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Abstract— The roofline analysis model is a visually intuitive 
performance model used to understand hardware performance 
limitations as well as potential benefits of optimizations for 
science and engineering applications. Intel Advisor has 
provided a useful roofline analysis feature since its version 2017 
update 2, but it is not widely compatible with other compilers 
and chip-architectures. As an alternative, we have employed 
Cray Performance Analysis Tools (CrayPat) that are more 
flexible for multiple compilers and architectures. First, we 
present our procedure for measuring a reliable computational 
intensity for roofline analysis. We performed several numerical 
studies for validation via manually derived reference data as 
well as data from Intel Advisor. Second, we provide roofline 
analysis results on Blue Waters for several HPC benchmarks 
and sparse linear algebra libraries. In addition, we present an 
example of roofline-based performance projection for a future 
system.   

Keywords-roofline performance analysis; profiling; high 
performance computing; CrayPat; performance projection 

I.    INTRODUCTION 
Measuring performance of High-Performance Computing 

(HPC) applications is exciting but challenging because their 
algorithms are often too complicated for HPC application 
developers to readily perceive their major performance 
bottlenecks. In addition, modern HPC systems are complex 
enough to mask choke points from the developers. As many 
experts in HPC communities have realized and raised [1-3], 
performance of modern HPC systems and their applications 
cannot be simply measured by an outdated kernel that is 
closely connected with the peak performance of processors. 
The performance of many HPC applications is actually 
bounded by other components of modern HPC systems: 
latency and bandwidth of cache, memory and network. For 
that reason, we have made continuous efforts to develop 
comprehensive and accurate benchmarks for modern HPC 
systems by employing prevailing kernels used by modern 
HPC codes, and popular HPC applications engaged by many 
domain-specific science groups [4-6].  

The roofline analysis model [7] is a powerful tool for HPC 
code developers since it provides visually intuitive plots for 
the performance of their applications and kernels in terms of 
computational intensity (CI) and flop-rate. Intel® Advisor 
started providing a useful cache-aware roofline analysis 
model [8] in a handy way since its version 2017 update 2; 
however, it is not widely compatible with other compilers 

(e.g., PGI, CRAY, GNU) and other processor-architectures 
(e.g., AMD, ARM, GPUs). As an alternative, we have 
employed Cray Performance Analysis Tools (CrayPat) for a 
main platform of our roofline analysis model, making it 
flexible for multiple compilers and architectures. We have 
validated our CrayPat-based roofline analysis method via 
manually counted reference data from our codes as well as 
data from Intel Advisor. In addition, we have applied the 
proposed method for several HPC benchmarks and sparse 
linear algebra libraries in order to characterize them in term of 
computational intensity.  

For numerical validation and development, we have used 
the Blue Waters system managed by National Center for 
Supercomputing Applications (NCSA) at University of 
Illinois at Urbana-Champaign. Blue Waters [9-10] is a Cray 
XE6/XK7 hybrid supercomputer with 22,640 CPU-based 
XE6 nodes and 4,228 GPU-enabled XK7 nodes. In this study, 
we have mainly used the XE6 dual-socket nodes that are 
populated with 2 AMD Interlagos model 6276 CPU 
processors with a nominal clock speed of at least 2.3GHz and 
64 GB of DDR memory. Each XE node has 16 Floating-Point 
Units (FPUs) shared by 32 integer cores, 16 KB L1 data cache 
per core, 64 KB instruction cache per FPU, 2 MB L2 data 
cache per FPU, and 16 MB L3 data cache per socket.  

This paper is organized as follows: Section II presents 
roofline measurements of Blue Waters XE nodes. In Section 
III, we discuss how to measure computational intensity based 
on hardware performance counters and validate it. Section IV 
covers our roofline performance analysis results for selected 
HPC benchmarks and several sparse direct/iterative linear 
equation solvers. Section V presents our roofline-based 
performance projection of a production-level science 
application for a new processor. In Section VI, we summarize 
our work in this study.  

