
Cray Next Generation Software Integration Options

Larry Kaplan, Kitrick Sheets, Dean Roe, Bill Sparks, Mike Ringenburg, Jeff Schutkoske

Cray Inc.

Seattle, WA

{lkaplan,kbs,roe,bsparks,miker,jjs}@cray.com

Abstract—The ability to integrate third-party software into

Cray's systems is a critical feature. This paper describes the

types of third-party software integrations being investigated

for Cray systems in the future. One of the key goals is to allow

a plethora of third-party integration options that take

advantage of all parts of the Cray technology stack. As a

position paper, it aims to be directional and provides a guide

through design and architecture decisions. It should not be

considered a plan of record. It is intended to enumerate the

possibilities but does not attempt to prioritize them or consider

additional effort to enable them, if any.

Keywords-system management, operating systems,

programming environment

I. INTRODUCTION

Cray systems designs are moving to include far more
flexibility than in the past, both in hardware and software.
One of the main goals of such flexibility is to allow Cray
systems to be easily integrated into a wider variety of
customer data centers. Another is to allow Cray systems to
be easily customized using site selected software
components at all levels of the software stack. This
document provides a description of the types and levels of
software integration that are possible with this design. It is
not intended to be a commitment to support all of these
integrations or make definite statements about the plan of
record, but rather it is an exploration of these possible
integrations to facilitate their discussion and ultimately a
selection and prioritization of the specific integration
capabilities.

II. SYSTEM CONTEXT

Cray systems provide a great amount of flexibility in
both hardware and software. The hardware infrastructure is
designed to flexibly support a variety of compute, external
network, and storage technologies. In addition, these
hardware components are moving to leverage standard, open
control interfaces to allow the system to be integrated into a
variety of different data center ecosystems. In the same vein,
Cray is providing management software that supports
common APIs for managing the hardware infrastructure.
These system management APIs are designed to support the
integration of Cray platforms into existing data centers and
support the wide range of diverse software ecosystems that
are emerging in the high-performance computing space.

Cray software is evolving to be highly flexible. Previous
Cray software stacks were very monolithic and tightly

integrated. While the tight integration provides some
benefits, it often made the integration of third-party software
difficult if not impossible, depending on the type of software.
The future software stack is being designed in a more
modular fashion to allow a larger number of viable
integration points, while still maintaining the benefits of tight
integration. The goal of this design is that the deployed
software stack is not dependent on the cabinet or node type,
nor are the integration points which are the subject of this
document.

Roughly speaking, Cray software can be divided into
three categories: Component Management, System (or
Infrastructure) Management, and Managed (user-facing)
Ecosystems. These categories and where they predominately
run are shown in Figure 1. Their purpose is described in
more detail next.

Figure 1: Software Categories

A. Component Management

Components here refer to individual hardware
components as seen by a management system. This can
include an entire node along with its associated controller,
though usually there are sub-components within a node’s
domain that each have their own management capabilities.
Some examples include the processor, the VRMs, and the
network interface core/card (NIC). A significant part of the
future strategy is to implement all component management
interfaces using the Distributed Management Task Force
(DMTF) Redfish® API. This is a developing industry
standard.

B. System Management

This software is responsible for the configuration,
operation, and monitoring of the entire system. It relies on
the component level interfaces to perform its job. Much of
the future system management software stack is derived
from the Rhine System Management software that is part of

CLE6. However, many of the other components are new.
Overall, System Management software makes use of
RESTful interfaces to interact between its components.

System management performs tasks such as booting,
dumping, logging, image management, configuration
management, network configuration, etc. In addition, it is
also responsible for managing anomalous behavior within
the system and alerting responsible data center personnel of
such events. In general, the role of the system management
environment is to provide services and interfaces to support
the efficient and effective use of the system infrastructure.
Finally, it is a fundamental responsibility of the system
management environment to provide secure authentication
and authorization for access to management services as well
as to ensure isolation of data transmissions between managed
software stacks deployed on the system.

Cray’s system management software is delivered as a set
of layers, from basic hardware control interfaces, through
basic infrastructure services, to full support for capability-
class CLE software environment deployment and

configuration. Each layer builds on the previous and exposes
APIs for the control and maintenance of the hardware and
software environment of the system.

