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ABSTRACT: CUDA Unified Memory (UM) simplifies application development for GPU-

accelerated systems by presenting a single memory address space to both CPUs and GPUs. 

Data allocated in UM can be read or written through the same virtual address by code 

running on either a CPU or an NVIDIA GPU. OpenACC is a directive-based parallel 

programming model for both traditional shared-memory SMP systems and heterogeneous 

GPU-accelerated systems. It includes directives for managing data movement between 

levels of a memory hierarchy, particularly between host and device memory on GPU-

accelerated systems. OpenACC data directives can be safely ignored or even omitted on a 

shared-memory system, allowing programmers to focus on exposing and expressing 

parallelism rather than on underlying system details. This paper describes an 

implementation of OpenACC built on top of CUDA Unified Memory that provides 

productivity benefits for porting and optimization of Fortran, C and C++ programs to 

GPU-accelerated Cray systems. 
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1. Introduction 

The OpenACC directive-based parallel programming 

model was designed to support migration of applications to 

GPU-accelerated and heterogeneous parallel HPC systems 

with several goals in mind:  

 

• Higher programmer productivity compared to use 

of explicit models like CUDA and OpenCL  

• Application source code instrumented with 

OpenACC directives should remain portable to 

any system with a standard Fortran/C/C++ 

compiler  

• OpenACC applications should be performance 

portable across various types of parallel systems 

– multicore CPUs, heterogeneous CPU+GPU, 

and manycore processors  

 

OpenACC enables development of code that is 

massively parallel and dynamically scalable at the node 

level to maximize performance on GPU-accelerated 

systems, and which can be readily compiled for parallel 

execution on multicore or manycore processors as well. 

One of the key features pioneered by OpenACC is 

directive-based data management, which allows the 

programmer to explicitly manage movement of data 

objects between host and accelerator device memory to 

support execution of parallel compute kernels on the 

accelerator [OACC15]. These directives were designed 

from the outset so that they could be safely ignored on a 

multicore CPU-based shared-memory system, enabling 

OpenACC parallel regions to be compiled for parallel 

execution on all cores of the system with no data movement 

overhead.  

 

OpenACC has largely achieved the goals outlined 

above [HPCW17], and in the past year 3 of the 5 most 

widely-used HPC applications have adopted OpenACC;. 

Gaussian and ANSYS/Fluent have issued production 

releases using OpenACC for GPU acceleration, and the 

developers of VASP have disclosed plans to do so. 

Experience with these codes and many other applications, 

mini-apps and benchmarks has shown that explicit 

management of data between host and device memory is 

one of the most time-consuming and error prone aspects of 

OpenACC programming [GTC18]. While the resulting 

code is more portable, elegant and readable than 

comparable CUDA or OpenCL, the data management task 

remains a daunting aspect of porting large production 
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applications using OpenACC, especially those that make 

extensive use of aggregate data types.  

Over the past few years, PGI has added support for 

OpenACC targeting NVIDIA GPUs leveraging CUDA 

Unified Memory [UM13]. When compiling an OpenACC 

program in this mode, the PGI Fortran, C and C++ 

compilers intercept all visible and compiler-generated 

malloc/free, new/delete and allocate/deallocate calls or 

statements and place the resulting allocatables in CUDA 

Unified Memory. Implicitly allocated data, for example 

Fortran automatic arrays, are also placed by default in 

Unified Memory.  

The benefit of compiling in this mode is that 

programmer-directed OpenACC data management is no 

longer necessary for allocatable data. The effect is to allow 

programmers to port and write GPU-accelerated OpenACC 

programs focusing only on parallelism, allowing the 

CUDA Unified Memory manager to handle most data 

movement implicitly. Data directives are still required for 

global, static or stack data, but for many modern 

applications this is minimal.  

Using OpenACC with CUDA Unified Memory on 

standard benchmarks and applications has generally 

delivered good performance relative to user-managed data 

movement, as demonstrated by results in the sections 

below. The sections that follow give an overview of the 

implementation, use, results, limitations and future 

directions for support of OpenACC and CUDA Unified 

Memory.  

