

CUG 2018 Proceedings 1 of 9

OpenACC and CUDA Unified Memory

Sebastien Deldon, James Beyer, Douglas Miles

PGI / NVIDIA

ABSTRACT: CUDA Unified Memory (UM) simplifies application development for GPU-

accelerated systems by presenting a single memory address space to both CPUs and GPUs.

Data allocated in UM can be read or written through the same virtual address by code

running on either a CPU or an NVIDIA GPU. OpenACC is a directive-based parallel

programming model for both traditional shared-memory SMP systems and heterogeneous

GPU-accelerated systems. It includes directives for managing data movement between

levels of a memory hierarchy, particularly between host and device memory on GPU-

accelerated systems. OpenACC data directives can be safely ignored or even omitted on a

shared-memory system, allowing programmers to focus on exposing and expressing

parallelism rather than on underlying system details. This paper describes an

implementation of OpenACC built on top of CUDA Unified Memory that provides

productivity benefits for porting and optimization of Fortran, C and C++ programs to

GPU-accelerated Cray systems.

KEYWORDS: Compiler, Accelerator, Multicore, GPU, Parallelization, Vectorization,

OpenACC, Unified Memory, CUDA

1. Introduction

The OpenACC directive-based parallel programming

model was designed to support migration of applications to

GPU-accelerated and heterogeneous parallel HPC systems

with several goals in mind:

• Higher programmer productivity compared to use

of explicit models like CUDA and OpenCL

• Application source code instrumented with

OpenACC directives should remain portable to

any system with a standard Fortran/C/C++

compiler

• OpenACC applications should be performance

portable across various types of parallel systems

– multicore CPUs, heterogeneous CPU+GPU,

and manycore processors

OpenACC enables development of code that is

massively parallel and dynamically scalable at the node

level to maximize performance on GPU-accelerated

systems, and which can be readily compiled for parallel

execution on multicore or manycore processors as well.

One of the key features pioneered by OpenACC is

directive-based data management, which allows the

programmer to explicitly manage movement of data

objects between host and accelerator device memory to

support execution of parallel compute kernels on the

accelerator [OACC15]. These directives were designed

from the outset so that they could be safely ignored on a

multicore CPU-based shared-memory system, enabling

OpenACC parallel regions to be compiled for parallel

execution on all cores of the system with no data movement

overhead.

OpenACC has largely achieved the goals outlined

above [HPCW17], and in the past year 3 of the 5 most

widely-used HPC applications have adopted OpenACC;.

Gaussian and ANSYS/Fluent have issued production

releases using OpenACC for GPU acceleration, and the

developers of VASP have disclosed plans to do so.

Experience with these codes and many other applications,

mini-apps and benchmarks has shown that explicit

management of data between host and device memory is

one of the most time-consuming and error prone aspects of

OpenACC programming [GTC18]. While the resulting

code is more portable, elegant and readable than

comparable CUDA or OpenCL, the data management task

remains a daunting aspect of porting large production

CUG 2018 Proceedings 2 of 9

applications using OpenACC, especially those that make

extensive use of aggregate data types.

Over the past few years, PGI has added support for

OpenACC targeting NVIDIA GPUs leveraging CUDA

Unified Memory [UM13]. When compiling an OpenACC

program in this mode, the PGI Fortran, C and C++

compilers intercept all visible and compiler-generated

malloc/free, new/delete and allocate/deallocate calls or

statements and place the resulting allocatables in CUDA

Unified Memory. Implicitly allocated data, for example

Fortran automatic arrays, are also placed by default in

Unified Memory.

The benefit of compiling in this mode is that

programmer-directed OpenACC data management is no

longer necessary for allocatable data. The effect is to allow

programmers to port and write GPU-accelerated OpenACC

programs focusing only on parallelism, allowing the

CUDA Unified Memory manager to handle most data

movement implicitly. Data directives are still required for

global, static or stack data, but for many modern

applications this is minimal.