Figure 2 shows some of the software components used
for system management, arranged in the layers described
above. The different Customer Platforms describe the
different types of customers and how they might choose to
integrate to (or “consume”) the system. A Hardware
Consumer is only interested in Cray providing the hardware
itself along with the component level management (level 1).
Such a customer would provide not only their own managed
ecosystems, but also their own management system. A
Dynamic Infrastructure Consumer is interested in using some
of the lower level management services provided by Cray
(level 2) but uses them to deploy their own managed
ecosystem and platform support tools. A Production Class
Consumer is looking for Cray to provide the production level
system management and platform support. They are also
more likely to use the Cray provided managed ecosystem
(CLE below) but that is not required.

Figure 2: System Management Components

C. Managed Software Ecosystems

The traditional Cray example of this level of software is
the Cray Linux Environment (CLE). CLE consists of the
operating system and services used on compute and service
nodes. CLE includes a rich set of supporting services, such
as distributed network file systems, programming
environment tools, and application launchers that are
deployed primarily on service nodes. These services support
the execution of user-originated application codes that are
launched onto compute nodes within the infrastructure. CLE
supports Cray’s capability-class application execution
framework for its traditional supercomputing customers.

While CLE is a critical managed framework for Cray
systems, CLE is not the only possible managed ecosystem in

the future. The software stack is designed to also support
existing and emerging HPC software frameworks. This is
made possible by better defining the interfaces between the
managed ecosystem and the management system. By having
well defined (and versioned) interfaces, other managed
ecosystems can be deployed. Some examples include the Tri-
Lab Operating System Stack (TOSS) and OpenHPC.
Deployment of complete analytics ecosystems could also be
done at this level (though these are currently layered on top
of CLE using containers).

III. MAJOR INTEGRATION POINTS

A major integration point is one in which Cray software
components are fully (or mostly) replaced with third party
components. Given the flexibility described above, this can

be done in several ways, including replacing one or more
layers of the Cray management stack, shown in Figure 2, or
deploying a managed software stack other than CLE.

Note that full use of Cray proprietary hardware requires
some Cray software components in the management and
managed stacks. These components are not required in
environments without such hardware.

A. System Management

A major integration at the management stack level
represents the replacement of most or all of Cray’s system
management components with third-party management
components. The future system management environment is
designed to enable the integration of the system into a wide
range of environments. For example, customers may wish to
leverage pure Cray hardware and integrate into their existing
datacenter. Other customers may want to leverage Cray’s at-
scale infrastructure management components but deploy
HPC stacks of their choosing. Finally, some of Cray’s
existing capability-class customers will want to take
advantage of the familiar Cray CLE software stack on the
Cray platform. For this reason, the future system
management environment is delivered as a set of layers with
increasing capabilities. Customers can select the level of
capabilities that best fits their use cases.

These levels include:

• Level 1: Hardware as a Service (HaaS)
At this level, the Cray platform is delivered with
open control interfaces for management of the
hardware components including network
infrastructure and fabric management. Redfish
interfaces allow customers to leverage their existing
data center management stacks through open and
standard APIs.

• Level 2: Infrastructure as a Service (IaaS)

At this level, the system management environment

adds services and APIs to support the delivery of

customer-supplied software content into the Cray

infrastructure. Services supporting image

management, scaled node bootstrap, and utility

storage management support efficient and flexible

use of the infrastructure to deliver the customer’s

chosen platform software stacks.

• Level 3: Platform as a Service (PaaS)

This level delivers the system management

infrastructure to support Cray’s capability-class

software stack, CLE. Included here are services to

allow customers to build bootstrap and supporting

images based on Cray-delivered software content,

efficient, at-scale configuration of the CLE

environment, advanced CLE reliability support

interfaces, advanced power monitoring and

management, advanced debugging and system

support capabilities, etc. This level of system

management support provides the features and

functions that are familiar to existing Cray XC

customers but also provides enhanced scalability,

resiliency, and security.