2. Implementation 

2.1 CUDA Unified Memory 

Unified Memory support was added to the CUDA 

programming model in the CUDA 6.0 Toolkit. At that 

time, it targeted the Kepler GPU architecture using a pure 

software approach. Data allocated in Unified Memory 

using the cudaMallocManaged API was migrated en masse 

to device memory upon kernel launch, and any CPU access 

of that data would trigger a data transfer from the device 

back to host memory [GTC16].  

While useful for prototyping and development, this 

scheme had several limitations when running on an 

NVIDIA Kepler GPU. The aggregate size of data in 

Unified Memory was limited to the GPU device physical 

memory size, and any attempt at simultaneous access to 

unified data from the CPU while in use by a GPU kernel 

caused programs to abort with a segmentation fault.  In 

addition, without hardware support, the pure software 

implementation on Kepler could result in significant 

overheads in some cases. 

The NVIDIA Pascal P100 GPU architecture improved 

Unified Memory functionality with the addition of 49-bit 

virtual addressing and use of a dedicated hardware page 

migration engine [NV16]. Unified Memory size on Pascal 

and the latest Volta V100 GPUs is not limited to GPU 

physical memory size, and concurrent access to data in 

Unified Memory between CPU and GPU is fully 

supported. 

As noted earlier, data is allocated in Unified Memory 

using the cudaMallocManaged API call. An address 

returned by this API call can be referenced either by CPU 

Code or GPU kernels. A touch of ‘managed’ data triggers 

data migration if data is not available in the requested 

memory. 

 

 
 

Migration of data between CPU and GPU memories 

involves data transfer over PCI Express or NVLINK, and 

occurs in blocks that may be a single page or multiple 

pages.  The algorithms for how much data to migrate and 

when to migrate it from memory to memory are being 

continually tuned in each CUDA release. These transfers 

are relatively slow compared to direct accesses to local 

memory, so optimizing data placement and movement is 

critical to achieving good performance. Also, keeping the 

CPU/GPU page table current is time consuming; updating 

the page table after a page fault can take tens of μs per page, 

potentially stalling execution.  

Some programs may incur a performance penalty 

when using CUDA Unified Memory versus use of explicit 

OpenACC directive-based data transfers. The latter are 

often carefully placed to ensure data is present in device 

memory before it’s needed, and to minimize the number of 

times data moves between memories. The API calls 

cudaMemAdvise and cudaMemPrefetchAsync have been 

introduced to enable the programmer to give hints to the 

Unified Memory manager and improve UM performance.  

cudaMemAdvise enables specifying placement and 

access policies on regions of managed data.  For example, 

when data is known to be read-only on the GPU, a ‘read 

mostly’ policy can be set for that data; those pages are then 

duplicated in GPU memory without being evicted from the 

CPU page table, thus avoiding needless data migration. 

Setting a ‘preferred location’ policy for data in Unified 

Memory can minimize page migrations for which the 

overhead exceeds the locality benefit, minimizing page 

thrashing. cudaMemPrefetchAsync prefetches an area of 

managed memory and can lower the cost of data movement 

and page table updates by overlapping these with either 

CPU or GPU-side computation [NV18].  
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2.2 Data Management in OpenACC 

OpenACC is designed to support migration of 

applications to GPU-accelerated and heterogeneous 

parallel HPC systems. The model assumes that serial code 

is executed by a fast host CPU core and parallel code is 

executed on an accelerator. The model doesn’t make any 

assumption of the accelerator type, which could be a 

discrete accelerator or the host itself operating in parallel 

or accelerator mode.  The model allows for accelerator 

devices with a separate memory sub-system, but doesn’t 

assume separated memories between host and accelerator.  

In this context, two main types of directives are defined by 

the OpenACC programing model: Compute Directives and 

Data Directives. 