II.   ROOFLINE MEASUREMENTS OF A BLUE WATERS XE 
NODE 

We measured the maximum bandwidth for the various 
levels of the memory and the maximum flop-rate on a Blue 
Waters XE node using the Empirical Roofline Tool (ERT) [11] 
version 1.1.0. Three types of compilers were used with the 
ERT as follows: 
 

•   GNU compiler: gcc/4.9.3 and gcc/6.3.0 
•   Cray compiler: cce/8.5.8 
•   PGI compiler: pgi/17.5.0 



 

 
The ERT basically provides the maximum flop-rates for 

double precision (DP) calculations. In order to get the 
maximum flop-rates for single precision (SP) calculations, we 
changed “double” variables to “float” variables in driver1.c, 
kernel1.h, and kernel1.c of the ERT. For both DP and SP, we 
considered the following types of peak flop-rates: 

 
•   Vector FMA peak flop-rate: the maximum flop-rate 

with the SIMD vectorization and the FMA4 
instructions 

•   Vector Add peak flop-rate: the maximum flop-rate 
with the SIMD vectorization and without the FMA4 
instructions 

•   Scalar Add peak flop-rate: the maximum flop-rate 
without the SIMD vectorization and the FMA4 
instructions 

 

 
 
We measured three types of peak flop-rates with GNU and 

Cray compilers for DP and SP, while we only evaluated the 
Vector FMA peak flop-rates for DP and SP with PGI 
compiler. Table I presents our ERT measurements on a Blue 
Waters XE node. Since multiple executions for SP Vector 
FMA peak with Cray compiler generated unreasonable data, 
we didn’t add the data to the table. During all evaluations, 
ERT missed L3 cache bandwidth of AMD Interlagos 
processor, and ERT even missed L2 cache bandwidth during 
SP Scalar Add peak measurements. SP peak flop-rates are 
generally twice DP peak flop-rates with vectorization (i.e., 

Vector FMA and Vector Add peaks), while SP peaks are 
similar to DP peaks without vectorization (i.e., Scalar Add).  

Figure 1 presents the maximum values of measured 
bandwidths and flop-rates from Table I, and corresponding 
rooflines for a Blue Waters XE node. The red lines represent 
rooflines for L1, L2 and DRAM bandwidths. Two blue lines 
describes Vector FMA peaks for SP and DP, while the 
magenta lines present rooflines of Vector Add peak flop-rates 
for SP and DP. The green line shows Scalar Add peak 
performance for SP and DP.  

 

III.   COMPUTATIONAL INTENSITIES BASED ON HARDWARE 
PERFORMANCE COUNTERS 

Computational intensity (i.e., arithmetic intensity, 
operational intensity) is the ratio of floating-point operations 
(FLOPS) to data movements (bytes) among processor 
registers, L1/L2/L3 data caches and DRAM. One of the most 
challenging aspects of performing roofline analysis with 
CrayPat is how to validate if the measured computational 
intensity (CI) with selected hardware performance counters 
via CrayPat is reliable or not. For that, we have investigated 
many types of hardware performance counters and validated 
the derived CIs via manually-counted data from our own 
codes as well as arithmetic intensity data from Intel Advisor.  

A.   Validation via Kernels for Computing Geometric Series 
In order to find an optimal set of hardware performance 

counters for a reliable CI measurement, we implemented 
kernels for computing a geometric series. The nth order of 
geometric series in (1) requires only 2 memory references 
(i.e., 1 read and 1 store) as presented in (2); therefore, data 
movements for a geometric series with SP and DP are 8 bytes 
and 16 bytes, respectively. Even though FLOPS depend on the 
implementation and its compiler optimization, the nth order 
geometric series includes at least n additions and n-1 
multiplications; accordingly, the minimum FLOPS is 2n-1 as 
given in (3). As a result, kernels for computing geometric 
series can cover a wide range of CIs simply by employing 
various orders of series, as defined in (4). For DP, the CI is 

TABLE I.    EMPIRICAL ROOFLINE TOOL (ERT) MEASUREMENTS ON A 
BLUE WATERS XE NODE 

Type Compiler Flop-rate 
(GFLOP/s) 