As a major integration, customers may choose to replace

most or all of the Cray provided management components at
and above the chosen level of integration. Partial
replacement is described later in section IV.A on minor
integrations for system management.

To support these diverse system usage models, the future
system management environment is designed to expose open
and familiar APIs that can be consumed based on the
administration model required by the customer. In the case of
pure hardware integration, Redfish interfaces are exposed to
enable the use of open and third-party management tools.

B. Managed Ecosystems

As noted above, the design and separation of the
management software stack from the managed ecosystems
allows one to more easily deploy managed software stacks
other than the standard Cray-supplied CLE environment.
Some customers may wish to leverage the Cray management
stack’s ability to deploy software at scale to stand up their
existing managed software stacks. Note that it is also
possible to add other co-resident managed ecosystems side-
by-side with CLE. At the infrastructure level, APIs to
support the management of bootable images, network
services, and utility storage allocation are provided. Sites
could plug their own managed content into this workflow
and leverage these basic infrastructure management controls.
It is envisioned that other ecosystems can be deployed on
bare metal with sufficient integration support from Cray,
likely in the form of a kernel module or two (for Cray
proprietary hardware) and the use of well-defined APIs to
communicate with the management system.

The future system management environment supports the
ability to flexibly deploy concurrent software stacks into
various portions of the system. In addition, on networks that
implement sufficient support, the network management
interfaces provide the ability to control various forms of
isolation, from VLAN-style access isolation to traffic class-
based performance isolation, allowing the software
environments to get the most from the network.

IV. MINOR INTEGRATION POINTS

A minor integration point is one in which Cray
components are only augmented or partially replaced. The
Cray provided software stack is still used for most of its
normal duties. Minor integration can happen both in the
System Management stack and in the Managed Ecosystems.

A. System Management

Minor integration of third party components in the
management stack can include managing the entire system
with only partial use of Cray-provided services. In this case,
a customer with an existing management environment may
want to leverage some parts of their existing approach to
ease the integration of Cray systems into their existing
environment. For example, they may wish to leverage Cray’s

capability for deployment of software at scale but wish to
manage their own content. In this case, the customer can use
their existing tooling for managing image content and
environment configuration but leverage Cray’s management
APIs for the deployment of this content into the system. This
would be similar to how a customer may leverage
infrastructure services such as Amazon Web Services (AWS)
or Microsoft Azure. Like these environments, Cray exposes
REST APIs that provide access to these infrastructure
management services. Some of these environments may also
have existing workflows in place to coordinate the
integration of systems into their datacenters. These
workflows can also be leveraged to manage Cray systems
using these APIs. Figure 2 shows some of the components
that can be individually replaced in layers 2 and 3 for this
type of integration. Additional system management
components can also be added. While the CLE environment
is designed to leverage level 3 management interfaces, these
level 3 interfaces are supported and documented such that
other software platforms could leverage these capabilities as
well.

1) Network Management
For Cray proprietary networks, network management

requires some components from Cray. These can potentially
be integrated into third party management systems even
when replacing Level 2 and above components.

For non-Cray networks, it is expected that vendor and
community components are used both by Cray software and
by potential customer integrations. For example, Intel Omni-
path network management is provided by Intel.

2) Storage Management

Storage management represents a special case of system
management software. It has some similarities to component
management software though is usually managing a fairly
large set of components as one subsystem. Storage devices
also often come with their own management software.

There are two distinct use cases for the storage
infrastructure in a Cray system. The first, referred to as
utility storage, is controlled and provisioned by the system
management infrastructure and provides supporting storage
for both management and managed software components
within the system. Examples of management use of utility
storage would be space consumed by bootstrap images,
configuration data, etc. Within a managed stack, utility
storage may be used for general operating system use, such
as temporary storage space and swap partitions for diskless
nodes, or other stateful consumers, such as database
applications used in support of the managed software stack.
Utility storage can be delivered in various forms. From an
attached storage array, to a scalable storage cluster such as
Ceph, or even via an NFS or other network file system
provided by the customer’s data center. This last example
represents the potential to integrate a customer’s storage
system into future Cray systems for use as utility storage. In
each of these cases, it is the role of the system management
environment to manage the consumption of this storage
within the system environment.