Compute directives are used to expose parallelism, to 

specify regions of code suitable for an accelerator, and to 

provide the compiler with hints on how parallelism can be 

efficiently mapped to a given accelerator. The two main 

compute directives are parallel and kernels.  The 

parallel directive initiates parallel execution on an 

accelerator, and typically marks a region that includes one 

or more loops annotated with parallel loop directives. The 

kernels directive denotes a region of code the compiler 

should process by searching for parallelizable loops, either 

through auto-parallelization and auto-offloading 

techniques, or through parallelization and offloading of 

parallel loops explicitly annotated with OpenACC loop 

directives.  Each loop nest in a kernels region is 

typically launched as an individual GPU kernel, whereas a 

parallel region results in a single kernel launch on a 

GPU accelerator. 

OpenACC data directives are used to specify and 

optimize data transfers between host and accelerator to 

guarantee correct execution when their memories are 

separated. A data region can be either structured, meaning 

it starts and ends in the same syntactic block of code, or 

unstructured, starting in a given routine (C++ constructor 

for instance) and ending in a different routine (C++ 

destructor). Data region clauses (copy, copyin, copyout) 

are used to reserve memory on the accelerator device and 

define data movement between CPU and GPU memories: 

 

• The copy clause specifies that data should be 

copied at region entry from host to device 

memory and copied back from device to host 

memory at the end of the region 

• The copyin clause specifies that data should be 

copied at region entry from host to device 

memory, but need not be copied back at the end 

of the region 

• The copyout clause specifies that data need not 

be copied to the device at region entry, but should 

be copied from device memory to host memory at 

the end of the region 

 

Note that explicit data directives are not always 

required even when the host and accelerator use different 

physical memory spaces. The compiler, for simple access 

patterns within loops, can often determine which data 

objects are used and the amount of data to transfer.  In these 

cases, the compiler will either automatically generate data 

transfers for correct execution of a given compute region 

or generate a compile-time error if it is unable to do so.  

 
void initA(int *A, int N) 
{ 
int i; 
#pragma acc parallel loop 
    for (i=100; i<N; i++) 
        A[i] = -i; 
} 

Example 1: parallel loop without data directives 

 

When compiling the loop above, the PGI OpenACC 

compiler determines that array ‘A’ is write-only and that 

only elements 100 to N-1 of ‘A’ are written. In such cases 

the user is not required to specify how to copy data; the 

compiler will generate an implicit copyout directive to 

copy N-100 elements from the GPU memory location 

starting at A[100] back to the same elements in the host 

copy of ‘A’. You can see this by compiling the loop in 

Example 1 using the -Minfo option and targeting NVIDIA 

Tesla GPUs: 

 
% pgcc -ta=tesla -Minfo impex1.c -c 
initA: 
      4, Accelerator kernel generated 
         Generating Tesla code 
          5, #pragma acc loop gang, vector(128)  
             /* blockIdx.x threadIdx.x */ 
      4, Generating implicit copyout(A[100:N-100]) 

 

In some cases the compiler may be unable to 

determine the amount of data to transfer.  Consider this 

example: 

 
int N; 
 
void initA(int *A) 
{ 
int i; 
#pragma acc parallel loop 
    for (i=100; i<N; i++) 
        A[i] = -i; 
} 

Example 2: parallel loop, N global 

 

N is defined as a global variable. The compiler can’t 

guarantee that it won’t change during kernel execution, and  
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thus won’t be able to generate an implicit data transfer: 

 
% pgcc -ta=tesla -Minfo impex2.c -c 
PGC-S-0155-Compiler failed to translate accelerator 
region (see -Minfo messages): Could not find 
allocated-variable index for symbol (impex2.c: 6) 
initA: 
      6, Accelerator kernel generated 
         Generating Tesla code 
          7, #pragma acc loop gang, vector(128)  
             /* blockIdx.x threadIdx.x */ 
      7, Accelerator restriction: size of the GPU 
copy of A is unknown 
PGC-F-0704-Compilation aborted due to previous 
errors. (impex2.c) 

 
The scope for generating automatic implicit data 

transfers is limited to compute regions. Consequently, in 

many cases using explicit data transfer directives can 

reduce data movement between host and device memories. 