Using OpenACC with CUDA Unified Memory on

standard benchmarks and applications has generally

delivered good performance relative to user-managed data

movement, as demonstrated by results in the sections

below. The sections that follow give an overview of the

implementation, use, results, limitations and future

directions for support of OpenACC and CUDA Unified

Memory.

2. Implementation

2.1 CUDA Unified Memory

Unified Memory support was added to the CUDA

programming model in the CUDA 6.0 Toolkit. At that

time, it targeted the Kepler GPU architecture using a pure

software approach. Data allocated in Unified Memory

using the cudaMallocManaged API was migrated en masse

to device memory upon kernel launch, and any CPU access

of that data would trigger a data transfer from the device

back to host memory [GTC16].

While useful for prototyping and development, this

scheme had several limitations when running on an

NVIDIA Kepler GPU. The aggregate size of data in

Unified Memory was limited to the GPU device physical

memory size, and any attempt at simultaneous access to

unified data from the CPU while in use by a GPU kernel

caused programs to abort with a segmentation fault. In

addition, without hardware support, the pure software

implementation on Kepler could result in significant

overheads in some cases.

The NVIDIA Pascal P100 GPU architecture improved

Unified Memory functionality with the addition of 49-bit

virtual addressing and use of a dedicated hardware page

migration engine [NV16]. Unified Memory size on Pascal

and the latest Volta V100 GPUs is not limited to GPU

physical memory size, and concurrent access to data in

Unified Memory between CPU and GPU is fully

supported.

As noted earlier, data is allocated in Unified Memory

using the cudaMallocManaged API call. An address

returned by this API call can be referenced either by CPU

Code or GPU kernels. A touch of ‘managed’ data triggers

data migration if data is not available in the requested

memory.

Migration of data between CPU and GPU memories

involves data transfer over PCI Express or NVLINK, and

occurs in blocks that may be a single page or multiple

pages. The algorithms for how much data to migrate and

when to migrate it from memory to memory are being

continually tuned in each CUDA release. These transfers

are relatively slow compared to direct accesses to local

memory, so optimizing data placement and movement is

critical to achieving good performance. Also, keeping the

CPU/GPU page table current is time consuming; updating

the page table after a page fault can take tens of μs per page,

potentially stalling execution.

Some programs may incur a performance penalty

when using CUDA Unified Memory versus use of explicit

OpenACC directive-based data transfers. The latter are

often carefully placed to ensure data is present in device

memory before it’s needed, and to minimize the number of

times data moves between memories. The API calls

cudaMemAdvise and cudaMemPrefetchAsync have been

introduced to enable the programmer to give hints to the

Unified Memory manager and improve UM performance.

cudaMemAdvise enables specifying placement and

access policies on regions of managed data. For example,

when data is known to be read-only on the GPU, a ‘read

mostly’ policy can be set for that data; those pages are then

duplicated in GPU memory without being evicted from the

CPU page table, thus avoiding needless data migration.

Setting a ‘preferred location’ policy for data in Unified

Memory can minimize page migrations for which the

overhead exceeds the locality benefit, minimizing page

thrashing. cudaMemPrefetchAsync prefetches an area of

managed memory and can lower the cost of data movement

and page table updates by overlapping these with either

CPU or GPU-side computation [NV18].

CUG 2018 Proceedings 3 of 9

2.2 Data Management in OpenACC

OpenACC is designed to support migration of

applications to GPU-accelerated and heterogeneous

parallel HPC systems. The model assumes that serial code

is executed by a fast host CPU core and parallel code is

executed on an accelerator. The model doesn’t make any

assumption of the accelerator type, which could be a

discrete accelerator or the host itself operating in parallel

or accelerator mode. The model allows for accelerator

devices with a separate memory sub-system, but doesn’t

assume separated memories between host and accelerator.

In this context, two main types of directives are defined by

the OpenACC programing model: Compute Directives and

Data Directives.