The second major storage use case within the system
environment is high-performance storage utilized directly by
the managed software environments and the applications that
run within them. The role of this high-performance storage is
to support the extreme storage throughput and capacity
requirements of capability-class codes running on Cray high-
end systems. High-performance storage is typically delivered
via a specialized appliance attached to the high-speed
networking infrastructure of the system. These appliances
form the base of the high-performance storage infrastructure.
In addition, the system may also be configured with
specialized capabilities for application-managed storage.

Unlike utility storage, primary storage appliances
typically contain their own management environment. This
management software supports basic facilities to configure
and provision file systems for use by the managed software
stack. It also provides capabilities that support the ongoing
management of the hardware within these devices. These
capabilities include various monitoring and alerting
capabilities designed to allow timely response to component
failures within the system. In addition, it is typical for these
appliances to provide telemetry streams that support
sophisticated performance monitoring and metering of the
storage infrastructure. Cray plans to continue the work
started in the Caribou project to provide clean integration of
storage telemetry with the broader system management
ecosystem. This provides the customer flexibility in
choosing their primary storage solution with the confidence
that its management and monitoring can be integrated into
the overall Cray system management.

In addition, it is possible to customize Cray storage
hardware with third-party file systems and access
methodologies. This can be done by using user-mode
containers (section V.B.1) or type-2 virtualization (section
V.B.2) on the storage server nodes to provision the desired
alternative software stack while continuing to use portions of
the Cray stack. Bare-metal or type-1 virtualization could also
be used but would likely constitute a major integration (as it
would completely replace this part of the Cray stack).

B. Managed Ecosystems

Minor integration in the managed ecosystems can take
many forms. There are many software pieces that make up a
managed ecosystem, many of them with their own well-
defined interfaces. In addition, the various container
technologies (both user-mode and kernel/hypervisor) can be
used to facilitate integration.

Figure 3 shows some of the primary components of CLE
which is Cray’s primary managed ecosystem. Each of the
boxes represents software that is supplied as part of CLE but
could be replaced with third party software providing similar
functionality. Standard interfaces are used to integrate each
of these components, though the exact interface varies
depending on the component. Some additional details on the
kinds of integrations possible at this level are provided
below. Two of the components, user-mode containers and
virtualization, provide functionality that can ease the burden
of some types of integrations and are described in more
detail in section V.B.

Figure 3: CLE Software Components (Managed Ecosystem)

C. Other Managed Integrations

As noted above, given the existence of well-defined
interfaces, it is possible to use third-party software in place
of Cray supplied software in many situations. One example
is MPI. In the future, some of the expected networks use the
industry defined libfabric interface. This allows other MPI
implementations to run on these networks so long as those
implementations use libfabric as their low-level network
interface. The same is true for other network clients such as
SHMEM. In addition, since Cray MPI is MPICH ABI
compatible, applications can easily use a different
compatible MPI without needing to modify their code.

Another integration example is the job launcher. While
Cray primarily supports ALPS and Slurm for traditional
HPC, and frameworks such as Mesos and Spark for
analytics, customers may prefer using alternate software for
application launch. Cray System Management enables
customers to modify managed node image content to provide
packages and configuration data tailored to their needs.
While a site-specific job launcher may provide basic
functionality, additional software features present on Cray
systems (and available by default via ALPS and Slurm)
could be utilized by extending the site job launcher to use
APIs provided by Cray.

Customers can already choose from among several third-
party workload managers (WLMs), such as SchedMD’s
SLURM, Altair’s PBSPro, and Adaptive Computing’s
MOAB, and may also choose to provide their own. These are
integrated using well-defined interfaces. The integration of
both third-party WLMs and launchers is tied directly to the
goals and options for unified orchestration discussed in
section V.C.

