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Abstract—Effective HPC system operations and utilization
require unprecedented insight into system state, applications’
demands for resources, contention for shared resources, and
system demands on center power and cooling. Monitoring
can provide such insights when the necessary fundamental
capabilities for data availability and usability are provided. In
this paper, multiple Cray sites seek to motivate monitoring as a
core capability in HPC design, through the presentation of suc-
cess stories illustrating enhanced understanding and improved
performance and/or operations as a result of monitoring and
analysis. We present the utility, limitations, and gaps of the data
necessary to enable the required insights. The capabilities de-
veloped to enable the case successes drive our identification and
prioritization of monitoring system requirements. Ultimately,
we seek to engage all HPC stakeholders to drive community
and vendor progress on these priorities.

I. INTRODUCTION

High Performance Compute (HPC) platforms are intended
to enable unprecedented scientific insights. They incorporate
the latest technological advances in processors, memory, and
interconnect at extreme scales to efficiently run applications
of increasing complexity. Significant investment is made

in the procurement of a platform tailored to support the
performance demands of a site’s workload.

Performance shortfalls can arise from issues such as
components that are faulty or subject to manufacturing varia-
tion, applications that are using the platform sub-optimally,
or contention among applications competing for the same
resources. Monitoring can enable diagnosis and detection of
these issues, however, its effectiveness depends on the ability
to obtain, integrate, analyze, and curate the necessary data.
These underlying capabilities are non-trivial to create, as
we may not know, in advance, all information that will be
needed, nor how to extract it from the raw data.

In this paper, we present progress by a number of sites in
gaining valuable insights via monitoring. Main contributions
of this work are:

o Use-case driven description of Cray systems’ and sup-
porting subsystems’ data. Includes exposure, informa-
tion of interest, and limitations and gaps

« Case studies from sites demonstrating how monitoring
has resulted in increased understanding, improved per-
formance, and/or improved operations



o Use-case driven definition of vendor-neutral priorities
for monitoring as core capability in HPC design

We begin in Section II with a discussion of the motivations
for monitoring and for community engagement in improving
monitoring in current and future systems. In Section III
we describe available data for Cray systems, subsystems,
and supporting infrastructure needed for building tools and
diagnostics. Section IV then details a set of case studies
demonstrating improvements through successful monitoring.
In Section V, we present a community consensus on priority
requirements for monitoring as a core capability in HPC
design. We summarize our conclusions in Section VI.

II. MOTIVATION

Monitoring has traditionally been thought of as the
province of the system administrator who seeks to use point-
in-time information to determine the state of health and load
of the system and its components. However, increased in-
sight is required into the state, utilization, and behavior of the
platform and its workload by a variety of stakeholders. Code
developers, non-administrative users, system administrators
and site support, and system architects (or site leads) all
have different goals for insight. A code developer needs to
assess the performance impacts of algorithmic changes. A
user needs to know how to best use the system to get optimal
performance for his/her application and to be assured of the
validity of the output. A system administrator needs to un-
derstand how to sustain or improve the user experience and
keep the system fully operational as efficiently as possible.
The system administrator also needs to assess and confirm
data integrity and security, particularly if the system is used
to process personal data, where monitoring may be required
by regulations [1]. An architect/lead needs to understand
the overall utilization, performance bottlenecks, and the
details of complex subsystems, to define requirements for
the next procurement, the design of a new facility, or to
give feedback to vendors’ roadmaps to help define next
generation technology.

Monitoring can provide such insights, but progress has
been limited by fears [2] of performance impact, of problems
from running non-vendor supplied software, of overwhelm-
ing storage requirements, of inability to extract meaningful
insights, or of embarrassing revelations about the architec-
ture or operation. As a result, the monitoring system is
treated as an add-on by vendors, rather than an intrinsic part
of the system hardware and software with the necessary data
exposure, access, and control.

Demonstrating the utility of monitoring will help to over-
come these fears and engage all stakeholders and vendors to
support the necessary requirements to enable better systems
through better monitoring.

III. DATA

Understanding system and application state and perfor-
mance requires integration of data from a variety of sources.
From the Cray platform, not all sources are innately exposed
or transported. Information from supporting infrastructure,
such as storage and facilities, must be obtained as well.

In this section, we highlight the data sources of interest
that pertain to the cases presented in this paper. We describe
the information they provide, their exposure in Cray systems,
and limitations and gaps.

A. SEDC and Power data

System environmental data, such as cabinet tempera-
tures, valve openings, etc, are available via Cray's Systems
Environmental Data Collection (SEDC) [3]. This data is
well-known to the Cray community. In older Cray Linux
Environment (CLE) releases, this data was transported over
the Event Router Daemon (ERD) to the System Management
Workstation (SMW) where it was written into log files. Since
CLE 5.2, this data has been preferentially stored in the Power
Management Database (PMDB) [4] on the SMW.

This is sub-optimal for computationally-intensive analyses
and analyses requiring access to long term data. To facilitate
such analyses, Cray developed the off-ERD endpoint [5],
which enables forwarding of this data to locations other
than the SMW, where it can be further forwarded or stored
in a remote instantiation of the PMDB. Currently, this
functionality can only forward all SEDC data, as opposed to
subsets of cabinets of the system to a single remote location.
SEDC data is by default collected at 1 minute intervals from
the blade and cabinet controllers.

Power data available on XC systems [4] includes
point in time power, accumulated energy, and current
power cap limit. This data is exposed on-node at 10
Hz, where the data is exposed via a sysfs interface,
/sys/cray/pm_counters. It is also collected out of
band by default at 1 Hz, with a possible maximum of 5Hz,
along with cabinet-level power data and job information, and
forwarded and potentially stored by the same mechanism as
the SEDC data. The PMDB is a PostgreSQL database and
hence supports queries such as per-job power usage. Addi-
tional tools, such as xtpget on the SMW provide current,
average, and peak system power usage over defined sample
periods. The SEDC and power data are not synchronized in
time across the different controllers.

B. Error Logs

Error logs are another well-known data source to the Cray
community. Log data is forwarded to the SMW where Cray
rsyslog configurations filter, reformat, and divide the data
into different files. In addition, some data streams, such
as hwerrlog, are in binary formats, which require Cray
libraries to convert to text formats.



The Lightweight Log Manager (LLM) [6] is an rsyslog-
based interface that enables forwarding of the data streams
off the SMW. Many sites use this ability to forward the data
to other consumers.

Limited access to the SMW and the variety of data files
and formats makes use of this data difficult. Understanding
items in the log files may require specialized architectural
or system knowledge and public documentation may be
limited. For example, error messages in the network or error
codes for DIMMs may be difficult to properly interpret. In
addition, multiline log messages also make this data harder
to parse by 3rd party log-analysis tools.

C. Status and Health Data

System status and health information is provided through
a multitude of commands and logs. The Cray XC Series
System Administration Guide [7] contains over 50 pages
of suggestions and methods to monitor the system, and
while extensive, it is still not comprehensive. The Node
Health Check (NHC) can be used to execute tests at the
end of jobs and act on the results, including passively
logging, marking a node down in a scheduler, dumping the
node, or rebooting it. Common tests include checking free
memory, stray processes, and shared file systems mounts,
but NHC can run any script; for example, counting available
hugepages to look at memory fragmentation.