Bandwidth (GB/s) 
L1 L2 DRAM 

DP 
Vector 
FMA 

gcc/4.9.3 223.7 833.1 383.0 62.0 
gcc/6.3.0 222.5 812.7 386.5 62.6 
cce/8.5.8 228.2 943.9 388.0 62.2 
pgi/17.5.0 211.4 980.0 398.1 62.2 

Max 228.2 980.0 398.1 62.6 

SP 
Vector 
FMA 

gcc/4.9.3 447.0 823.9 382.2 62.2 
gcc/6.3.0 450.8 815.4 385.0 61.7 
pgi/17.5.0 414.3 592.1 360.7 62.2 

Max 450.8 823.9 385.0 62.2 

DP 
Vector 

Add 

gcc/4.9.3 114.6 824.2 383.6 62.2 
gcc/6.3.0 115.8 715.0 389.2 62.2 
cce/8.5.8 117.8 940.5 382.1 62.2 

Max 117.8 940.5 389.2 62.2 

SP 
Vector 

Add 

gcc/4.9.3 225.5 816.8 385.9 61.8 
gcc/6.3.0 234.6 822.5 386.3 62.0 
cce/8.5.8 235.3 934.9 382.6 62.1 

Max 235.3 934.9 385.9 62.1 

DP 
Scalar 
Add 

gcc/4.9.3 60.1 495.0 357.5 62.1 
gcc/6.3.0 64.7 492.4 362.3 62.4 
cce/8.5.8 60.3 547.9 379.8 62.2 

Max 64.7 547.9 379.8 62.4 

SP 
Scalar 
Add 

gcc/4.9.3 60.8 266.6 

 

62.3 
gcc/6.3.0 64.1 274.4 62.3 
cce/8.5.8 61.1 260.1 62.2 

Max 64.1 274.4 62.3 

 

 
Figure 1.    ERT measurements-based rooflines of a Blue Waters XE node 



 

greater than or equal to 0.0625 FLOPS/byte, while it is greater 
than or equal to 0.125 FLOPS/byte for SP.  

 
OM(n) = 1+M+M2+M3+ … +Mn  (1) 
Data movement = 2 variables    (2) 
Minimum FLOPs = 2n – 1   (3) 
CI = (2n-1) / (2 variables)   (4) 

 
We implemented the geometric series computation in 

three ways (i.e., inline-implementation, recursive loops, and 
flat loops) as presented in Table II. All kernels start with a 
m´m array whose components are initialized by different 
random numbers. We tested the kernels for the order from 1 
to 29; therefore, the ranges of theoretical CI in FLOPS/byte 
are from 0.0625 to 3.5625 for DP and from 0.125 to 7.125 for 
SP. Using 32 MPI ranks, we fully activated all cores in a single 
XE node during these tests.   

 
We have tested a large set of hardware performance 

counters to measure data movements for roofline performance 
analysis, and then selected one of the most reliable counters, 
DATA_CACHE_REFILLS_FROM_L2_OR_NORTHBRID
GE: GOOD that represents the number of data cache refills 
satisfied from the L2 cache and/or the system with valid final 
status [12]. Each increment of this counter reflects a 64-byte 
transfer, so we convert the raw data to bytes with the ratio. In 
this paper we use DCR_GOOD as an abbreviation for 
DATA_CACHE_REFILLS_FROM_L2_OR_NORTHBRID
GE: GOOD.  

As a default, CrayPat uses L1_DCA (i.e., level 1 data 
cache accesses) data for data movements in computing the 
default CI. L1_DCA reports the number of load and store 
references, and we consider a single reference as a single 
vector length (i.e., 16 bytes = 128 bits for Interlagos 
processors). We compare our choice (i.e., DCR_GOOD) of 
hardware counter data with the CrayPat-default data (i.e., 
L1_DCA) in this section.  

We performed the validation tests with an extensive set of 
runtime parameters (i.e., 4176 cases in total) as follows: 

 
•   The order of the series: 1 to 29 (i.e., 29 cases) 
•   The size of array per MPI rank: 642, 2562, 10242, and 

40962 (i.e., 4 cases) 
•   Variable type: 4-byte SP and 8-byte DP (i.e., 2 cases) 
•   Compiler type: gnu, cray, and pgi (i.e., 3 cases) 
•   Optimization level: O0 and O3 (i.e., 2 cases) 
•   Implementation type: inline, recursive loop, and flat 

loop (i.e., 3 cases) 
 

Due to the limited space in this paper, we cannot provide 
data for all 4176 cases. Instead, we present statistical data and 
several selected data for discussion.  