Compute directives are used to expose parallelism, to

specify regions of code suitable for an accelerator, and to

provide the compiler with hints on how parallelism can be

efficiently mapped to a given accelerator. The two main

compute directives are parallel and kernels. The

parallel directive initiates parallel execution on an

accelerator, and typically marks a region that includes one

or more loops annotated with parallel loop directives. The

kernels directive denotes a region of code the compiler

should process by searching for parallelizable loops, either

through auto-parallelization and auto-offloading

techniques, or through parallelization and offloading of

parallel loops explicitly annotated with OpenACC loop

directives. Each loop nest in a kernels region is

typically launched as an individual GPU kernel, whereas a

parallel region results in a single kernel launch on a

GPU accelerator.

OpenACC data directives are used to specify and

optimize data transfers between host and accelerator to

guarantee correct execution when their memories are

separated. A data region can be either structured, meaning

it starts and ends in the same syntactic block of code, or

unstructured, starting in a given routine (C++ constructor

for instance) and ending in a different routine (C++

destructor). Data region clauses (copy, copyin, copyout)

are used to reserve memory on the accelerator device and

define data movement between CPU and GPU memories:

• The copy clause specifies that data should be

copied at region entry from host to device

memory and copied back from device to host

memory at the end of the region

• The copyin clause specifies that data should be

copied at region entry from host to device

memory, but need not be copied back at the end

of the region

• The copyout clause specifies that data need not

be copied to the device at region entry, but should

be copied from device memory to host memory at

the end of the region

Note that explicit data directives are not always

required even when the host and accelerator use different

physical memory spaces. The compiler, for simple access

patterns within loops, can often determine which data

objects are used and the amount of data to transfer. In these

cases, the compiler will either automatically generate data

transfers for correct execution of a given compute region

or generate a compile-time error if it is unable to do so.

void initA(int *A, int N)
{
int i;
#pragma acc parallel loop
 for (i=100; i<N; i++)
 A[i] = -i;
}

Example 1: parallel loop without data directives

When compiling the loop above, the PGI OpenACC

compiler determines that array ‘A’ is write-only and that

only elements 100 to N-1 of ‘A’ are written. In such cases

the user is not required to specify how to copy data; the

compiler will generate an implicit copyout directive to

copy N-100 elements from the GPU memory location

starting at A[100] back to the same elements in the host

copy of ‘A’. You can see this by compiling the loop in

Example 1 using the -Minfo option and targeting NVIDIA

Tesla GPUs:

% pgcc -ta=tesla -Minfo impex1.c -c
initA:
 4, Accelerator kernel generated
 Generating Tesla code
 5, #pragma acc loop gang, vector(128)
 /* blockIdx.x threadIdx.x */
 4, Generating implicit copyout(A[100:N-100])

In some cases the compiler may be unable to

determine the amount of data to transfer. Consider this

example:

int N;

void initA(int *A)
{
int i;
#pragma acc parallel loop
 for (i=100; i<N; i++)
 A[i] = -i;
}

Example 2: parallel loop, N global

N is defined as a global variable. The compiler can’t

guarantee that it won’t change during kernel execution, and

CUG 2018 Proceedings 4 of 9

thus won’t be able to generate an implicit data transfer:

% pgcc -ta=tesla -Minfo impex2.c -c
PGC-S-0155-Compiler failed to translate accelerator
region (see -Minfo messages): Could not find
allocated-variable index for symbol (impex2.c: 6)
initA:
 6, Accelerator kernel generated
 Generating Tesla code
 7, #pragma acc loop gang, vector(128)
 /* blockIdx.x threadIdx.x */
 7, Accelerator restriction: size of the GPU
copy of A is unknown
PGC-F-0704-Compilation aborted due to previous
errors. (impex2.c)

The scope for generating automatic implicit data

transfers is limited to compute regions. Consequently, in

many cases using explicit data transfer directives can

reduce data movement between host and device memories.