Command line tools such as xtprocadmin can be used
to show node state information as queried from the service
database (SDB). However, this only communicates a node's
state (up, down, admindown); it does not include information
on why the node is in a non-up state. That information can be
found in several possible logs, including console, consumer,
or messages logs, as well as logging directly onto the node
to check status and error messages.

There is no default mechanism that provides continuous
system state and health data in an easily consumable or ac-
cessible fashion. Fundamental information desired includes
up, down (with reason) and basic functional state of all
system components. More complex assessments such as
contention for the network or file system are also desired.

D. GPU Data

Data is collected from Graphics Processing Units (GPUs)
as well as directly from a node's operating system, because
problems affecting a GPU could be on either the system side
or the GPU side.

Data from a GPU is obtained by using the
nvidia-smi [8] command to query the device and
retrieve data regarding its current state. This data includes
Process name on the GPU (if any), Inforom and VBIOS
versions, GPU Graphics Clock, CUDA Driver Version,
Power Draw, Retired Pages Pending, PCle Link Width,
and GPU Total Memory. The use of nvidia-smi to
query the GPUs can also provide useful information from

its exit status. There are cases where a GPU is visible
from the operating system but is no longer responsive to
the operating system. The exit status could indicate that
the GPU cannot be found or that the “GPU is lost;” both
are serious conditions. From the data collected, the overall
health of the device can be assessed.

System messages are obtained by scanning /dev/kmsg
while the node device status is validated through device files.
The GPU reports Xid errors back to the system for recording
at the system level. These are general GPU errors that could
indicate issues with an application, driver problems, and/or
hardware-related issues.

The combination of data collected from a GPU and the
system provides a complete view of the current state of the
GPU as well as previously recorded issues with that GPU.

E. HSN Data

On Cray Gemini and Aries systems, the High Speed
Network (HSN) is a globally shared resource. The Cray
Gemini network [9] is a 3D torus with largely static routing
(except in the case of failures and recoveries). The Cray
Aries network [10] is a modified Dragonfly with adaptive
routing, which makes the issue of detecting, assessing, and
attributing contention more complicated.

There are nearly two thousand Aries network performance
counters [11] that provide information about latency, counts
of flits across interfaces, stalls, and more. The system uses
the counters to make routing decisions and for triggering
contention mitigating mechanisms.

Counters are typically accessed by users via tools such as
CrayPAT [12] or interfaces such as PAPI [13]. The counters
are also available on-node via Cray’s gpcd interface (e.g.,
[14]) which until recently was not publicly released or
supported. This method has interface functions and data
structures to aid in querying the counters and iterating
through the return values. From node-level interfaces, only
the NIC counters relevant to the NIC associated with that
node, and only the Aries counters relevant to the Aries
associated with that node, are accessible. Data can also
be obtained using xtmemio [15] on the SMW to query
memory regions of the Gemini and Aries. This method
requires elevated access.

Information on network component failures and recover-
ies, congestion mitigation actions taken by the system, and
errors are reported in log files.

Currently, there are no Cray-provided tools that provide
the desired insight on congestion and its impact on ap-
plications. Creation of such tools by sites is difficult for
a variety of reasons. Cray documents (e.g., [11], [16])
provide insufficient information to properly interpret counter
values and events of interest to easily assess application
performance impact. In addition, some essential data is not
exposed. There is no information on the source of network
traffic. Per-flit routing information is not exposed, therefore



there is no direct way to determine the cause of congestion
or if an application will be affected, although some system
assessment of these (without the underlying data values) may
be provided in the logs in extreme cases.

Due to the global nature of the shared network, querying
data via the node interface from within the allocation of an
application provides only a limited view of the system's net-
work state that can affect the application’s communication
routes.

F. MCDRAM Data

Intel's MCDRAM memory interface controller coun-
ters [17] are accessible using an on-node performance mon-
itoring interface. They provide information such as the MC-
DRAM read count, write count, MCDRAM hits and misses,
and DDR reads and writes. The register code determines
which data is being accessed. perf_event_open [18] is
a generic Linux interface which can be used to read the
untile counter registers.

G. Supporting Subsystems Data

Supporting subsystems and external systems also affect
the machine. Data from the facilities which feed the cooling
infrastructure of the machine is of particular interest. Shared
file system appliances, such as ClusterStor, can report a va-
riety of information about the state of the file systems, from
utilization to performance information. Power information
can be retrieved from smart PDUs in the service racks.

This data is not intrinsically integrated with the machine
data. There are complexities in achieving this since the
facilities data infrastructure may not be designed for easy
export of live data, it may require a special protocol for
interacting with the data, and facilities may be in a different
security domain than the platform. Tools such as “View”
from ClusterStor are not designed to easily stream data to
other sources. Other file systems, such as direct attached
Lustre, GPFS, or Panasas must be monitored using different
tools or mechanisms. Besides data from the client and server
processes and servers, there is often an additional storage
network fabric, such as InfiniBand or high speed Ethernet,
that must be monitored for status and health. PDUs, BMCs,
and other sources all have specific commands to interact with
them. The ability to monitor all of this data and correlate it to
the system data that Cray provides for the XC infrastructure
would be extremely beneficial, but at this time, it is left to
each site to find a way to access and aggregate the data
applicable to the task being addressed. Note that data in this
context is meant to imply a combination of numeric and text
information (e.g., counters and log messages).

IV. SITE SUCCESS STORIES

In this section we illustrate motivations for monitor-
ing stakeholders, processes, and outcomes for monitoring
through the presentation of cases where sites have increased

understanding, improved performance, and/or improved op-
erations through the use of monitoring.

A. Continuous Testing

Many sources of degraded job performance are difficult
to detect from a node or job perspective at application run-
time because the expected performance of any particular
application run is unknown. It is unknown because, de-
pending on the application, performance and the underlying
resource utilization can vary significantly depending on
input parameters. To solve this problem, a number of sites
have developed a variety of tests that are run periodically
where the expected outcomes have been well characterized.
Additionally, some sites have incorporated tools that identify
trends and/or problems through continuous evaluation of
information from a variety of other sources such as syslog,
environmental monitoring, facilities monitoring, the local
weather service, etc. With continuous analyses of available
information, operations staff and/or users can be quickly
alerted, the cause of problems diagnosed, and corrective
action taken where appropriate.

1) LANL: In order to ensure Trinity, a 20,000 node Cray
XC40 system, is running jobs efficiently and functioning
properly, Los Alamos National Laboratory (LANL) has
integrated the output of a custom test suite with their Splunk
Operations Application. Their current test suite includes over
50 tests, run from privileged components, such as the SMW
and DRM node(s), to check and assess the health of a
variety of Trinity’s many components. These include checks
on configurations (e.g., data warp nodes), verification that
essential daemons and services (e.g., erd, mysql, firewalls,
slurmctld, llmrd) are running, checks that filesystems are
mounted, and checks on freespace, among others. Tests are
run at 10 minute intervals, via cron, and can also be run
on-demand.