Another integration example is Mercury POSIX, an I/O
function shipping project. Cray systems utilize DVS for I/O
forwarding capabilities, but a site preferring Mercury POSIX
may include it in their node images in addition to DVS.
While Mercury POSIX should integrate easily for standalone
file system mount points, customers would be required to
utilize Cray APIs if integration with services like DataWarp
and the System Management image distribution is desired. In
addition, integration with the Cray Dynamic RDMA
Credentials (DRC) API would be required to enable shared
network access. Note that DVS is a fundamental part of CLE
and its network-based root filesystem service (netroot). As
such, it cannot be replaced when running CLE, but that does
not prevent other solutions such as Mercury from being used
for user level I/O to the primary or other application level
file systems.

The Cray Programming Environment (PE) provides
compilers, libraries, and tools to support application
development and improve application performance and
programmability. Cray PE generally supports building
libraries for three compilers per target architecture. For Intel
processors, for example, Cray supports the Cray Compiling
Environment (CCE), GCC, and Intel compilers. For ARM
Cray PE supports CCE, GCC, and ARM Clang/Flang. In this
context, support for third party compilers means building
Cray developed libraries from the Message Passing Toolkit
(MPT) and LibSci, some third-party libraries (HDF,
NetCDF, and FFTW), and interoperability with the Cray
performance tools (CrayPat and Apprentice2). While Cray
PE provides a significant number of Cray and third-party
packages, customers may wish to augment those capabilities.
Additional third-party programming environment packages
can be provisioned by extending node image content with
Cray System Management tools as previously described. In

addition, Cray provides APIs, many based on established
standards, to enable access to both processor and network
registers and performance counters, which allows for
integration with additional performance analysis software.

Another significant integration example is that of open-
source software frameworks for Analytics and AI/Deep
Learning. Cray provides a set of commonly used frameworks
(e.g., Spark, the PyData ecosystem, and TensorFlow)
through Docker-based container images, which are imported
into Shifter and/or Singularity. These components run using
the user-mode container functionality provided by CLE
(discussed below) but could also be plugged into alternate
site-supplied container runtimes, provided they support
importing standard image formats. Micro-services-based
container runtimes also make it easy for sites to extend or
replace portions of the Cray-supplied analytics and AI stack.
In addition, Cray’s preferred vehicle for providing
differentiating capabilities in Analytics and AI is via
software plugins. Many popular frameworks support this
model, including Spark’s pluggable shuffle manager and
TensorFlow’s user-defined operations. A software plugin
delivery model decouples Cray’s (or customer’s) code from
the core framework code, making it easier to plug
optimizations into user-supplied versions of frameworks, or
potentially into entirely new frameworks.

V. EXECUTION OBJECTS, ISOLATION, AND

ORCHESTRATION

The integration possibilities described above can be
facilitated through the use of appropriate software
technologies for the packaging, isolation, and orchestration
of the various pieces of software. This section describes
some of those technologies and their applicability.

A. Containers and Virtualization for Major Integrations

and System Management

Virtualization can help ease the deployment of managed
ecosystems and provide the ability to make the most of the
computational and communication capacity of nodes in the
system. There are two primary types of virtualization that are
relevant here, with variants within each type.

The first is network virtualization or Ethernet-style
VLANs, where network communication is isolated to only
those endpoints (or nodes) that have been attached to a
particular network segment (e.g., VLAN ID). This not only
enables communication security between network segments,
but it also enables the ability to manage traffic priorities and
quality of service within the network. This provides the
ability to give a third-party ecosystem the appearance of
running on a “private” set of hardware resources, including
the network, from the point of view of security and
performance guarantees, even though the ecosystem is being
deployed on a shared network resource. Depending on the
network implementation, this feature could prevent network
packets from ever reaching a NIC that is not configured as
part of a particular VLAN, providing solid security even
when running untrusted third-party managed ecosystems.

The second important type of virtualization is node (or
server) virtualization, which allows the ability to stand up

multiple virtual nodes, each running a distinct software OS
and runtime environment, on a single physical node within
the system. Server virtualization allows the complete
isolation of runtime environments while allowing full use of
a node’s hardware resources. It differs from user mode
containers in that alternate operating system kernels can be
deployed on these virtual nodes with this technology.
Additional use cases for node virtualization are described in
section V.B.2).

