1 ckm

p2

...

processes

chunks

blocks
ARCHER file system block size

65,536 bytes

SIONlib can add extra chunks to a
process area if necessary.

The section of the checkpoint file assigned to any MPI process will not cross a
file system boundary.

FieldIOBenchmarker
First, we ran the aorta and racing car simulations for the core counts
mentioned (768 to 6144) in order to generate the various checkpoint files.

The IO benchmarker was used to perform read and write operations
10 times for each core count, allowing an average execution time to
be calculated.

iomethod = [xml, hdf5, sionlib]

for i in 1..10
for j in 1..len(iomethod)

aprun –n ncores benchmarker(FieldIO::import, iomethod[j])

for i in 1..10
for j in 1..len(iomethod)

aprun –n ncores benchmarker(FieldIO::write, iomethod[j])

60 separate read/write operations per core count

Each vertical column of dots
covers several datasets (30
data points) taken on
different days.

Enlarged data points
represent the average time.

SIONlib achieved the fastest read times

Extreme Outliers > 20 IQR
(above top of 3rd quartile)

Aortic Arch: Checkpoint Read

Each vertical column of dots
covers several datasets
(360 data points) taken on
different days.

Enlarged data points
represent the average time.

Extreme Outliers > 20 IQR
(above top of 3rd quartile)

Aortic Arch: Checkpoint Read

SIONlib achieved the fastest read times

Extreme Outliers > 12 IQR
appear for all IO methods.

Aortic Arch: Checkpoint Write

Extreme Outliers > 12 IQR
appear for all IO methods

Aortic Arch: Checkpoint Write

Writing to Single Shared File
HDF5 nominates a subset of MPI ranks to act as data aggregators or writers.
#aggregators = 48

SIONlib also funnels data to designated writers or collectors.
#collectors = 32

In SIONlib collective mode, a collector receives data from
process i and writes that data to the area of the checkpoint file
reserved for process i.

However, it’s more performant for each collector to instead write
all the data into their own area. This is know as collectivemerge
mode.

Writing to Single Shared File
HDF5 nominates a subset of MPI ranks to act as data aggregators or writers.
#aggregators = 48

SIONlib also funnels data to designated writers or collectors.
#collectors = 32 regardless of core count.

In SIONlib collective mode, a collector receives data from
process i and writes that data to the area of the checkpoint file
reserved for process i.

However, it’s more performant for each collector to instead write
all the data into their own area. This is know as collectivemerge
mode.

Default Lustre file settings
(1 MiB, 1 OST) used for
aorta arch checkpoint files.

Racing car test case is
2000 times larger.

XML: 1 MiB, 1 OST

Stripe count set to -1
(use all available OSTs)
for HDF5 and SIONlib.

Racing Car: Checkpoint Read

Default Lustre file settings
(1 MiB, 1 OST) used for
aorta arch checkpoint files

Racing car test case is
2000 times larger.

XML: 1 MiB, 1 OST

Stripe count set to -1
(use all available OSTs)
for HDF5 and SIONlib.

Racing Car: Checkpoint Read

Racing Car: Checkpoint Write

Racing Car: Checkpoint Write

Increase Lustre stripe size
to a value equivalent to the
amount of data handled by
each HDF5 aggregator /
SIONlib collector.

HDF5: 128 MiB
SIONlib: 256 MiB

All writers can write data
within one stripe, i.e., each
writer has a dedicated OST
(in theory).

Racing Car: Checkpoint Write, Fat Stripe

Increase Lustre stripe size
to a value equivalent to the
amount of data handled by
each HDF5 aggregator /
SIONlib collector.

HDF5: 128 MiB
SIONlib: 256 MiB

All writers can write data
within one stripe, i.e., each
writer has a dedicated OST

Racing Car: Checkpoint Write, Fat Stripe

Racing Car: Checkpoint Read, Fat Stripe

Racing Car: Checkpoint Read, Fat Stripe

Results Summary (NB: all I/O times in context of Nektar++)

Small Aortic Arch Checkpoint File (2.5 MB)

Result sets contained significant scatter, necessary to detect and

remove outliers (8 out of 720).

FieldIOSIONlib fastest at reading and writing.

FieldIOXml slowest at writing: 2.3 times SIONlib result.

FieldIOHdf5 slowest at reading: 1.7 times SIONlib.

Using a stripe count of -1 worsened IO speeds for HDF5 and SIONlib.

Small Aortic Arch Checkpoint File (2.5 MB)

Result sets contained significant scatter, necessary to detect and
remove outliers (8 out of 720).

FieldIOSIONlib fastest at reading and writing.
FieldIOXml slowest at writing: 2.3 times SIONlib result.
FieldIOHdf5 slowest at reading: 1.7 times SIONlib.

Using a stripe count of -1 worsened IO speeds for HDF5 and SIONlib.

Large Racing Car Checkpoint File (5.5 GB)
No outliers, stripe size set to 128 MiB (HDF5) and 256 MiB (SIONlib).
SIONlib write mode set to collectivemerge.

FieldIOSIONlib fastest at reading, but not writing.
Mean write times at 6144 cores, 1.6 s (XML), 2.4 s (SIONlib), 6.8 s (HDF5).
Minimum times, 1.3 s (XML) and 1.5 s (SIONlib).

Results Summary (NB: all I/O times in context of Nektar++)

Conclusions

SIONlib is the preferred choice for single-shared file as a result of two advantages,
lower decompositional overhead and a greater responsiveness to Lustre file
settings.

Expectation is that higher core counts (> 104) will slow XML compared to SIONlib.

Conclusions

SIONlib is the preferred choice for single-shared file as a result of two advantages,
lower decompositional overhead and a greater responsiveness to Lustre file
settings.

Expectation is that higher core counts (> 104) will slow XML compared to SIONlib.

Use of SIONlib collectivemerge mode means extra work required before
simulation can be restarted from checkpoint file.

The original checkpoint writers must self-identify and then distribute the data
stored in their area according to the original sender (MPI rank). Fortunately,
this would also be a one-off cost.

Conclusions

SIONlib is the preferred choice for single-shared file as a result of two advantages,
lower decompositional overhead and a greater responsiveness to Lustre file
settings.

Expectation is that higher core counts (> 104) will slow XML compared to SIONlib.

Use of SIONlib collectivemerge mode means extra work required before
simulation can be restarted from checkpoint file.

The original checkpoint writers must self-identify and then distribute the data
stored in their area according to the original sender (MPI rank). Fortunately,
this would also be a one-off cost.

However should be possible to improve FieldIOHdf5 if one assumes static
element partition (i.e., no load balancing), since the decomposition
dataset would need to gathered just once.