This purpose-built Splunk Application combs appropriate
test output data and log files for indications of alert-worthy
errors or performance degradation. The integration of test
results and log information, when coupled with an easy to
understand dashboard, has enabled Operations staff to track,
and quickly assess, the health of the major datacenter com-
ponents (Fig. 1). Drill-down dashboards enable at-a-glance
assessment of the major components of Trinity (Fig. 2).
This 24/7 monitoring system enables Operations staff to
take appropriate corrective action or escalate to the system
administrators when serious problems are identified.

LANL plans to continue adding to the test suite and has
recently added a job monitoring panel to enable tracking of
specific high profile user jobs.

2) NCSA: There are significant challenges to understand-
ing how to, in a proactive fashion, identify abnormal behav-
ior, including root causes, in large parallel filesystems. The
Blue Waters staff at the National Center for Supercomputing
Applications (NCSA) is trying to better understand the
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Figure 1. LANL Splunk Operations Grid showing high-level overall state
of everything in the datacenter.
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Figure 2. LANL Drill-down example showing result of tests, as well as
selected tests for acknowledgment, on Trinity

end user interactive experience with respect to filesystem
responsiveness. The common detection of filesystem unre-
sponsiveness in the past has often been through user support
tickets. NCSA has been developing an approach to detect
filesystem problems before users report the impact. Their
solution probes a set of file I/O operation response times,
targeting all independent filesystem components from clients
representative of the various physical paths to the data and
various software environments used for access. This includes
measurements to each Lustre OST from within the HSN
through Lnet routers, from Import/Export nodes attached
via InfiniBand, and Login nodes that can experience impact
from competing users.

The NCSA solution uses the periodic creation of small
(4k) files specifically located on each filesystem storage
target, and the scheduled regular execution of a process that
measures the latency to perform the creation (a metadata
server test), writing, rmdir, or removal from various locations
in the system. This data is gathered on one minute intervals
either for every node in a given class (such as login nodes
where they want to understand the behaviors of each), or
from one node of a class that is sampled from a pool of
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Figure 3. NCSA visualization of average response time for filesystem write
response tests. Performance degradation is readily apparent and enables
association with the timing of a firmware change. Note that the Y-axis is
response time in ms.

nodes in that class. This data is stored in a MySQL database
and made available as raw data or graphed for visual analysis
with a Google Graphs interface.

Using this methodology, NCSA staff have been able, with-
out adverse impact on running applications, to: 1) diagnose
the precise time that configuration changes have had a mea-
surable impact on filesystem response times, 2) recognize
filesystem performance problems due to hardware errors that
hadn’t yet tripped an alert threshold, 3) recognize filesystem
usage problems before user complaints have been generated,
and 4) measure the impact of backup and filescan tasks that
enabled improvements through policy modifications.

The graphical interface was developed to view the data
using Google Graphs when they faced a challenge “root
causing” a filesystem issue. They began receiving multiple
reports of session hangs on the interactive login nodes. It was
unclear exactly when the behavior began and how frequently
it was occurring. With a visual interface to the data, it was
apparent where the behavior changed dramatically. NCSA
plotted (Fig. 3) a time series chart of the average response
time to perform a 4k write to each filesystem component
for each minute. The expected value for normal operation
is small number of milliseconds, with infrequent and brief
disturbances from large parallel I/O. They were able to
pinpoint down to the minute when the behavior changed
which aligned with a firmware change to the storage servers.
Reverting the software immediately resolved the issue.

Next steps include rewriting the collection service to bet-
ter address some timeout situations that had been observed
as well as improve the code structure to enable generalized
deployment at other sites.

3) NERSC: The National Energy Research Scientific
Computing Center (NERSC) identifies abnormal or unsat-
isfactory performance on their Cray platforms with the aid
of a suite of compute, communication, and I/O benchmarks
that run in an automated fashion and whose performance
is tracked over time on a series of plots published on the
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Figure 4. NERSC Benchmarks Monitor dashboard showing performance
of a benchmark on the CSCRATCH file system. Occurrence of performance
degradation is clearly seen.

https://my.nersc.gov web page.

These tests are selected to exercise a variety of features
and subsystems and provide a measure of the health of each
subsystem. The tests are indicative rather than full diagnostic
tools and sometimes followup diagnostics are needed, for
instance by running an application under a performance
analysis tool such as CrayPAT.

This methodology helped recently when an applied Lustre
patch resulted in a significant performance reduction for an
I/O benchmark (see Fig. 4). In this case not only did the
benchmark performance tracking provide an early indication
of a problem and when it began, but it also enabled narrow-
ing down the cause to I/O on a scratch file system. This, in
combination with the time information, enabled direct asso-
ciation of the performance reduction with a system software
change. After applying a kernel patch from Cray, the fix
was again verified through the results of the tests. Without
this continuous testing in place, the problem might well
have persisted with the users experiencing a performance
reduction with no obvious explanation.

B. GPU

The continued success of accelerated computing on GPUs
has driven the need for advanced rapid detection of problems
with GPUs. Over the years, the successful computational
use of GPUs has outpaced the ability the quickly detect
problems and react to them. Both routine problems with the
health of individual GPUs, as well as subtle manufacturing
process problems, can be identified with appropriate data
from monitoring of the GPUs.

1) CSCS: Based on many years of experience with
computing on GPUs, the Swiss National Supercomputer
Centre (CSCS) has gained significant insight into the many
GPU and GPU-related failure modes, and has developed a
comprehensive and very efficient suite of tests [19] for the
validation of a GPU’s health. Error conditions for both the
host system and the GPU are examined in order to obtain
an overall assessment of the health and status of the device.

Their motivation is based on the philosophy that no
batch job should start on a node with a problem, and a

problem should only be encountered by at most one batch
job — the job that was running when the problem first
occurred. Furthermore, the entire process must function in
an automated manner. The primary objective is to improve
the overall user experience on the system by providing a
reliable computing environment.

The general principles for the design were:

1) All tests must complete quickly

2) The test suite must be easily extended for additional
checks

3) All checks could be run interactively as a diagnostic
verification

4) All errors are recorded

5) Nodes with identified problems are automatically re-
moved from service

An efficient and flexible test harness was put in place
that supported an automated batch operation mode as well
as an interactive operation mode. The batch mode could
be embedded within the system while the interactive mode
provided an environment to verify an error and easily
recheck for problem resolution.

There are three components of the implementation:

1) Problem Detection
2) Problem Reporting and Recording
3) Automated Action Response to Problems

Checks have been developed to detect issues that could
affect performance, as well as hardware-related errors. In
some cases, a GPU will continue to function without error
or warning, yet performance has degraded.

Tests are executed at both the start and end of each job.
Testing at job startup will prevent a batch job from starting
on an unhealthy node, whereas testing at the end of the
job will prevent further jobs from utilizing an unhealthy
node, as well allow for the identification of the batch job
that encountered the problem. This is an important point, as
errors could be reported that apply to the application that
was using the GPU and not necessarily a problem with the
device. It also provides advance notice that a user’s batch
job may have encountered a problem.

Nodes are monitored for any reported Xid error on the
system side. There is one major limitation to use of Xid
errors captured in this manner - if a node records any Xid
errors, the node must be rebooted to clear the error message
from the nodes messages. Otherwise, it will continue to be
reported after the error condition has been corrected. This
has been viewed as a minor inconvenience, as the majority of
the recorded errors either represent a true hardware failure or
a retired page pending. The corrective action for a pending
retired page is to reboot the node.