Figures 2(a) and 2(b) present the coefficients of variation 
(i.e., ratios of the standard deviation over the mean value) of 
hardware performance counter data for byte movements with 
the O3 and O0 optimizations, respectively. Figure 3(a) and 
3(b) show the range of the minimum and maximum values of 
byte measurements with the O3 and O0 optimization. Each 
figure has four plots for L1_DCA with DP, L1_DCA with SP, 
DCR_GOOD with DP, and DCR_GOOD with SP.  Each point 
of the plots represents 29 cases that use the same size of array, 
variable type, compiler type, optimization level and 
implementation type, but compute different orders of the 
geometric series. The x-axis represents the characteristics of 
the case in the format of {compiler type}-{implementation 
type}-{row size of the tested array}. In general, 
DCR_GOOD-based measurements show very little variation 
compared to L1_DCA-based byte measurements. Depending 
on case conditions, L1_DCA with the O3 optimization 
provides relatively small variation for some cases (e.g., 
cray_RecurLoop and pgi_RecurLoop cases), but L1_DCA 
with the O0 optimization provides very large variation for all 
cases. From this comparison, we realize that L1_DCA-based 
measurements are not precise enough for measuring byte 
movements for roofline analysis, and DCR_GOOD provides 
very reliable data for byte measurements.  

Based on the variation plots in Figures 2 and 3, we selected 
several cases to see raw data and corresponding exact values 
(based on (2)) as presented in Figure 4. Figure 4(a) shows a 
case, cray-RecurLoop-m4096-O3 that uses cray compiler 
with the O3 optimization and computes the geometric series 
for a 40962 array with recursive loops. As presented in the 
variation plots, DCR_GOOD and L1_DCA data of Figure 
4(a) show little variation, and both of them provide very 
accurate data compared to the exact values. In Figures 4(b), 
4(c), 4(d), and 4(e), L1_DCA plots show large variation as 
well as inaccurate data, while DCR_GOOD plots show very 
precise and accurate data. In Figure 4(f), L1_DCA plots show 
very little variation as presented in Figures 2 and 3; however, 
the measured data overestimate the byte movements, so it 
turns out the accuracy of L1_DCA is poor on the case.  

 

TABLE II.    THREE TYPES OF KERNELS IMPLEMENTED FOR COMPUTING 
N-TH GEOMETRIC SERIES 

Inline-implementation: 
Loops for i and j from 1 to m: 
        OM(i,j) = 1.0 + M(i,j) + M(i,j)^2 + M(i,j)^3 + ... + M(i,j)^n 

Recursive loops: 
Loops for i and j from 1 to m: 
        OM(i,j) = 1.0 
        A loop for k from 1 to n: 
                OM(i,j) = OM(i,j)*M(i,j) + 1.0 

Flat loops: 
Loops for i and j from 1 to m: 
        OM(i,j) = 1.0 
        A loop for k from 1 to n: 
                OM(i,j) = OM(i,j) + M(i,j)^k 

 



 

 

 
(a) The O3 optimization 

 

(b) The O0 optimization 

Figure 2.    The coefficients of variation of hardware counter data for byte movements with the O3 and O0 optimizations 

 

(a) The O3 optimization 

 

(b) The O0 optimization 

Figure 3.    The range of the minimum and maximum values of byte measurements with the O3 and O0 optimizations 



 

 

 

(a) cray-RecurLoop-m4096-O3                                   (b) gnu-Inline-m1024-O3                                     (c) pgi-FlatLoop-m0256-O3 

 

(d) cray-RecurLoop-m4096-O0                                   (e) gnu-FlatLoop-m0256-O3                              (f) pgi-RecurLoop-m1024-O3 