In example 3, an implicit copyout of A[100:N-100] will be

generated, followed by an implicit copyin of A[0: N]:

void initA(int *A, int*B, int N, int M)
{
int i;
/* implicit copy(A[100:N-100]) */
#pragma acc parallel loop
 for (i=100; i<N; i++)
 A[i] = A[i]+i;
/* implicit copyin(A[0:N]) */
#pragma acc parallel loop
 for (i=0; i<N; i++)
 B[i] = A[i];
}

Example 3: Redundant OpenACC data movement

Creating a data region that encompasses the two

compute regions as shown in Example 4 will eliminate

useless data movement between the two compute regions.

void initA(int *A, int*B, int N, int M)
{
int i;
#pragma acc copy(A[0:N])
{
#pragma acc parallel loop
 for (i=100; i<N; i++)
 A[i] = A[i]+i;
#pragma acc parallel loop
 for (i=0; i<N; i++)
 B[i] = A[i];
}
}

Example 4: Reducing data transfer using data regions

As we’ve shown here, explicit OpenACC data

directives are required when the compiler is unable to

determine the size of data to transfer, and OpenACC data

region directives minimize data transfers between host and

device memories.

When porting codes that use deeply nested aggregate

data types, adding data directives to specify which

members to transfer and keeping their respective live

ranges current can be a tedious programming task. In

addition, a compute region might access data through

multiple indirect references via pointer members of the

data structure. Consider the following aggregate data type

definitions:

struct S1 {
 double* z;
} ;

struct S0 {
 int x;
 struct S1 *B;
} ;

As shown in the following code fragment operating on

an array A of type S0, a compute region could access

*A[i].B->z:

#pragma acc parallel loop
 for (i=99; i<899; i++) {
 A[i].x = -i;
 *A[i].B->z = (double)-i;
 }

This requires copying A[99:800], then copying each

member B of A[i], and then copying each z member of

A[i].B. This is known as the ‘deep copy’ problem.

[OACC14].

Defining how to copy complicated data structures with

succinct directive syntax by adding ‘policies’ to the

definition of aggregates is in discussion by the OpenACC

committee and is expected in an upcoming version 3.0 of

the OpenACC specification. Today, using features in

OpenACC 2.6, the programmer must manually copy data

by recursively looping through each non-scalar member of

an aggregate as shown in the following code:

#pragma acc enter data copyin(A[99:800])
 for (i=99; i<899; i++) {
#pragma acc enter data copyin(A[i].B[0:1])
#pragma acc enter data copyin(A[i].B->z[0:1])
 }

Updating data on the host requires use of a similar loop

structure. It is the responsibility of the programmer to

mentally keep track of the live ranges of variables needed

in GPU memory. Doing so can be difficult, makes the

resulting code harder to maintain, and can be the source of

errors whenever a pointer member is assigned and its target

is already present or partially present in GPU memory.

CUG 2018 Proceedings 5 of 9

2.3 OpenACC and Unified Memory

The OpenACC specification states that “For a shared-

memory device, data is accessible to the local thread and to

the accelerator. Such data is available to the accelerator for

the lifetime of the variable” [OACC17]. When an

OpenACC program is compiled targeting a CPU-based

SMP system, where there is no need for data copying at

compute region boundaries, it is legal for the compiler to

ignore any data directives. In fact, because of the statement

above in the OpenACC specification, it is legal for the

programmer to leave them out entirely. On such a system,

OpenACC data management and the difficult task of

managing deep aggregate data structures is no longer

necessary.

The introduction of CUDA Unified Memory as

outlined above in section 2.1 makes this same approach

possible on NVIDIA GPU accelerators for allocatable data.

PGI OpenACC compilers added this as a production

feature in PGI 17.4, with some performance improvements

in PGI 17.7 (addition of a host-side pool allocator) and PGI

17.10 (pool allocator interoperability with CUDA Fortran).

When compiling OpenACC for CUDA Unified

Memory, the compiler replaces calls to malloc/free in C,

operators new/delete in C++ and allocate/deallocate

statements in Fortran with cuMemMallocManaged and

cuMemFree API calls. Any dynamically allocated data

visible to the compiler will be allocated in CUDA Unified

Memory and a single address will be used to reference data

by the CPU and the GPU.

For program units compiled in this mode, the compiler

assumes that any allocatable data object referenced in a

Compute Region resides by default in Unified Memory. No

error messages will be reported by the compiler in cases

where the data size can’t be determined. It will generate

code assuming the data will be migrated on demand to

GPU memory by the CUDA Unified Memory manager.