When a problem is detected, sufficient information is
recorded to allow for quick diagnosis of the problem and
identification of potential recovery actions. The informa-
tion recorded includes: Batch Job Identifier, Nodename,



Username, Failing Test Name, Appropriate Error Text,
Recommended Recovery Action, and GPU Serial Number.
All recorded messages are automatically timestamped. This
provides the complete picture of error condition:

e who - the affected user

o what - the GPU serial number
o where - the node name

o why - the error text

o when - the timestamp

o how - the failing test name

GPU serial number is recorded because normal problem
isolation techniques include the relocation of suspect devices
in order to isolate problems. By tracking the serial number,
suspect hardware can be monitored regardless of location in
the system or how many times it is shuffled. Another benefit
to doing this is for longer tracking purposes. It is possible
that a returned GPU could be repaired and returned to the
site, and a full history of the device needs to be maintained.

As an example, one test monitors the PCle link width of
the GPU. This is a failure mode where the device has not
failed or reported errors, but the device is no longer capable
of the delivering the expected performance. The PCle
link status is obtained with the command: nvidia—-smi
—-—query-gpu=pcie.link.width.current. For
this test, the expected response is 16 and any other value
triggers a test failure. A reboot of the node will confirm if
the problem is persistent and requires the replacement of
the GPU. This test detects a clear performance problem that
can be identified without a user reporting slow performance.

All of this is tied together in an automated solution. The
batch systems prologue and epilogue execute the test suite at
each job startup and completion, respectively. If a test failure
has been detected, the suspect node is automatically added
to a system reservation for suspect nodes in order to prevent
further use prior to validation. Additionally, notification of
this action is recorded in the system logs as well as a Slack
channel.

The end result is a near 100% detection rate of GPU
related issues on first hit that triggers an automatic removal
of the suspect hardware from production operation. During
2017, there were only four issues that were not detected,
which led to the development of additional checks. Using
this methodology, the reliability of the system and user
experience has been greatly improved.

As new conditions are identified, new tests are incorpo-
rated. Performance enhancements of the tests, as well as the
test harness, are routinely validated, as this process must not
adversely impact the batch jobs or waste excess compute
cycles. The next step in the evolution of this process will
be to record such failures in a database along with all the
details. This will enable easy reporting and trend analysis.
Periodically running tests to perform small stress tests on
the GPUs are also being investigated. The results would be

used to validate that the GPU’s computational capability is
at the optimal performance level.

NVIDIA has been working on the Data Center GPU Man-
ager (dcgm) which may reduce the number of custom checks
required. As the systems software stack moves forward,
more analysis of the tool and how best to incorporate it
will be possible.

2) ORNL: Titan, the Cray XK7 at Oak Ridge National
Laboratory (ORNL), was introduced in Nov 2012 as the
fastest, most capable supercomputer in the world. In Jul
2015, just 2.5 years into the expected 5-year minimum life of
the machine, OLCF system administrators first identified an
alarming trend. Until this time, the rate at which the NVIDIA
Kepler GPU SXM modules were failing had a mean time
to failure (MTTF) of about 1 per day (MTTF==24 hours).
However, GPUs were starting to fail at a slightly higher
rate. From Aug 2015 to Jul 2016, the failure rate continued
to climb, reaching 3 failures per day (MTTF==8 hours) by
Feb 2016 and 6 failures per day (MTTF == 4 hours) by Jul
2016. Each failure causes the application running on that
GPU to crash, and calculations had to be restarted from
that application’s last checkpoint. With very high system
utilization (~ 92%), these failures began to have a significant
negative impact on the user community.

ORNL worked with both Cray and NVIDIA to qualify
a significant number of potential dependencies, including
NVIDIA GPU firmware and software changes, Cray OS and
PE changes, environmental conditions in the data center (air
flow, supply air temperature, air quality, relative humidity),
and temporal and spatial analysis of the individual failures.
When did individual errors occur? Where did they occur in
the system? What workload was executing on those GPUs
at the time of failure? Could any correlation to the position
of the GPU within the system, within a compute rack, or on
a specific node board be made? Could projections be made
relative to which nodes had a higher probability of failure,
i.e expected to have a shorter TTF? Could any correlation
be made relative to the specific SKU for the part? Could
the manufacturing, shipping, delivery, or installation date
be correlated to specific failures? What other GPU SXMs
were produced at the same time, under the same conditions,
with the same SKU, or the same testing? Where were those
products distributed globally? Were they failing in other
locations at similar rates?

At the same time that the causal analysis was under
way, there was a significant amount of effort devoted to the
failure analysis for the GPU SXM module. The form factor
for that module is a small daughtercard with (primarily)
the GPU, GDDRS5 memory, and the PCle interface to the
Cray motherboard. NVIDIA examined one of the failed
modules, and identified a small number of surface-mount
resistors on the printed circuit board (PCB) that did not
meet their design-point for resistance, i.e. the measured
resistance of the failed part was substantially higher than



the design specification for the resistor. Examination of
additional failed modules confirmed similar behavior. The
presence of these out-of-specification resistors on the GPU
module was conclusively determined to be the key indicator
of this class of failure.

Through a complete non-destructive and destructive anal-
ysis of both failed and good modules, ORNL, Cray, and
NVIDIA were able to identify that NVIDIA’s manufacturing
process had not used anti-sulfur resistant (ASR) materials
on components that required them. This caused a build-
up of sulfur-based compounds on modules, as can be seen
in Fig. 5), which shows a microscopic examination that
revealed the presence of crystalline structures on the (non)
anti-sulfur resistant (ASR) surface-mount resistors.

While root cause analysis continued, failures by early Fall
2016 on Titan had approached 11 per day, with an MTTF
nearing 2 hours. NVIDIA used all existing failure data,
both temporal and spatial, to construct a model to predict
and rank the probability of failure for all GPU modules
in the system. Over the course of the next six months,
9,500 of the highest ranked (probability of failure) modules
were systematically replaced with new stock that used ASR
resistors (requiring the restart of the manufacturing process
in China). Of the 18,688 modules in the system, more than
11,000 were eventually replaced. The positive impact to
the MTTF is substantial, with the failure rate as of Apr
2018 near 2 per day. The timeline of failures relative to the
diagnostic and remediative events is shown in Fig. 6.

ORNL continues to monitor the data center environmental
conditions, specifically for the presence of corrosive gases
such as those that caused the build-up that caused the
defective modules to fail.

Equipment manufacturers must use high quality materials
in their manufacturing process. The amount of productivity
lost by the Titan community while the problem with the GPU
modules was being identified was very high. Manufacturers
and suppliers should integrate many failure tests, including
those that test for reaction with corrosive gases and other
physical environmental tests, into their quality assurance
process. Accelerated failure tests provide critical reliability
data that can be used to more accurately forecast the MTTF
of components in the system, making it easier to more
quickly identify when there is a problem.