In example 3, an implicit copyout of A[100:N-100] will be 

generated, followed by an implicit copyin of A[0: N]:  
 
void initA(int *A, int*B, int N, int M) 
{ 
int i; 
/* implicit copy(A[100:N-100]) */ 
#pragma acc parallel loop   
    for (i=100; i<N; i++) 
        A[i] = A[i]+i; 
/* implicit copyin(A[0:N]) */ 
#pragma acc parallel loop 
    for (i=0; i<N; i++) 
        B[i] = A[i]; 
} 

Example 3: Redundant OpenACC data movement 

  

Creating a data region that encompasses the two 

compute regions as shown in Example 4 will eliminate 

useless data movement between the two compute regions. 
 
void initA(int *A, int*B, int N, int M) 
{ 
int i; 
#pragma acc copy(A[0:N]) 
{ 
#pragma acc parallel loop   
    for (i=100; i<N; i++) 
        A[i] = A[i]+i; 
#pragma acc parallel loop 
    for (i=0; i<N; i++) 
        B[i] = A[i]; 
} 
} 

Example 4: Reducing data transfer using data regions 

 

As we’ve shown here, explicit OpenACC data 

directives are required when the compiler is unable to 

determine the size of data to transfer, and OpenACC data 

region directives minimize data transfers between host and 

device memories.  

When porting codes that use deeply nested aggregate 

data types, adding data directives to specify which 

members to transfer and keeping their respective live 

ranges current can be a tedious programming task.  In 

addition, a compute region might access data through 

multiple indirect references via pointer members of the 

data structure. Consider the following aggregate data type 

definitions: 

 
struct S1 { 
    double* z; 
} ; 
 
struct S0 { 
    int x; 
    struct S1 *B; 
} ; 
 

As shown in the following code fragment operating on 

an array A of type S0, a compute region could access 

*A[i].B->z:   

 
#pragma acc parallel loop 
    for (i=99; i<899; i++) { 
        A[i].x = -i; 
        *A[i].B->z = (double)-i; 
    } 

 
This requires copying A[99:800], then copying each 

member B of A[i], and then copying each z member of 

A[i].B. This is known as the ‘deep copy’ problem. 

[OACC14].  

Defining how to copy complicated data structures with 

succinct directive syntax by adding ‘policies’ to the 

definition of aggregates is in discussion by the OpenACC 

committee and is expected in an upcoming version 3.0 of 

the OpenACC specification.  Today, using features in 

OpenACC 2.6, the programmer must manually copy data 

by recursively looping through each non-scalar member of 

an aggregate as shown in the following code: 

 
#pragma acc enter data copyin(A[99:800]) 
    for (i=99; i<899; i++) { 
#pragma acc enter data copyin(A[i].B[0:1]) 
#pragma acc enter data copyin(A[i].B->z[0:1]) 
    } 

 

Updating data on the host requires use of a similar loop 

structure. It is the responsibility of the programmer to 

mentally keep track of the live ranges of variables needed 

in GPU memory. Doing so can be difficult, makes the 

resulting code harder to maintain, and can be the source of 

errors whenever a pointer member is assigned and its target 

is already present or partially present in GPU memory. 
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2.3 OpenACC and Unified Memory 

The OpenACC specification states that “For a shared-

memory device, data is accessible to the local thread and to 

the accelerator.  Such data is available to the accelerator for 

the lifetime of the variable” [OACC17]. When an 

OpenACC program is compiled targeting a CPU-based 

SMP system, where there is no need for data copying at 

compute region boundaries, it is legal for the compiler to 

ignore any data directives. In fact, because of the statement 

above in the OpenACC specification, it is legal for the 

programmer to leave them out entirely.  On such a system, 

OpenACC data management and the difficult task of 

managing deep aggregate data structures is no longer 

necessary.    

The introduction of CUDA Unified Memory as 

outlined above in section 2.1 makes this same approach 

possible on NVIDIA GPU accelerators for allocatable data. 

PGI OpenACC compilers added this as a production 

feature in PGI 17.4, with some performance improvements 

in PGI 17.7 (addition of a host-side pool allocator) and PGI 

17.10 (pool allocator interoperability with CUDA Fortran). 