Server and network virtualization are typically used in
concert to connect services or other supporting runtime
content with a broader software ecosystem. Server
virtualization allows for use of shared node resources, while
network virtualization provides secure separation of
communication traffic. This combination of capabilities is
common within existing cloud environments. Integration of
these capabilities for future Cray systems supports a much
more flexible usage model than provided previously.

1) Micro-services, Virtualization, and Containers for

System Management
The system management services are delivered through a

set of well-defined and documented APIs. These APIs define
the supported interfaces for each service. Clearly defining
the capabilities of individual services through well-defined
interfaces provides the basis for building an extensible
micro-service architecture. Building services with this
approach provides a significant amount of flexibility in the
support of a resilient, scalable, and extensible system
management infrastructure.

With service interfaces cleanly separated, it is possible to
package, deliver, and instantiate these services
independently. This modular approach to service delivery
has a significant impact on the ability to build a scalable and
resilient system management infrastructure. Leverage of
container technologies allows service updates to be applied
efficiently with minimal disruption to the active management
service infrastructure, thereby significantly increasing system
availability.

Virtualization is another key technology that is leveraged
by the future system management environment to increase
the flexibility of the infrastructure. Virtualization allows
management services to be deployed in environments that
may be modest in size, where dedicated management server
hardware is not warranted or in environments where a
customer may want to leverage existing servers in their data
center to perform certain management functions for their
system.

B. Containers and Virtualization for Minor Integrations

Minor integrations use these technologies somewhat
differently in that parts of the Cray stack are still present.
These cases are now described in more detail.

1) User-mode Containers

Containers have become one of the most interesting and
versatile alternatives to virtual machines for encapsulating
applications. Containers enable the user to run an application
by packaging not just the application, but also all of its
dependencies and configurations. By encapsulating the
application and its dependencies, containers can execute on a

wide variety of software platforms. The Docker technology,
now synonymous with containers, simplifies the deployment
and management of containers on a variety of platforms and
offers a user interface to facilitate DevOps in the enterprise
environment.

What is needed by the HPC system managers is a secure
way to allow containerization that would also allow access to
the advanced networking and other hardware on their
systems. To accommodate the HPC container use case, Cray
systems deploy other execution engines better suited to
scalable container execution. These scalable container
execution engines integrate with the system orchestration
and schedulers to provide the user with scale-out container
and resource management that addresses the needs of the
HPC and scientific user. Singularity1 is an example of this.

Given a wide range of scientific communities, each with
varying needs, Cray supports both types of user
communities. It provides a standard environment that
addresses the needs of the enterprise users and applications,
but also provides support for the science community. With
containers, even the most niche software could be installed,
and further, the user is empowered to do this without
administrative overhead.

2) Node (Server) Virtualization

If more than user-mode software is needed to support a
particular integration, virtualization may be used. This
technology allows kernels other than those supplied by Cray
to be run on the nodes. There are two main types of
virtualization: type-1 utilizes native bare-metal hypervisors
(e.g. Xen) and type-2 utilizes hosted hypervisors (e.g.
VirtualBox). While alternate OSs can also be run on bare
metal, doing so with virtualization allows some portions of
the Cray software stack to still be utilized and can potentially
ease some of the integration burdens.

As an example, KVM is a popular virtualization product
integrated into the Linux kernel. Turning on KVM does have
an effect on the resulting kernel, and so has some
implications, but it is a customer decision on whether to use
virtualization enabled kernels or not.

Type-1 environments do not have access to most features
provided by the CLE but can support alternate OS kernels
that completely provide the customer’s desired functionality.
Type-2 environments can rely on CLE for the host
functionality and therefore do have access to CLE features,
but also allow the addition of other features including those
supported by the guest kernel.

C. Orchestration and Scheduling

Orchestration provides central management of resources,
scheduling, workflow management, and interactions of
various processes running across heterogeneous systems.
The goal of orchestration is not just to schedule and execute
tasks, such as long running services or parallel jobs, it is also
to provide mechanisms for monitoring and to offer
management features to these tasks, such as elastic scaling,
failover, and service control (stop, start, status).