C. Power

The power draw of modern HPC systems can be in the
megawatts, and variations can have significant impact on
sites’ budgets and power providers provisioning decisions.
Because of this, sites with large scale resources are begin-
ning to explore ways of increasing energy efficiency of both
the system and the applications’ use of system resources.
In order to accomplish this goal, some reasonable fidelity
monitoring of the power profile of a system in the presence
of workloads must be performed. In this section we present

how two Cray sites are utilizing the PMDB and other in-
and out-of-band power monitoring capabilities of the Cray
XC40 platform to gain understanding that can enable them
to control power draw and minimize waste.

1) KAUST: Due to power and cooling constraints in
their data center, King Abdullah University of Science and
Technology (KAUST) needed to instantiate power aware
scheduling on their Cray XC40 system, Shaheen2, managed
by KAUST Supercomputing Lab (KSL). This would enable
them to maintain cooling within their power budget. They
instantiated two queues, one with 1805 nodes uncapped
and one with 4367 nodes capped at 270W. Then, in order
to maximize the utilization of the power budget, reduce
the waiting time in the queue, allow large scale runs, and
dynamically update power capping, they used the dynamic
scheduling features of SLURM and Cray's Advanced Plat-
form Monitoring and Control Utility (capmc) [20] to execute
the capping. capmc is used with the workload managers and
scheduler to set the power policy execution, like the power
caps, and to monitor the XC40 power usage, by querying
the system power data.

While the main driver for power monitoring was to ensure
that the data center did not exceed its allocated power
budget, it also proved useful for detecting problems. Problem
detection is accomplished by characterizing power profiles
of known applications and then comparing their power
profiles whenever they are run against the baseline profiles
of good runs of the applications. KSL builds power profiles
using information obtained through live monitoring using
xtpget (Section III-A) and queries to the PMDB during
application runs. The information utilized includes total
power draw, per-cabinet power draw, water valve position,
temperatures, among others.

Anomalous power-use behaviors can result from problems
either in the system or in application code. In the cases
of hung nodes or load imbalance, which indicate problems
that will result in resources and power being utilized to
no purpose, a job is proactively terminated, saving both
compute resources and power. This is shown in Fig. 7, where
power usage variation of up to 3 times was observed between
different cabinets (bottom) and full system power draw was
almost 1.9 times lower during this period of variable cabinet
usage (top).

Monitoring also enables comparison of performance of an
application with and without power capping. This informa-
tion can be used to make decisions on which applications
can operate efficiently under reduced power budgets.

Characterizing application performance, in terms of power
characterization, in conjunction with continuous monitoring
of power utilization, has enabled the KAUST data center to
run at an increased power budget without risk of violating
the limits. It has also enabled detection of a variety of
issues such as I/O bottlenecks, power imbalance across
cabinets, and excessive delays in srun spawning tasks across
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the system, when instantaneous power usage is lower than
expected.

This helps the KSL staff to detect critical issues with
the power setting with SLURM and capmc during system
software upgrades, identify applications that are more power
hungry than HPL, such as memtest, NekBox [21] (optimized
version of Nekbone), and MOAO applications [22].

The main limitations thus far are that users cannot access
the monitoring data and that due to the large volume of data
captured, it can only be stored for a couple of weeks, making
comparisons and trend analysis across long time intervals
impossible. It would be desirable if Cray would provide a
capability for users to get live access to power monitoring
information for their jobs, as HPC center staff cannot provide
this manually in a scalable manner, and only getting it after
a job terminates removes much of the utility.

2) SNL: Sandia National Laboratories (SNL) research
staff are looking for ways to improve the energy efficiency
of their workloads. This will ultimately enable them to field
larger systems (i.e., more efficient use of limited facility
power). Software control of power knobs (e.g., p-state and
power caps) is one well-studied way to accomplish this. SNL
is leveraging the Cray out-of-band power monitoring in-
frastructure, in-band p-state control, and out-of-band power
capping capability to analyze several mini-applications and
the Sandia SPARC application for their suitability to system
software-directed power management.

The Cray out-of-band power monitoring infrastructure
was configured to measure each node’s power draw at 5
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Hz. Each workload was run, noting the jobid and apid. Then
post-run, this information was used to query the Cray power
management database and generate point-in-time power
plots of the run (i.e., time on x-axis, power on y-axis, one
curve per node). By sweeping configuration parameters such
as p-state, power cap, node type (Haswell vs. KNL), solver
algorithm choice (Trilinos, built-in, naive), and memory
placement (KNL DRAM vs. on-package MCDRAM), they
were able to get a deeper understanding of the energy usage
behavior of each of the workloads and possible areas where
energy-efficiency could be improved.

In particular, for the Sandia SPARC application (see
Fig. 8, research staff identified significant opportunity to
reduce the power usage of its solve phase by lowering p-
state with negligible impact on performance. This resulted in
a 25% energy efficiency improvement for the realistic input
problem configuration that was evaluated.

The next steps are to modify SPARC to utilize the
Power API [23] to change p-states at solve and assembly
region phase boundaries. This will enable evaluation of dy-
namic power management and validate the results obtained
using static p-state control.

D. MCDRAM

Run-to-run performance variability of HPC applica-
tions complicates the performance tuning, development and
benchmarking on production HPC systems. Memory per-
formance can be a cause of this, and the KNL-based Cray
XC systems contain a new type of memory, MCDRAM,
which introduces new sources of variability, such as cache
mode effects. The ability to detect, assess, and attribute
these conditions can help users to understand why they see
variation in run-to-run performance of their applications and
to mitigate it.

1) ALCF: While it is potentially impossible to completely
alleviate performance variability on Cray XC40 KNL-based
systems, due to the way their architectures are designed
(their design goals are not always performance-focused, but
can also be focused on cost-optimality or programmability),
the Argonne Leadership Class Facility (ALCF) aims to
investigate ways to contain the effects of variability. To that
end, they have been investigating performance variation and
measures in conjunction with performance counters with the
goal of determining meaningful variables and value ranges
for use in production conditions.

ALCF has designed a set of experiments to detect per-
formance variability in which the MCDRAM cache-mode
page faults are collected at the beginning and end of each
run. Fig. 9 shows box plots of the per-node bandwidth
values reported by the STREAM benchmark run on 50 KNL
nodes of Theta in Flat-quad mode (top) and Cache-quad
mode (bottom). (Note that the y-ranges are not the same in
both figures). The STREAM benchmark is run with different
working set sizes, and significant variation is seen with the

cache-mode for all working set sizes. Low performing nodes,
indicated by the outliers below the main box plots, were
associated with counter values indicating higher MCDRAM
page fault rates.

While KNL. MCDRAM supports both flat and cache
mode, providing flexibility to the programmer, employing
the cache memory mode can come with a potential perfor-
mance penalty. Not only is the overall memory bandwidth
with cache mode lower than that which is possible with
flat memory mode, but also it comes with an additional
complexity of performance variability. The direct mapped
nature of the cache-mode operation of MCDRAM is the
root cause for this variability. While the Cray “zone sort”
helps mitigate the impact of the problem to some extent, it
does not help reduce the variability completely.

E. HSN

Network contention can be a cause of significant per-
formance variation. How to detect contention, to quantify
contention and its association with performance, and to
identify the causes of contention are all open questions. Suc-
cessful understanding and attribution of network congestion
can be used to mitigate congestion through allocation and
scheduling decisions.