When compiling OpenACC for CUDA Unified 

Memory, the compiler replaces calls to malloc/free in C, 

operators new/delete in C++ and allocate/deallocate 

statements in Fortran with cuMemMallocManaged and 

cuMemFree API calls. Any dynamically allocated data 

visible to the compiler will be allocated in CUDA Unified 

Memory and a single address will be used to reference data 

by the CPU and the GPU.  

For program units compiled in this mode, the compiler 

assumes that any allocatable data object referenced in a 

Compute Region resides by default in Unified Memory. No 

error messages will be reported by the compiler in cases 

where the data size can’t be determined.  It will generate 

code assuming the data will be migrated on demand to 

GPU memory by the CUDA Unified Memory manager.  

At execution time, the OpenACC runtime support 

library performs a dynamic check for each data object 

referenced in a compute kernel: 

 

• If the data object is in unified memory, the host 

address is used in the compute region 

• If the data object is not in unified memory but is 

present in device memory, the corresponding device 

address is used in the compute region 

• If the data object is not in unified memory and is not 

present in device memory, an error is emitted at 

runtime 

 

A reference in a GPU kernel to a host address that is 

not in CUDA Unified Memory will lead to an execution 

error. This situation can happen when a member of an 

allocatable struct is a pointer that points to a global variable 

or a stack variable; in the current implementation of 

CUDA, global, static and stack variables can’t be placed in 

Unified Memory. 

3. Using OpenACC and Unified Memory 

3.1 The -ta=tesla:managed compiler option 

OpenACC for CUDA Unified Memory is enabled by 

the compile and link-time option -ta=tesla:managed.  When 

this option is used at compile-time, the PGI compilers will 

intercept and replace all visible or compiler-generated 

allocates in header files or source files with managed data 

allocations.    When it is used at link-time, it sets the 

OpenACC runtime libraries to check dynamically whether 

data is allocated in Unified Memory.   

For data in Unified Memory, the runtime routines 

which implement data movement will essentially do 

nothing, leaving all data movement to the Unified Memory 

manager.  This has the effect that any data directives in the 

source code which operate on data objects in Unified 

Memory are effectively ignored, even though the runtime 

calls to implement them are still generated by the compiler.  

This allows mixing of Unified Memory managed data 

movement and OpenACC programmer directive-based 

data movement in the same program, which enables use of 

Unified Memory for all allocatable data in a program while 

leaving the task of managing global, static or stack data to 

the programmer. 

 

3.2 Host-side Unified Memory Pool Allocator 

Unified Memory managed data allocations allocate 

host pinned memory as well as device memory and are 

more expensive than a simple malloc() call.  Programs that 

perform many small data allocations, or which repeatedly 

allocate and deallocate memory between GPU kernel 

invocations, can see substantial overhead when these 

allocations become managed. 

One such example is the SPEC ACCEL 1.2 

benchmark 356.sp, which in the initial implementation 

showed a factor of three slowdown when compiled and run 

with -ta=tesla:managed compared to OpenACC user-

directed data management.  This slowdown was traced to a 

Fortran procedure with automatic array dummy arguments, 

which are dimensioned by an input parameter and must be 

allocated and deallocated at entry to and exit from the 

procedure.  The procedure included an OpenACC compute 

region that operated on these arrays, and as a result the 

newly allocated arrays had to be moved to GPU memory at 

every invocation of the procedure, resulting in spurious 

data movement between host and device memory. 
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Chart 1: OpenACC Unified Memory Pool Allocator 

 

To address such cases, the PGI compiler enables a 

host-side Unified Memory pool allocator by default 

whenever the -ta=tesla:managed option is used.  The 

OpenACC runtime allocates a large pool of managed 

memory at program startup, and all subsequent allocations 

are performed out of that pool.  In cases like 356.sp, the 

pool itself tends to migrate to GPU memory and remains 

there unless the data is referenced on the host.  This causes 

the reallocations to occur from the pool of memory resident 

on the GPU, significantly reducing overhead.  As you can 

see in Chart 1, performance very close to that obtained with 

directive-based data movement is regained when the pool 

allocator is enabled. 