1 http://singularity.lbl.gov

One important driver of complexity in this area is the
hardware and workload heterogeneity that is commonplace
today. Cray systems are able to execute all types of
workflows and workloads, from general science, HPC,
analytics and long running services, and ad hoc applications.
These workflows require information on resources which
may be external to the framework in which the workloads
are running. In support of this breadth of workloads, Cray
system management must deploy different schedulers and
resource management systems, and as such provide access to
system information, enabling frameworks to allocate and
monitor system resources.

Figure 4: Separately Managed Frameworks

Considering the diversity of workloads, resource

managers, and site preferences, Cray systems must
accommodate a wide variety of vendor orchestration and
scheduling solutions. Using vendor defined APIs and plugin
infrastructures, Cray provides integration between different
schedulers, providing a job execution framework which is
able to provide HPC and alternate workload management.
This can be achieved by supporting different deployment
paradigms, from bootstrapping individual scheduler
frameworks on dedicated resources (Figure 4), to supporting
multiple co-existing scheduler frameworks across the entire
system (Figure 5), where the system executes peer
schedulers bound to a global concurrent state. Cray currently
supports traditional workload managers such as SchedMD
Slurm and Adaptive Computing Moab/Torque plus analytics
frameworks such as Mesos and Yarn, though they currently
operate independently. Future possibilities include
Kubernetes and Grid Engine and integration and
coordination of these schedulers and frameworks is also
being investigated. Note that neither of these lists are
exhaustive.

Figure 5: Coexisting Frameworks

By supporting multiple scheduler frameworks and

workflows, from traditional HPC batch syntax, to Big Data
job service specification, language and APIs become
particularly important because data analysis applications are
often written in rapid prototyping/scripting languages such as

Python, Java, Scala, and R, which are not typical HPC
programming languages. Most of big data schedulers can
execute jobs in all of the major programming languages.
However, with big data scheduler APIs, some languages are
favored over others. Because many data analysis applications
are often written with API calls to the scheduler itself (i.e.
golang), language support can be very important to data
analysis applications. Future Cray systems accommodate
these different user models by supporting a variety of
language interfaces and interpreters.

VI. CONCLUSION

This document has provided a description of the types
and levels of software integration that are possible with the
future software design. It provides a very high level of
flexibility, both in supported hardware and software and in
the ability to integrate third-party software into the system.
Table 1 gives a summary of some of the integration
possibilities and relevant APIs.

Table 1: Example Integrations and APIs

Producer Interface Description Example APIs Consumer

PaaS,

Node OS

Kernel Console Syslog,

REST

HaaS, IaaS, PaaS, and OS Debug

HaaS, IaaS Status Events

(HW/SW)

REST,

Msg Bus

IaaS, PaaS, and related services

HaaS HW Errors REST, Redfish HaaS, IaaS, and PaaS

HaaS Power Mgmt Data Redfish, PAPI IaaS, PaaS, ProgEnv

HaaS HW Inventory REST IaaS, PaaS

Fabric Mgmt Network Topology REST IaaS, PaaS

ALPS Interface Layer (BASIL) Xml WLM

PaaS Image Mgmt and Repository Interface REST PaaS, Boot

PaaS Image Configuration REST PaaS

PaaS Boot Interface PXE IaaS, PaaS

IaaS, PaaS DataWarp PaaS, Services

IaaS Network Access libfabric PaaS

Analytics

Frameworks

Pluggable Enhancements TensorFlow, Spark Shuffle Applications

PaaS Container Runtime Docker, Shifter, Singularity Analytics/Open Source/Customer

Software

	I. Introduction
	II. System Context
	A. Component Management
	B. System Management
	C. Managed Software Ecosystems

	III. Major Integration Points
	A. System Management
	B. Managed Ecosystems

	IV. Minor Integration Points
	A. System Management
	1) Network Management
	2) Storage Management

	B. Managed Ecosystems
	C. Other Managed Integrations

	V. Execution Objects, Isolation, and Orchestration
	A. Containers and Virtualization for Major Integrations and System Management
	1) Micro-services, Virtualization, and Containers for System Management

	B. Containers and Virtualization for Minor Integrations
	1) User-mode Containers
	2) Node (Server) Virtualization

	C. Orchestration and Scheduling

	VI. Conclusion