1) HLRS: The High Performance Computing Center
Stuttgart (HLRS) has been developing approaches for au-
tomatic detection of the sources and victims of network
contention-induced performance variation.

HLRS and Cray have developed [24] an Apache Spark-
based tool which analyzes system logs from the SMW
in order to automatically identify applications impacted
by network contention and possible applications causing
the contention. Their approach detects applications with
high variability in runtimes and considers these as possible
victims of network contention-induced variability. It further
extracts applications running concurrently with the affected
victim runs. Frequently co-scheduled applications are ex-
tracted and promoted to the top of a potential aggressor list.

This approach has the benefit of automatically identifying
potential victims and aggressors, as opposed to requiring
manual log search. On their Cray XC40, Hazel Hen, their
approach has identified three potential aggressor applica-
tions. They are currently working with a developer of a
confirmed aggressor application to make the application ‘less
aggressive.’

Complexities in the job environment, such as multiple
apruns from a single Moab submission, jobs running for a
pre-allocated constant time, and short run times increase the
difficulty of job extraction. In addition, application runtime
may vary for reasons other than network contention (e.g.,
allocation or input deck). HLRS is thus extending its work
to include global HSN performance metrics in its analysis.
Identification and location of congestion in the system
would reduce the dependence on job run time in detecting
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performance-impacting contention and could enable better
determination of the impacted jobs.

2) SNL: SNL and Cray have been collaborating to inves-
tigate the association of numerical measures of congestion
with possible performance impacts. SNL has been collecting
network performance counters via LDMS [25] at 1 second
intervals on its Trinity Testbed System, Mutrino. Data is
transferred off the system to a data store, where continuous
analysis via NumPy is used to convert these counters into
measures indicative of backpressures between the NIC and
processor, the NIC and the HSN, and within the HSN. De-

tails of the measures are beyond the scope of this paper, but
include stall/ flit ratios at the various interfaces. NumPy
was chosen because of its efficient computation on multi-
dimensional arrays, which matches well with computations
over components, variables, and time.

SNL is investigating congestion visualizations in both
custom and commodity displays. Commodity displays are
intended to provide at-a-glance understanding of the system-
wide congestive state using statistical values of per-NIC and
per-Aries backpressure; use of aggregate statistics ensures
that commodity dashboard tools can provide run time per-
formance for large component counts. Custom [26] displays
provide more information in the context of the architecture.

A segment of a commodity display, via Grafana [27],
is shown in Fig. 10. Percentages of the total system NICs
experiencing various ranges of backpressure values from the
HSN are shown in a stacked histogram. For this measure,
a value of 1 roughly indicates that traffic is passing that
interface at approximately half the rate that it would without
congestion. In this case, application runs on 25% of the
machine are experiencing potentially performance-impacting
performance (shown in red, corresponding to values between
2-5). Such plots are being used to guide investigation of
possible performance impact, using the detailed per-Aries,
per-link values collected.

F. Environment

Operating specifications of a machine include require-
ments for cooling. These requirements are dependent on
facilities conditions external to the Cray platform. While
SEDC data is provided for the Cray cooling mechanisms,
external facilities data is not innately integrated with that
information in the Cray-provided monitoring data flow. In-
tegrated monitoring can better help ensure correct operating
conditions.

1) NERSC: During a period of record-breaking temper-
atures, NERSC needed to determine if a facilities response
would be required to ensure that their two Cray systems
continued to operate within safe operating specifications.
The maximum inlet water temperature for safe operation is
75 degrees Fahrenheit, and external temperatures reached 92
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degrees'. Potential facilities responses included a full system
shutdown, but the far-less-disruptive option of reducing heat
load was preferred, provided there was confidence that
temperatures would remain in the safe operating envelope.

To determine if an external response was required,
NERSC augmented their current system-level environmental
monitoring (e.g., cabinet air and water temperature) to
enable correlation with the facilities-level monitoring (e.g.,
pump speed, building water loop temperature and pressure)
and with the external environmental conditions (e.g, out-
side temperature). They obtained the system SEDC data
via Cray’s off-ERD endpoint and forwarded it into their
monitoring system. They obtained the facility data via a
custom collector which read the facilities data stream as it
was exposed in BACnet [28]. All data was integrated into
common data streams and/or a common database for display
in their Grafana dashboards.

Manual visual analysis allowed a gradual reduction of heat
load by preventing new jobs from starting and, eventually,
killing some running jobs, all without necessitating a full
shutdown. Fig. 11 shows a mash-up of facility, environmen-
tal, and systems temperatures used by NERSC to monitor
state over the course of the heatwave. During the event,
they learned that their Cray systems, including cooling
infrastructure, were more robust with respect to hot weather
than was originally expected.

G. Trend Analysis

Trend analysis can reveal faulty components and system
locations that are more prone to failure (such as those in
hotter locations in the system) and enable predictive failure
analysis. Trend analysis relies on the ability to collect, store,
and analyze continuous system data.

1) ALCF: Environmental conditions and system and
component errors are a fruitful source of data to support
trend analysis. Currently, such data is exposed and collected
on Cray systems, but in a limited way that does not easily
enable analysis.

As described in Section III, SEDC data, transported over
the ERD and collected into the PMDB on the SMV, is

IThe previous day had reached 105 degrees, but was less critical due to a lower
wet-bulb temperature, which is more important from a cooling perspective.

limited in its utility as a source for long term storage and
computationally intensive analyses. Console and hardware
error data, transmitted via the ERD, is filtered and dispersed
into a variety of logs, some of which are in binary, which
then require parsing to be suitable for use in analyses. As
a result, ALCF needed a better way to obtain and integrate
the data needed to give administrators a useful picture of the
machine state.

ALCF has written a software stack [29], called Deluge,
to listen to the ERD channels directly, bypassing the PMDB
and binary log files, and make the data directly available
for analysis. In writing Deluge, ALCF utilized Cray APIs
and libraries, available in Cray development RPMs. These
RPMs are not Cray supported resources, and thus are largely
undocumented. In ALCF's environment, the data is sent
to Elasticsearch or InfluxDB, with the data graphed and
analyzed via Grafana or Kibana.

This work has proven invaluable to discovering and diag-
nosing various issues in real time on ALCF’s Cray XC40
system, Theta. The hardware error data in Elasticsearch has
been used to identify suspect hardware, and to discover
trends in correctable/uncorrectable errors. Use of SEDC data
has also proven to be operationally valuable, and ALCF's
Influxdb install has proven to be faster and more storage-
efficient than the PMDB, while the Grafana front-end has
been used to identify and track datacenter environmental
issues. As data in InfluxDB is kept forever, long-term trends
can be tracked with a speed and simplicity not available
through Cray's software tools.

One example of this analysis is ALCF's tracking of the
BER (Bit error rate) of Aries links. This is defined as the
ratio of the CRC mismatch packets to the total packets
over the last minute on a per-link basis. Fig. 12 shows the
BER for 3 links whose values are approaching the sustained
error rate threshold of 1le-10, the threshold at which the
Blade Controller software will disable links. Visualizations
such as these are used to determine if there will be any
instantaneous problems, what nodes might be affected, and
which components should be replaced. Trends are examined,
and this information can be used to highlight which Aries
links are candidates for failure due to an excessive BER.