The pool allocator is enabled by default with Unified 

Memory, but it can be disabled or its behavior modified 

using environment variables.  Parameters that can be 

modified at runtime by programmers include the size of the 

pool (default is 1GB), the maximum and minimum size of 

allocations that will be sourced from the pool, and the 

percentage of total GPU device memory the pool can 

occupy.  [PGI18] 

 

4. Benchmarks Performance 

To measure the efficiency of UM-based OpenACC 

data movement versus user-directed data movement on Piz 

Daint [CSCS17], we compiled and ran the SPEC ACCEL 

1.2 Benchmarks with and without the -ta=tesla:managed 

option. Each benchmark was compiled with PGI 18.4 and 

run in the following configurations: 

 

• P100 Directives – OpenACC targeting P100 using  

-ta=tesla:cc60 at compile time 

• P100 UM – OpenACC targeting P100 in unified 

mode using -ta=tesla:cc60,managed at compile time, 

disabling the pool allocator by setting the 

PGI_ACC_POOL_ALLOC environment variable to 

zero 

• P100 UM Pool – OpenACC targeting P100 in 

unified mode using -ta=tesla:cc60,managed at 

compile time, pool allocator enabled by default 

 

In Chart 2 the results are normalized to the 

performance of each benchmark using OpenACC 

directive-based data movement (P100 Directives) which is 

always 100%.  The P100 UM performance is listed as a 

percentage of P100 Directives performance. 

 

 
Chart 2: SPEC ACCEL 1.2 Benchmarks on Piz Daint 

 

The results are marked as “estimates” per SPEC rules, 

which require this designation unless the results are run in 

the SPEC harness according to SPEC run rules.  On 

average, when the default pool allocator is enabled, the 

performance of the Unified Memory versions is 95% of 

performance using explicit directive-based data 

movement. 

To test OpenACC for Unified Memory performance 

on multiple nodes and GPUs, we compiled and executed 

the Cloverleaf Mini-App [CUG13] on 1 to 8 MPI ranks on 

both Piz Daint with P100s and a DGX-1V with Volta V100 

GPUs.  The results are shown in Chart 3, which displays 

time in seconds for each run in three different 

configurations. 

 

• Base – Out-of-the box OpenACC version of 

Cloverleaf as downloaded from the UK-Mac website 

• Base-Managed – Base version compiled with  

-ta=tesla:managed to place all allocatable data in 

CUDA Unified Memory, implicitly enabling use of 

CUDA Aware MPI and GPUDirect with no code 

modifications 
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• CA – Base version modified to use OpenACC 

host_data regions around MPI calls, explicitly 

enabling use of CUDA Aware MPI and GPUDirect 

 

The initial goal was to compare only the Base and 

Base-Managed versions, to see how use of Unified 

Memory versus directives affects scaling on multi-GPU 

configurations.  As shown in Chart 3, while single-GPU 

performance on DGX-1V was comparable, the multi-GPU 

performance of the Base-Managed version scaled 

substantially better than the Base version; the Base version 

ran in 64.8 seconds on 8 GPUs vs 43.2 seconds for the 

Base-Managed version. 

 

  
 

Chart 3: Cloverleaf Mini-App on DGX-1V and Piz Daint 

 

Profiling the two versions showed that MPI calls on 

allocatable buffers in Unified Memory that occur as part of 

halo transfers are much more efficient in the Base-

Managed version.  OpenMPI 1.10.7 interoperates with 

Unified Memory by disabling CUDA Inter-process 

Communication (IPC) and GPU Direct RDMA 

optimizations on Unified Memory buffers [OMPI18], but 

the pipeline used to implement the MPI calls in this case 

seems very efficient.  The Base version of Cloverleaf with 

directive-based data movement uses OpenACC update 

directives before and after the MPI calls to move data from 

/ to accelerator memory to accommodate MPI transfers of 

host-resident data, which is clearly much less efficient.  A 

simple modification to the OpenACC code using host_data 

regions to create the “CA” version and enable use of 

GPUDirect by passing device addresses directly to the MPI 

calls resulted in even better scaling, reaching a time of 30.6 

seconds on 8 MPI ranks accelerated by one V100 GPU per 

rank.  