At execution time, the OpenACC runtime support

library performs a dynamic check for each data object

referenced in a compute kernel:

• If the data object is in unified memory, the host

address is used in the compute region

• If the data object is not in unified memory but is

present in device memory, the corresponding device

address is used in the compute region

• If the data object is not in unified memory and is not

present in device memory, an error is emitted at

runtime

A reference in a GPU kernel to a host address that is

not in CUDA Unified Memory will lead to an execution

error. This situation can happen when a member of an

allocatable struct is a pointer that points to a global variable

or a stack variable; in the current implementation of

CUDA, global, static and stack variables can’t be placed in

Unified Memory.

3. Using OpenACC and Unified Memory

3.1 The -ta=tesla:managed compiler option

OpenACC for CUDA Unified Memory is enabled by

the compile and link-time option -ta=tesla:managed. When

this option is used at compile-time, the PGI compilers will

intercept and replace all visible or compiler-generated

allocates in header files or source files with managed data

allocations. When it is used at link-time, it sets the

OpenACC runtime libraries to check dynamically whether

data is allocated in Unified Memory.

For data in Unified Memory, the runtime routines

which implement data movement will essentially do

nothing, leaving all data movement to the Unified Memory

manager. This has the effect that any data directives in the

source code which operate on data objects in Unified

Memory are effectively ignored, even though the runtime

calls to implement them are still generated by the compiler.

This allows mixing of Unified Memory managed data

movement and OpenACC programmer directive-based

data movement in the same program, which enables use of

Unified Memory for all allocatable data in a program while

leaving the task of managing global, static or stack data to

the programmer.

3.2 Host-side Unified Memory Pool Allocator

Unified Memory managed data allocations allocate

host pinned memory as well as device memory and are

more expensive than a simple malloc() call. Programs that

perform many small data allocations, or which repeatedly

allocate and deallocate memory between GPU kernel

invocations, can see substantial overhead when these

allocations become managed.

One such example is the SPEC ACCEL 1.2

benchmark 356.sp, which in the initial implementation

showed a factor of three slowdown when compiled and run

with -ta=tesla:managed compared to OpenACC user-

directed data management. This slowdown was traced to a

Fortran procedure with automatic array dummy arguments,

which are dimensioned by an input parameter and must be

allocated and deallocated at entry to and exit from the

procedure. The procedure included an OpenACC compute

region that operated on these arrays, and as a result the

newly allocated arrays had to be moved to GPU memory at

every invocation of the procedure, resulting in spurious

data movement between host and device memory.

CUG 2018 Proceedings 6 of 9

Chart 1: OpenACC Unified Memory Pool Allocator

To address such cases, the PGI compiler enables a

host-side Unified Memory pool allocator by default

whenever the -ta=tesla:managed option is used. The

OpenACC runtime allocates a large pool of managed

memory at program startup, and all subsequent allocations

are performed out of that pool. In cases like 356.sp, the

pool itself tends to migrate to GPU memory and remains

there unless the data is referenced on the host. This causes

the reallocations to occur from the pool of memory resident

on the GPU, significantly reducing overhead. As you can

see in Chart 1, performance very close to that obtained with

directive-based data movement is regained when the pool

allocator is enabled.

The pool allocator is enabled by default with Unified

Memory, but it can be disabled or its behavior modified

using environment variables. Parameters that can be

modified at runtime by programmers include the size of the

pool (default is 1GB), the maximum and minimum size of

allocations that will be sourced from the pool, and the

percentage of total GPU device memory the pool can

occupy. [PGI18]

4. Benchmarks Performance

To measure the efficiency of UM-based OpenACC

data movement versus user-directed data movement on Piz

Daint [CSCS17], we compiled and ran the SPEC ACCEL

1.2 Benchmarks with and without the -ta=tesla:managed

option. Each benchmark was compiled with PGI 18.4 and

run in the following configurations:

• P100 Directives – OpenACC targeting P100 using

-ta=tesla:cc60 at compile time

• P100 UM – OpenACC targeting P100 in unified

mode using -ta=tesla:cc60,managed at compile time,

disabling the pool allocator by setting the

PGI_ACC_POOL_ALLOC environment variable to

zero

• P100 UM Pool – OpenACC targeting P100 in

unified mode using -ta=tesla:cc60,managed at

compile time, pool allocator enabled by default

In Chart 2 the results are normalized to the

performance of each benchmark using OpenACC

directive-based data movement (P100 Directives) which is

always 100%. The P100 UM performance is listed as a

percentage of P100 Directives performance.

Chart 2: SPEC ACCEL 1.2 Benchmarks on Piz Daint

The results are marked as “estimates” per SPEC rules,

which require this designation unless the results are run in

the SPEC harness according to SPEC run rules. On

average, when the default pool allocator is enabled, the

performance of the Unified Memory versions is 95% of

performance using explicit directive-based data

movement.

To test OpenACC for Unified Memory performance

on multiple nodes and GPUs, we compiled and executed

the Cloverleaf Mini-App [CUG13] on 1 to 8 MPI ranks on

both Piz Daint with P100s and a DGX-1V with Volta V100

GPUs. The results are shown in Chart 3, which displays

time in seconds for each run in three different

configurations.

• Base – Out-of-the box OpenACC version of

Cloverleaf as downloaded from the UK-Mac website

• Base-Managed – Base version compiled with

-ta=tesla:managed to place all allocatable data in

CUDA Unified Memory, implicitly enabling use of

CUDA Aware MPI and GPUDirect with no code

modifications

0

20

40

60

80

100

120

P100 Directives P100 UM P100 UM Pool

356.sp Time in Seconds

0%

20%

40%

60%

80%

100%

120%

SPEC ACCEL 1.2 Benchmarks
Estimates

P100 P100 UM P100 UM Pool

CUG 2018 Proceedings 7 of 9

• CA – Base version modified to use OpenACC

host_data regions around MPI calls, explicitly

enabling use of CUDA Aware MPI and GPUDirect

The initial goal was to compare only the Base and

Base-Managed versions, to see how use of Unified

Memory versus directives affects scaling on multi-GPU

configurations. As shown in Chart 3, while single-GPU

performance on DGX-1V was comparable, the multi-GPU

performance of the Base-Managed version scaled

substantially better than the Base version; the Base version

ran in 64.8 seconds on 8 GPUs vs 43.2 seconds for the

Base-Managed version.

Chart 3: Cloverleaf Mini-App on DGX-1V and Piz Daint

Profiling the two versions showed that MPI calls on

allocatable buffers in Unified Memory that occur as part of

halo transfers are much more efficient in the Base-

Managed version. OpenMPI 1.10.7 interoperates with

Unified Memory by disabling CUDA Inter-process

Communication (IPC) and GPU Direct RDMA

optimizations on Unified Memory buffers [OMPI18], but

the pipeline used to implement the MPI calls in this case

seems very efficient. The Base version of Cloverleaf with

directive-based data movement uses OpenACC update

directives before and after the MPI calls to move data from

/ to accelerator memory to accommodate MPI transfers of

host-resident data, which is clearly much less efficient. A

simple modification to the OpenACC code using host_data

regions to create the “CA” version and enable use of

GPUDirect by passing device addresses directly to the MPI

calls resulted in even better scaling, reaching a time of 30.6

seconds on 8 MPI ranks accelerated by one V100 GPU per

rank.

Running this same sequence of experiments on Piz

Daint, we see somewhat slower performance on a single

node. This is expected for the P100 GPUs on Piz Daint

versus the V100 GPUs on DGX-1V. The scaling of the

Base version on 1 to 8 Ranks/Nodes is better than on DGX-

1V. The scaling of the CA version improves significantly

as well, similar to the result on DGX-1V, indicating that

Cray MPI seems to be taking advantage of GPUDirect.