The component data used to calculate BER is part of the
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hardware error data stored in Elasticsearch. A Python script
grabs this data from FElasticsearch, and uses a typical data
science stack (pandas and Matplotlib) to calculate the BER
from the raw register data and graph it.

This work has shown that Cray's development RPMs are
an underutilized resource, as developing directly against
Cray's APIs has resulted in code that is high- performance
and production ready, as opposed to reading text files
or writing wrappers around CLI utilities. Cray-sanctioned
support of such underlying capabilities, which would include
the exposure and documentation of these APIs, would enable
sites to more fully leverage these capabilities and build
robust tools that could be shared between sites and make
their systems more performant.
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H. System Utilization and Queue Length Analysis

Understanding workload demands is key to understand-
ing and improving throughput, making scheduling priority
decisions, and determining future procurements.

1) CSC: The Center for Scientific Computing (CSC) has
developed a graphical view for system queue length monitor-
ing to visualize system utilization and obtain early indicators
of system problems. CSC’s system, Sisu, is configured for
multiple partitions with different priorities. In order to get a
high level view of the queue length over time, CSC has
defined a theoretical measure ‘Sisu day’ as all the core
seconds queued to be computed scaled by the capacity of the
system. If it would be possible to run all the pending jobs
(queued and running) with 100% node utilization, this is how
long it would take for all the jobs to complete. A single job
utilizing the whole system with duration of 24 hours would
equal queue size of one ‘Sisu day’. After running for 12
hours, there would be 0.5 ‘Sisu days’ left.

Data for the analysis is gathered from Slurm via Nagios
and presented graphically with Grafana. An example is
shown in Fig. 13. Queue length and core utilization are
shown. The ‘gc’ queue (yellow) starts to back up (around
2/19 evening) due to job submissions. Since this is a high
priority queue, these submissions affect the throughput of
other queues. Once a large job in the ‘gc’ queue finishes and
its queue length drops (around 2/25 midday), CPU utilization
drops as well, reflecting the now-free nodes. Visualizations
such as this can inform users wanting to understand why
their job wait varies and if there are large priority jobs



Figure 13. CSC Sisu job queue length development over 7 days.
Occurrence of high priority jobs (yellow queue) and their effects on the
throughput of other queues can be seen.

affecting the system usage.

System administrators and service desk staff use the
graphical interface to determine differences from normal pat-
terns of queue behavior and to drill down to see interesting
time periods. Ultimately, CSC would like to combine the
queue length measures with other monitoring information
in order to detect and diagnose system problems, such as
file system problems.

2) NERSC: NERSC characterizes jobs on the system in
terms of node count, job duration, resource requirements,
application, and other characteristics in order to fine-tune
system configuration for maximum effectiveness and to
support decision-making about future system requirements.

Data (including resource requests, timestamps relating to
submission, eligibility to start, start and termination time,
command-line details, etc.) is collected from Slurm about
every submitted job and supplemented with other data
collection points such as Altd [30], [31]. This data is stored
in a database and used by web-based dashboards to compute
and display various statistics, such as the mix of job size and
the total volume of queued work.

Similar to CSC, NERSC monitors the backlog, that is,
how many system-hours (node — hours/num_nodes_total)
of work is in the batch queue. Detection of changes in the
backlog has enabled NERSC to identify user submission
issues. Fig. 14 shows the backlog over a period of time
on the Haswell nodes of Cori. A sudden increase from the
recent average of about 17 days to 85 days prompted closer
inspection of the queue, revealing that a user had submitted
a 1000-member array job, each member requesting 1000
nodes. Specifying ‘total resources’ instead of ‘per-member
resources’ is an error users occasionally make when writing
array jobs, so the user was contacted and alerted to the pos-
sible error. Shortly later, the user canceled the erroneously-
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Figure 14. Backlog in the queue on NERSC Cori. Abnormal behavior
can be used to detect problems.
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requirements. The 20% target large job utilization is clearly met.

specified jobs.

Large-scale system procurements are justified by the need
to enable scientific investigations that require large resource
counts. NERSC has an operational target that 20% of its
KNL-node usage support jobs requiring at least 1024 nodes.
Fig. 15 shows the overall utilization and the percentage used
by jobs of certain sizes, filtered to highlight these large jobs.
This gives a visual impression of how well they are tracking
the 20% target.

1. Job Analysis and Reporting

The utilization of an HPC system and its subsystems can
vary widely depending on what applications are running on
the system. In order to have a clearer idea of the overall state
and health of the system, it is important to include moni-
toring of job- and application-related state in evaluations. In
addition to providing system and subsystem health-related
insights, job/application monitoring can provide clarity into
how users are using the system for running applications,
and how applications can make more efficient use of system
resources through code or configuration changes.

1) NCSA: On NCSAs 27,648 node Cray XE/XK
Blue Waters system, monitoring infrastructure subsys-
tems/components (collection, storage, alerting, job associa-
tion, visualization) are intentionally decoupled from one an-



other behind the scenes for a number of reasons. The primary
reason is to accommodate individual technology component
evolution that minimizes encumbering interdependencies.
However, it is still desirable to provide a user interface that
couples data from all infrastructure subsystems/components
for visualization and analysis of metrics, with options to
scope views to subsets of those subsystems/components (e.g.
all compute nodes, just compute nodes belonging to a job,
just Lnet routers belonging to home filesystem, etc), as well
as to scope the timeframe of interest.

In order to support this approach, NCSA actively monitors
all major components of the Blue Waters system in a
periodic and synchronized fashion in addition to passive
asynchronous collection of all pertinent log messages that
are generated on the system. Specifically, NCSA utilizes
a combination of system wide performance state data col-
lection and periodic probes (see Section IV-A2) of normal
subsystem activities to identify abnormal latencies in order
to aggregate sufficient information for performing productive
system-level and job-level analysis and problem source
determination.

Using this approach, viewing job-specific metrics is sim-
ply a matter of identifying the set of nodes assigned to a job
and aggregating data (metrics) of interest from those nodes
over the window of time the job was run. While starting data
exploration from a job of interest is described in the case in
this section, it is important to note that often when the system
is behaving irregularly as a whole, an offending/suspect job
must be identified without any hints. In such cases, data
exploration typically begins with a system aggregate view
of metrics plotted as a time series.

In the NCSA interface, individual points in time can be
moused over, drilled down upon, or pivoted from in order to
view the aggregate data point broken out into its constituent
components (all nodes contributing at the clicked-on point in
time). This methodology enables the user to quickly explore
an anomaly in a time series by breaking it down (via a mouse
click) to see if all nodes or just a few are contributing to
it. Using the mouse-over feature at this stage now enables
the user to see job information about contributor nodes of
interest for that time or time interval, as they will usually
stand out. Very frequently, contributors to an anomaly will
have the same user or jobid in the mouseover information
on the pivoted time series point. From there, another pivot
can be performed (via mouse click), to display just the job
specific data. Once a suspect job is identified, broader metric
analyses focused on that particular job can begin. An actual
example from the Blue Waters system follows.

