Nuclear Meltdown?
Assessing the impact of the Meltdown/Spectre bug at L.os Alamos National

Laboratory
LA-UR-18-24290

Joseph ’Joshi” Fullop
HPC-ENV
Los Alamos National Laboratory
Los Alamos, NM, USA
Email: fullop@lanl.gov

Abstract—With the recent revelation of the Melt-
down/Spectre bug, much speculation has been levied on the
performance impact of the fixes to avoid potential compromises.
Single node, single process codes have had very high impact
estimates, but little is known on the extent to which the early
patches will affect large-scale MPI jobs. Will the delays cascade
into jitter vapor lock, or will the delays get lost in the waves
on the ocean? Or is reality somewhere in the middle? With
flagship codes and their performance driving future systems
design and purchase, it is important to understand the new
normal. In an investigative assessment, we research how the
updates affect job performance of various benchmark codes as
well as our mainstay workloads across different job sizes and
architectures.

Keywords-Meltdown; Spectre; LANL;

I. INTRODUCTION

In the latter half of 2017, a major computer security vul-
nerability was unveiled that affected nearly all major modern
processor architectures. The world of High Performance
Computing (HPC) was no exception. The exploits for these
vulnerabilities were published, with the best known referred
to as Spectre and Meltdown (CVE-2017-5715; CVE-2017-
5753; CVE-2017-5754). These attacks take advantage of
various processors’ speculative execution implementation.
Meltdown can more easily be addressed by increasing
memory isolation at the OS level. Spectre relies more on
statistical odds and targeted application knowledge, which
requires a much higher level of sophistication to implement.
Given the nature and sensitivity of the work done on the
machines at Los Alamos National Laboratory, we must
operate under the assumption that we are under constant
threat by infinitely sophisticated attackers.

The patches created to address these vulnerabilities have
to be done at such a low level in the computational pro-
cess that their impact is expected to be very broad and
highly dependent on the propensity to switch to and from
kernel mode. There have been ample reports and studies
on performance impact of these patches on various codes
and benchmarks. This paper will discuss some observed

Jennifer Green
HPC-ENV
Los Alamos National Laboratory
Los Alamos, NM, USA
Email: jgreen@lanl.gov

performance statistics, but will also go further into the
aspects of managing these issues at a premier computing
facility.

II. TESTING

Some of the difficulties with inline testing is that the base
system environment is in an almost constant state of flux.
A run of a benchmark from a few months ago is generally
not comparable to one today without caveat. Even though a
machine’s hardware and firmware can remain effectively the
same over a given period, the environment on that machine
generally changes frequently. This is a normal churn of
applying bug fixes, installing new software releases and
configuration modifications.

Since changes are not atomic and are generally done en-
mass during a Dedicated System Time (DST), it is often
difficult to attribute measured performance variations to any
one individual change. It has been practice to separate
multiple major system updates for many reasons. Some
reasons being that there are only so many things that can be
prepared and tested in a given period, and that of efficiently
diagnosing fallout to the correct root cause. When more than
one large change is implemented at the same time, the areas
of problem investigation multiply. For example, when one
system change is made, diagnosis can be fairy well focused
around that change when problems arise. But when two
large systems changes, A and B are simultaneously enacted
on a machine. If there is a problem, investigations need to
be conducted on both of the components individually, as
well as potential conflicts between the two. Add another
simultaneous change and the possibilities continue to expand
further.

So there generally exists a balance between many individ-
ual changes and sets of multiple changes as the criticality,
urgency and demand for various changes fluctuate. As
much as systems administrators would like to make singular
changes and test thoroughly each time, the necessity of

providing availability and high utilization rates force changes
into compressed DSTs.

III. RESTRICTIONS ON DISABLING PATCHES FOR
TESTING

Since we in HPC at Los Alamos National Laboratory are
in the business of providing compute cycles to the codes
in support of our mission and are not purely exploratory
computer scientists, there was little designated time to fully
examine the phenomena presented by the Meltdown and
Spectre vulnerabilities. Therefore, we tested as we could,
when we could. Given the issues with parallel changes
described above, the only way to have a clean experiment
would be to isolate the machine and reboot into un-patched
mode, run experiments, reboot patched and run the same set
of experiments. This would require at least a day or two of
concerted effort, that time taken away from the users.