The scaling of the Base-Managed version on Piz Daint is

poor, indicating that the version of Cray MPI currently

installed on Piz Daint is likely not CUDA Unified Memory

aware.

The Base-Managed runs outlined above used a version

of Cloverleaf with all data directives that apply to

allocatables commented out, with a few remaining data

directives for non-allocatables. Carrying the experiment

one step further, we deleted all OpenACC data directives

from the Base version to see if the compiler could

implicitly move all non-allocatable data. This version of

Cloverleaf, with all data directives removed, successfully

compiles and executes with about a 10% performance

degradation compared to the Base-Managed version.

Chart 4: Cloverleaf with and without data directives

About 25% of the overall OpenACC directives in the

Base vesion of Cloverleaf are for data management.

Eliminating the need for these and the associated work to

0

50

100

150

200

250

300

350

T
im

e
 i

n
 s

e
co

n
d

s

Cloverleaf Mini-App bm32 Dataset on
1 to 8 MPI Ranks

1 2 4 8

0

100

200

300

400

500

600

700

800

900

1000

Base Base No Data Directives

Cloverleaf OpenACC Directive Count

Data

Loop Independent+Private/Reduction

Simple Loop Independent

Kernels/End Kernels

CUG 2018 Proceedings 8 of 9

understand and optimize data movement between host and

device memories explicitly can simplify GPU

programming and improve developer productivity.

5. Limitations

There are a few limitations to the current PGI

implementation of OpenACC and Unified Memory.

Perhaps most important is lack of support for static, global

or stack data in Unified Memory. This limitation is

relatively easy to work around when porting applications

that are well-suited to enable mixed use of data directives

for these classes of data while relying on Unified Memory

for allocatable data. However, complicated allocatable

aggregate data objects that include members that point to

static data will prevent use of Unified Memory for that

object, and in some cases make use of Unified Memory

impractical for the entire program. As outlined below,

there is a path forward to remove this limitation.

Another concern is the impact on portability of

OpenACC programs. If the programmer uses Unified

Memory as an easy on-ramp and porting tool, followed by

insertion of explicit data directives, the resulting code will

be portable to any OpenACC compiler. However, if no

data directives are added to the code and it relies on shared

memory between host and accelerator, that may limit

portability to other compilers and systems.

The current implementation in effect completely

ignores data directives that are present in the code. An

obvious improvement would be to interpret any data

directives as hints on when to move data or where to place

it by default.

Finally, we have only done limited testing of the

Unified Memory oversubscription feature, which allows

for data sets that are larger than the physical GPU memory.

While OpenACC and Unified Memory oversubscription

should work as expected, we need to do more testing of this

capability for both robustness and performance.

6. Conclusions and Future Directions

OpenACC and CUDA Unified Memory can work

together to simplify the task of accelerating applications

using NVIDIA Tesla GPUs, allowing programmers to

focus on exposing parallelism rather than on details of data

management. The performance of OpenACC programs

relying partially or exclusively on Unified Memory for data

movement between host and device memories is usually

nearly as good and sometimes better than user-directed

data movement. The inherently higher overhead of Unified

Memory data allocation can be mitigated in many cases

using a host-side pool allocator.

We expect future releases of the PGI compilers and

CUDA to support all classes of data in Unified Memory on

x86-64 CPU-based systems by leveraging the Linux

Heterogeneous Memory Manager (HMM) [GTC17]. We

also expect future releases of the PGI compilers compiling

in Unified Memory mode will map data directives to the

cuMemAdvise and cuMemPrefetch APIs, giving the

programmer the ability to rely primarily on Unified

Memory but fine-tune data movement as needed.

About the Authors

Sebastien Deldon is a senior compiler engineer in the

PGI compilers & tools group at NVIDIA; since he joined

PGI in 2004, he has been working on several aspects of PGI

compilers and tools, and is currently focused on GPU code

generation (OpenACC/CUDA Fortran) since 2013; He can

be reached by e-mail at sdeldon@nvidia.com.