Running this same sequence of experiments on Piz 

Daint, we see somewhat slower performance on a single 

node. This is expected for the P100 GPUs on Piz Daint 

versus the V100 GPUs on DGX-1V.  The scaling of the 

Base version on 1 to 8 Ranks/Nodes is better than on DGX-

1V.  The scaling of the CA version improves significantly 

as well, similar to the result on DGX-1V, indicating that 

Cray MPI seems to be taking advantage of GPUDirect.  

The scaling of the Base-Managed version on Piz Daint is 

poor, indicating that the version of Cray MPI currently 

installed on Piz Daint is likely not CUDA Unified Memory 

aware. 

The Base-Managed runs outlined above used a version 

of Cloverleaf with all data directives that apply to 

allocatables commented out, with a few remaining data 

directives for non-allocatables.  Carrying the experiment 

one step further, we deleted all OpenACC data directives 

from the Base version to see if the compiler could 

implicitly move all non-allocatable data.  This version of 

Cloverleaf, with all data directives removed, successfully 

compiles and executes with about a 10% performance 

degradation compared to the Base-Managed version.   

 
Chart 4: Cloverleaf with and without data directives 

 

About 25% of the overall OpenACC directives in the 

Base vesion of Cloverleaf are for data management.  

Eliminating the need for these and the associated work to 
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understand and optimize data movement between host and 

device memories explicitly can simplify GPU 

programming and improve developer productivity.  

5. Limitations 

There are a few limitations to the current PGI 

implementation of OpenACC and Unified Memory.  

Perhaps most important is lack of support for static, global 

or stack data in Unified Memory.  This limitation is 

relatively easy to work around when porting applications 

that are well-suited to enable mixed use of data directives 

for these classes of data while relying on Unified Memory 

for allocatable data.  However, complicated allocatable 

aggregate data objects that include members that point to 

static data will prevent use of Unified Memory for that 

object, and in some cases make use of Unified Memory 

impractical for the entire program.  As outlined below, 

there is a path forward to remove this limitation. 

Another concern is the impact on portability of 

OpenACC programs.  If the programmer uses Unified 

Memory as an easy on-ramp and porting tool, followed by 

insertion of explicit data directives, the resulting code will 

be portable to any OpenACC compiler.  However, if no 

data directives are added to the code and it relies on shared 

memory between host and accelerator, that may limit 

portability to other compilers and systems.   

The current implementation in effect completely 

ignores data directives that are present in the code.  An 

obvious improvement would be to interpret any data 

directives as hints on when to move data or where to place 

it by default. 

Finally, we have only done limited testing of the 

Unified Memory oversubscription feature, which allows 

for data sets that are larger than the physical GPU memory.  

While OpenACC and Unified Memory oversubscription 

should work as expected, we need to do more testing of this 

capability for both robustness and performance. 

6. Conclusions and Future Directions 

OpenACC and CUDA Unified Memory can work 

together to simplify the task of accelerating applications 

using NVIDIA Tesla GPUs, allowing programmers to 

focus on exposing parallelism rather than on details of data 

management.  The performance of OpenACC programs 

relying partially or exclusively on Unified Memory for data 

movement between host and device memories is usually 

nearly as good and sometimes better than user-directed 

data movement.  The inherently higher overhead of Unified 

Memory data allocation can be mitigated in many cases 

using a host-side pool allocator. 

We expect future releases of the PGI compilers and 

CUDA to support all classes of data in Unified Memory on 

x86-64 CPU-based systems by leveraging the Linux 

Heterogeneous Memory Manager (HMM) [GTC17]. We 

also expect future releases of the PGI compilers compiling 

in Unified Memory mode will map data directives to the 

cuMemAdvise and cuMemPrefetch APIs, giving the 

programmer the ability to rely primarily on Unified 

Memory but fine-tune data movement as needed. 
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