One suggestion was to use only a dedicated set of nodes
for this experimentation. Since the exploit is not a specific
attack, but more of a feature that can be leveraged in many
different ways, we have not opted to run in the unpatched
mode. Even though we allocate nodes fully to one job at a
time so there is no co-location of user codes, there could
conceivably evolve an exploit for privileged escalation or
accessing remnants of past jobs memory spaces. Yes, to
some these attacks may seem far-fetched and even being
concerned about them may seem paranoid, but when dealing
with infinitely sophisticated attackers, exploits can be used to
enable exploits and various attacks could be chained together
to compromise a system. Allowing a known starting point
or exposed feature was determined to be to high a risk.

One area of investigation that may prove useful in ad-
dressing the performance and security issues is the use of
containers. The hope is that the containers may be used
to isolate and insulate memory spaces in an appropriate
manner. However, this is an ongoing evaluation whose
results, if fruitful, will certainly be published and likely be
a popular means of dealing with these vulnerabilities.

IV. REAL CoOSTS OF CODE RE-WRITES

One of the reasons that the Meltdown and Spectre vulner-
abilities get so much attention is due to its broad impact and
the potential performance degradation of their fix. Many, if
not most exploits are specific and directed at very targeted
segments of code. Since these vulnerabilities target a CPU
hardware feature, the opportunity for misuse is almost
constant and therefore the mitigation has the possibility of
massive performance degradation.

One of the unfortunate aspects of security exploits is
that they can not be conveniently planned. Meltdown ans
Spectre unlike most exploits degrade general performance
of the system. So how does this impact the normal course
of business at a secure computational facility? The first
responsibility is to the mission. Analogous to any corporate

scenario, there are deadlines and expectations. Also, codes
have been designed, improved and refined over decades to
match the ever evolving science behind them. So to rewrite
and retune would be a Herculean effort. Just to put things
into perspective, the code teams have been called upon to
refactor our codes every time we decide that the bleeding
edge of technology is the way of the future and we architect
a massive new machine based on some emerging technology.

Every time a major change in computing architecture,
technology or methodology comes about, a significant refac-
toring process takes place. So the question at the base of
the Meltdown and Specter vulnerabilities is *What degree
of effort is necessary to address them?’ So, let’s examine
from a large scale perspective. Let’s pose the question of
"What level of performance impact would cause a significant
derailment of the status quo?’ Since the refactoring of codes
to hardware changes happens on a fairly regular basis at Los
Alamos National Laboratory, there exists a bit of a cycle
refactor and refine.

Let’s examine this cycle from an actuarial perspective.
The lifespan of a leading edge computational resource
appears to be anywhere from five to seven years. So if a
performance impacting exploit were to surface 5 years from
the planned retirement of a machine, a 20% impact would
support up to a 1 year effort or commitment of resources
at break even. So the initially estimated performance im-
pact assessments of anywhere from 10 to 50% warranted
evaluation. We had recently installed a 9000+ node segment
of Intel’s Knights Landing architecture, and our code teams
were still in the settling-in phase of this machine.

It is important to understand the scientific simulation evo-
lutionary processes. These include various tasks of validating
that the new code produces the same mathematical results.
Beyond that there is a verification process that the new codes
are correct and representative and in alignment with exper-
imental data from recent and past measured experiments.
Which, in turn, requires additional computational hours on
the same machines where we’re trying to alleviate excess
load. And further, a certification process must be undertaken
to validate developer oversight. This process is hopefully
similar to any other scientific computational process out
there.