A number of very large (22,000 nodes) job requests on
Blue Waters were running for a very small fraction (< 20%)
of their requested time, and then exiting in error due to an
out of memory condition caused by the application. This was
resolved by the user, but subsequent runs were monitored by
staff, a process which includes looking at metrics from jobs

in question. Though the jobs were completing successfully,
the staff had concerns over the jobs’ efficiency. A sample job
was selected for analysis and metrics revealed a couple of
potential issues which were relayed to the user. Screenshots
from the interface are shown in Fig. 16 and insights from
the data are described here.

First, it shows that the job was targeting I/O at the
home filesystem and not the performance-purposed scratch
filesystem. I/O load on the home filesystem was light in this
case, but the use of home for application I/O is discouraged
by system policy. Second, there is a question of what the
job is doing about 1/4 of the way into its runtime where its
average aggregate load drops sharply (Fig. 16 (B)). In the
same time frame, the job shows a small amount of network
transmission (Fig. 16 (C)) and small average write volume
to the home file system (Fig. 16 (E)). Note that the plots
in Figs. 16 (C) and (E) appear to have the same periodicity
and we can infer that the home filesystem writes are at least
partially generating the observed network traffic. Unix Load
(Fig. 16 (B)) that picks up after 10:00 roughly correlates with
network traffic, home filesystem write volume, and reduction
in node free memory. Also, the Unix Load correlates well
with cache misses (Fig. 16 (D)) and FLOPs (Fig. 16 (F)).
Put simply, it appears that the job is not doing much for a
long stretch of runtime.

The user agreed that something looked terribly wrong
after seeing the metric data, and took a closer look at the
application. A few days later, the user indicated that they
had solved the problem, realizing that they were using a
parallelized eigensolver for large symmetric matrices on a
very small matrix during one stage of their workflow which
greatly expanded the runtime.

A high level summary of our approach is: Identify
suspect job from aggregate metric exploration (this step
was bypassed in this case since support staff were already
shepherding a previously troubled workflow): Job was not
using any resource heavily for a large portion of its runtime.
Assessment by the support team: Able to quickly access job
metrics for the jobs in question. Interact with the user about
behavior and present data: The user, upon seeing the metric
plots showing unexpected anomalies, was able to quickly
identify the stage in the workflow where unexpected behav-
ior occurred, and subsequently discovered and corrected an
error in their job construction. The result was a realization
that the targeted scale was too large for the problem size;
the user reduced their job size to 8 thousand nodes and
significantly shortened their runtime in the process.

V. PRIORITIZING REQUIREMENTS

High performance computing systems are extremely elab-
orate, with multiple complex subsystems integrated and
working in concert toward one end - performing science.
As a user or member of the support team maintaining the
system, the ability to understand the status, utilization, and
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Figure 16. NCSA: job related aggregate datasets enable problem diagnosis.

performance of the system is key. Each vendor's solution
uses different technologies, so it is unfeasible to expect every
system to be capable of being monitored in exactly the same
way.

However, there are steps that vendors should take to en-
able easier and more productive monitoring of their systems.
First, and foremost, vendors should design systems where
the ability to monitor is a core capability of the system. In
many cases today, monitoring is added on as an afterthought,
often by the sites themselves, and vendors have not designed
the system to easily support this.

Systems to be monitored should to be designed with two
goals in mind: (1) Make the data that the system generates
readily available (customer can access) and (2) Make the
data that the customer can access usable (the customer can
interpret and present the data). Specific requirements to
enable these two goals are given in Table L.

The monitoring cases in this paper all had to incorporate
novel solutions to overcome difficulties in data availability
or usability. In addition, a number of cases targeted getting
fundamental information through active probing, non-Cray
data collection and assessment, and even bypassing some
Cray tools to get closer to the data streams.

Unfortunately, the current state of the data and data
streams makes it difficult for sites to share solutions or even
realize the full potential of their own solutions. Solutions
that do not use Cray-supported data paths and interfaces
risk breaking without warning when interfaces change. Cray
site personnel have reported that they cannot use some site-
developed diagnostics in their analysis because it does not
enable a common diagnostic procedure when interfacing
with Cray’s support organization.

It would be of particular value for Cray to make the data
available in officially supported ways and to provide the base
set of capabilities, as described in Table I. The base set of
capabilities is intended to support the general basic needs of
all sites. Some level of extensibility is needed to ensure that
reasonable site-specific customizations can be easily added
and supported in the same web portal. Sites could also pull
all of the data into their local monitoring solution and not
rely heavily on the Cray-provided base solution, particularly
for enacting more complex analysis. Note we cannot know
in advance all the analyses that will be of interest, nor do
we expect a vendor to provide all the analyses.

We recognize the difficulty for Cray and other vendors in
providing and supporting a capability that is designed to be
extensible. For example, the Node Health Checker (NHC) is
easily extensible, with its ability to run site-defined scripts.
However, the service database (SDB) is not; sites cannot add
tables to the SDB to track other characteristics of the system
outside of what Cray has configured in the SDB. The System
Monitoring Working Group wants part of its collaborative
interaction with vendors like Cray to be working jointly
to answer questions like these so that Cray can design a



Table T

PRIORITY REQUIREMENTS FOR MONITORING

Make the data available

Requirements

Notes

All data from all subsystems should be available through either APIs or in a format
that is consistent, well-documented, and easily accessible (i.e. not binary-only)

Enable access to raw data where feasible

The data should be available in customizable subsets and frequencies (up to some
limit defined by the vendor's technology)

Vendor to document possible performance impacts and allow
the customer to do cost-benefit analysis, rather than pre-
limiting data and/or rates

Enable exposure of the data to multiple consumers

e.g., users have access to information affecting their jobs, data
can be directed to multiple analysis and integration consumers

Make the data usable

Requirements

Notes

Provide a base set of capabilities that turn available information/data into actionable
insights in an easy-to-consume way, such as a web portal with alerting capabilities

Basic required information:

e Component status (e.g., compute nodes up/down/error
status)

o Subsystem performance/utilization information (e.g.,
filesystem metadata operations are at 37% of peak,
HSN is congested in these areas)

In support, vendor to provide some level of appropriate
collection, transport, and storage mechanisms

Available data should be well documented - what it describes, and, if inference is
needed to get a meaningful value, how to combine the individual data sources to
get gain meaningful understanding

e.g., multiple network counters needed to calculate congestion
on a port on the network

All subsystems across the system should be time synchronized, so that when
multiple data sources are being combined for inference, clock skew is not adversely

affecting the interpretation

solution that is supportable, but meets the real needs of its
customers in ways that it is not able to today.

VI. CONCLUSIONS

In this work, we have presented production examples of
monitoring, the capabilities developed in order to enable
them, and the insights gained from them. We have made
priority recommendations to improve the ability to monitor
systems. Understanding the potential benefits of monitoring
and the improvements needed to achieve them can drive
the changes necessary to enable more effective monitoring
insights for code developers, users, system administrators,
and system architects. Engagement of these stakeholders can
help drive vendors to design monitoring as core capability
like hardware, system software, and programming environ-
ments are today. Ultimately this can help ensure operational
performance and guide future procurements.
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