James Beyer is a senior engineer in the CUDA

software group at NVIDIA; as a 15-year veteran of the

Cray Compilation Environment optimization team he has

been involved in the design and implementation of

OpenACC from the beginning. He can be reached by e-

mail at jbeyer@nvidia.com.

Doug Miles is director of PGI compilers & tools at

NVIDIA. He can be reached by e-mail at

dmiles@nvidia.com.

References

[CSCS17] Centro Svizzero di Calcolo Scientifico (CSCS),

“Piz Daint”, one of the most powerful supercomputers in

the world, www.cscs.ch, March, 2016.

[CUG13] A.C. Mallinson, D.A. Beckingsale, W.P. Gaudin,

J.A. Herdman, J.M. Levesque, S.A. Jarvis, CloverLeaf:

Preparing Hydrodynamics Codes for Exascale, cug.org,

The Cray User Group 2013, May 6-9 2013.

[GTC16] Nikolai Sakharnykh, The Future of Unified

Memory, presentation at GTC 2016 on-

demand.gputechconf.com, April 2016.

[GTC17] John Hubbard, Using HMM to Blur the Lines

between CPU and GPU Programming, on-

demand.gputechconf.com, May 2017.

[GTC18] Stefan Maintz, Markus Wetzstein, Porting VASP

to GPUs with OpenACC, on-demand.gputechconf.com,

March 2018.

[HPCW17] John Russell, OpenACC Shines in Global

Climate/Weather Codes, www.hpcwire.com, November

2017.

[NV16] NVIDIA Corp., NVIDIA Tesla P100, 2016.

[NV18] NVIDIA Corp., CUDA C Programming Guide,

docs.nvidia.com, May 2018.

mailto:sdeldon@nvidia.com
mailto:beyer@nvidia.com
mailto:dmiles@nvidia.com
https://www.cscs.ch/publications/news/2017/piz-daint-one-of-the-most-powerful-supercomputers-in-the-world/
https://cug.org/proceedings/cug2013_proceedings/includes/files/pap130.pdf
http://on-demand.gputechconf.com/gtc/2016/presentation/s6216-nikolay-sakharnykh-future-unified-memory.pdf
http://on-demand.gputechconf.com/gtc/2016/presentation/s6216-nikolay-sakharnykh-future-unified-memory.pdf
http://on-demand.gputechconf.com/gtc/2017/presentation/s7764_john-hubbardgpus-using-hmm-blur-the-lines-between-cpu-and-gpu.pdf
http://on-demand.gputechconf.com/gtc/2017/presentation/s7764_john-hubbardgpus-using-hmm-blur-the-lines-between-cpu-and-gpu.pdf
http://on-demand.gputechconf.com/gtc/2018/presentation/s8750-porting-vasp-to-gpus-with-openacc.pdf
https://www.hpcwire.com/2017/11/14/openacc-shines-global-climateweather-codes/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

CUG 2018 Proceedings 9 of 9

[OACC14] OpenACC Architecture Review Board,

Complex Data Management in OpenACC Programs

Technical Report TR-14-1, www.openacc.org, November

2014.

[OACC15] OpenACC Architecture Review Board,

OpenACC Programming and Best Practices Guide,

www.openacc.org, June 2015.

[OACC17] OpenACC Architecture Review Board,

OpenACC Application Programming Interface Version 2.6

www.openacc.org, November 2017.

[OMPI18] Open MPI FAQ, Running CUDA-aware Open

MPI, www.open-mpi.org, January 2018.

[PGI18] The Portland Group, PGI Compilers and Tools

User’s Guide, www.pgroup.com April 2018.

[UM13] Mark Harris, Unified Memory in CUDA 6,

devblogs.nvidia.com, November 2013.

https://www.openacc.org/sites/default/files/inline-files/TR-14-1.pdf
https://www.openacc.org/sites/default/files/inline-files/OpenACC_Programming_Guide_0.pdf
https://www.openacc.org/specification
https://www.open-mpi.org/faq/?category=runcuda
https://www.pgroup.com/resources/docs/18.4/pdf/pgi18ug-x86.pdf
https://devblogs.nvidia.com/unified-memory-in-cuda-6