If the overall performance impact were measured to be
persistently greater than around 25% to the end of the
machine’s life of 5 years, investing in 1 year of developing
code that would fully eliminate the performance hit would
be considered a break-even. In this scenario, the first year
is spent developing the solution and recouping the perfor-
mance gains over the remaining 4 years. Unfortunately, that
scenario just is not a possible reality. There are many flaws
in the logic. First, the performance degradation is not likely
to ever be fully eliminated on the current hardware. This
diminshed expectation of gains also shrinks the time those
are willing to put forth in adressing it. Secondly, using the

machine to develop and test for a full year instead of making
progress on core mission projects is not an acceptable
tradeoff. In reality, progress must continue even if at a lower
degraded performance. Since the code teams continuously
refine and improve the efficiency of the simulations that run
on our current hardware, there is a reasonable expectation
that the impact of the Meltdown and Spectre vulnerabilities
will continuously be diminished over time in the normal
course of business.

With the upper limit of impact being bound and expected
to be tuned over time, business continues as usual with yet
another performance factor to consider. The real question
comes down to how the code teams should spend their time.
Should they focus on making up for the lost performance
deficit that will be obsolete with the new the installation
of the next machine? Or should they spend their time on
refining the simulation accuracy that will endure through var-
ious machines. The simulation codes will continue to evolve
down their own paths and the code teams will certainly
be cognizant of the performance aspects of Meltdown and
Spectre, but whole-sale re-engineering is not feasible. Even
if all the code teams decided that they needed to rewrite,
revalidate and re-certify their codes, that progress would
be throttled by lack of free cycles on an already heavily
subscribed set of supercomputers.

With the simulation codes having their hurdles, we can
look to other areas for potential performance recuperation.
I/O is certainly one of those areas. There are a number of
I/O libraries available to use and with various strategies in
parallel applications. I/O was also one of the areas singled
out early in the Meltdown and Spectre vulnerability as a
speculated area of high impact. This has in fact proven true,
to various degrees.

V. OBSERVATIONS
A. XRAGE with Asteroid Benchmark

An examination of the XRAGE with asteroid code with 64
PE using the bulkio libraries showed to have a very signifi-
cant impact at a nearly 40% reduction in I/O performance.
The numbers reflected in Figure[1] are measurements from
weekly regression tests of write bandwidth during the I/O
phase of the benchmark. While this number can certainly
be alarming, when put into perspective of the code only
spending around 5% of its time in I/O, the overall impact
ends up being about a 2% overall penalty attributed to
I/O. Obviously, different applications at different scales will
have different level of impact. This scenario appeared fairly
typical.

B. IOR

I/O has become a focus area for Meltdown and Spectre
performance issues due to its impact. Fortunately, I/O is
rather compartmentalized in comparison to the simulation

code. The libraries used for I/O can be targeted for per-
formance tuning. There are various strategies implemented
and currently being pursued in this realm. Depending on the
application, various levels of performance can be achieved.

We somewhat expected the focused I/O impact to cause
users to change their checkpoint timings, but that has not
been a widespread occurrence. We also have not seen
requested wall-clock times grow to compensate other than
under the premise of ’just to be safe’.

In focusing on the more pure file system impact, Alfred
Torrez performed a series of tests using IOR and MDTest
on our Lustre installations. With well-formed and aligned
writes, only marginal performance degradation of 5 to 7%
was observed on average. (see Figure[2]) In fact is was char-
acterized as the expected slip over the period of examination.
Other things that occur in the normal course of a machine’s
lifespan take a toll on performance. Most notably in this
case was the file system capacity. As a file system fills its
performance has a tendency to decline. E.g.: Figure[3] shows
a variation in performance of around 5% on average between
scratchl and scratch2. On one in particular test set (not
shown), the performance actually improved by around 17%
on peak numbers. (Up to 900GiB/sec from 770GiB/sec). But
this was an aberration caused by a fresh reboot of the storage
system and the disk actuator arms being in optimal positions.
It is offered here only to give additional perspective to the
range of normal performance variation.

C. Code Development Efforts

Since compiling and building codes involves a lot of
small file operations, these processes have reported seeing
around a nominal 20% performance hit with peaks up around
32% on our commodity systems. Again, here we see greater
sensitivity with non-optimal I/O patterns.

D. DataWarp

It was also reported that DataWarp staging of data from
Lustre (stage-in) was almost wholly unaffected. Staging out
showed degradation on par with general Lustre write usage.

E. Jitter-like Expansion at Scale

One of the concerns is the potential for the micro delays to
have a cascading affect on job performance as is potentially
seen in the phemonena known as jitter. Fortunately, we
have not experienced, nor have we had any reports of this
behavior. Larger scale runs tend to have larger performance
penalties, but that has been qualified as being in line with
I/O at scale norms.

VI. RECOMMENDATIONS TO USERS

Currently we are recommending to users experiencing
slow down in their runs to evaluate their I/O performance
and strategies as that seems to be the area with the most
sensitivity to the Meltdown and Spectre mitigations cur-
rently. Before these vulnerabilities became prevalent, we

were already recommending to users experienceing slow per-
formance to evaluate their I/O performance and strategies.

VII. CONCLUSION

While interesting, pursuing fine experimentation beyond
the results that we see from in-situ workload was considered
academic. The observed degradation was not great enough
in the general case to warrant any significant deviation
from previously planned code team efforts. The expectation
is that these vulnerabilities will expire with future chip
architectures. Users have, however, called for this type of
thing to be heavily considered in the design, evaluation and
acceptance processes of future machines.

Even though there are specific cases of very high per-
formance impact, given appropriate mitigation, the varia-
tion was generally within the bounds of common machine
performance degradation over time. This is also evidenced
by the very few reports and complaints from the user
community. A very notable observation in support of the
Meltdown and Spectre vulnerabilities having a low impact is
the lack of user behavior change. But this journey is certainly
not complete. Perhaps there will be larger outcry if future
mitigations and patches create a greater performance deficit.

ACKNOWLEDGMENT

We would like to convey special thanks to fellow col-
leagues Jason Hick, Nathan Hjelm, Andy Nelson, Alex Parga
and Alfred Torrez of Los Alamos National Laboratory for
their contributions of testing, data and insight.

PUBLICATION REFERENCE
LA-UR-18-24290

10 write rates for the Asteroid Test on Snow

1200
soo |+ +]
=
Joe!
2 600 + $ $ § %]
: =+ =
=
+
400 + 1
200 $ 1
. +
. + +
1001117 11/01/17 12/01/17 01/01/18 02/01/18 03/01/18 04/01/18 05/01/18
Date
Figure 1. XRAGE with Asteroid 64 PE write performance over seven month period. Note application of patches in early January.
Trinity Haswell Write Performance
00
BOO
700
600
500
g
~
@
LL]
400
300
200
100
1]
108 216 324 432 540 648 756 864 o72 1080 1188 1296 1404 1512 1620
scratchl Before 485 601 725 783 BODG 785 786 704 763 759 765 739 738 732 731
mscratchl After an 570 651 594 709 708 717 716 700 706 707 695 693 697 594
scratch2 Before 475 506 701 751 760 780 790 790 779 776 Ti2 Faa 723 715 714
m scratch After 465 578 689 736 757 761 765 772 744 741 746 731 728 731 79

Nodes (2ppn)

Figure 2. Degradation of Trinity write performance on scratchl and scratch2 from 9-22-17 (before) and 4-2-18 (after).

u
o
2
=
@
00
m Haswell-Scratchl 258 471
W Haswell-Scratch2 252 465
W KNL-Scratchl 63 125
m KNL-Scratch2 62 122

570
578
187
184

651
689
249
247

694
736
297
297

Optimal Write, Haswell 2ppn, KNL 4ppn

702
757
368
372

709
761
415
406

717
765
455
482

Nodes

716
772
552
550

700
744
605
606

706
741
653
655

707
746
642
652

695
731
38
693

693
728
674
678

657
731
729
732

700
600
500
400
300
200
L
0 108 216 324 432 540 648 756 864 972 1080 1188 1286 1404 1512 1620 1728

m Haswell-Scratch 1
W Haswell-5cratch2
m KNL-Scratchl

m KNL-Scratch2

Figure 3. Performance variation of around 5% on average between scratchl and scratch2. Provided as an example of performance difference due to usage.