Figure 4.    Raw data of byte movements for selected cases (i.e., {compiler type}-{implementation type}-{row size of array}-{optimization level}) 

 
(a) The O3 optimization 

 

(b) The O0 optimization 

Figure 5.    The ratio of the mean value of hardware counter data over the exact byte movements with the O3 and O0 optimizations 

 

 



 

Figure 5 presents plots for the ratio of the mean value of 
hardware counter data over the exact byte movements for all 
cases that represents overall accuracy of L1_DCA and 
DCR_GOOD measurements. DCR_GOOD generates very 
consistent and accurate data for byte movements for all cases, 
while L1_DCA data are fluctuating and unreliable. 
Accordingly, it turns out that the CrayPat-default CI is not 
reliable to estimate the ratio of FLOPS over bytes. Instead, we 
recommend using DCR_GOOD-based CI for roofline 
performance analysis. 

B.   Validation via 2D/3D stencil codes 
In addition to the geometric series code, we implemented 

our own stencil codes in 2D and 3D in order to validate 
measured byte movements and FLOPs via CrayPat, and 
corresponding CIs. Table III shows main kernels of 2D and 
3D stencil codes instrumented by CrayPat API. As presented 
in Table IV, the 5-point 2D stencil kernel includes 4 floating-
point operations and 5 data movements (i.e., 4 reads and 1 
stores) per point, so CIs for DP and SP are 0.1 and 0.2 
FLOPS/byte. The 7-point 3D stencil kernel includes 6 
floating-point operations and 7 data movements (i.e., 6 reads 
and 1 stores); therefore, CIs for DP and SP are 0.1071 and 
0.2143 in FLOPS/byte, respectively.  

 

 
 
During validation tests, we fully activated all cores in a 

single XE node by launching kernels on 32 MPI ranks. With 

CrayPat version 6.4.6, we collected hardware performance 
counter data only for the main kernels enclosed by CrayPat 
API. We performed the kernels with a large set of parameters 
(i.e., 72 cases in total) as follows: 

 
•   Stencil size per MPI rank (i.e., (n+2)2 for 2D and 

(n+2)3 for 3D): (2048+2)2, (4096+2)2, (8192+2)2 for 
2D, and (128+2)2, (256+2)2, (416+2)2 for 3D (i.e., 6 
cases in total) 

•   Variable type: 4-byte SP and 8-byte DP (i.e., 2 cases) 
•   Compiler type: gnu 4.9.3, cray 8.5.8, and pgi 17.5.0 

(i.e., 3 cases) 
•   Optimization level: O0 and O3 (i.e., 2 cases) 
 
Figure 6 presents the ratio of the measured data 

movements via CrayPat over the exact data movements. 
L1_DCA measurements show big fluctuations between the 
O0 and O3 optimizations as well as between DP and SP. 
DCR_GOOD measurements are relatively consistent for all 
compiler types, stencil sizes, optimization levels and variable 
types. The ratio of DCR_GOOD measurements over exact 
byte movements is from 0.569 to 1.281, while the ratio of 
L1_DCA measurements over the exact byte transfers is 
between 1.798 and 38.3 as presented in Table V. Accordingly, 
the geometric mean of L1_DCA-based ratios is 5.87, while 
the geometric mean of DCR_GOOD-based ratios is 0.812. 
Therefore, it turns out DCR_GOOD measurements are more 
precise and accurate than L1_DCA measurements for data 
movements.  

 
 
Figure 7 shows the measured FLOPs via CrayPat as well 

as the exact FLOPs. For all compiler types, variables types, 
stencil sizes and optimization levels, the FLOP measurements 
are extremely accurate. Figure 8 presents the ratio of the 
computed CIs over the exact CIs. DCR_GOOD-based CIs are 
much more accurate than L1_DCA-based CIs. As given in 
Table VI, the geometric mean of DCR_GOOD-based CIs is 
23.1% higher than the exact CIs, while the geometric mean of 
L1_DCA-based CIs is around one sixth of the exact CIs. The 
ratio of the maximum CI over the minimum CI of L1_DCA-
based CIs is 21.3, while the ratio of DCR_GOOD-based CIs 
is only 2.25. In summary, DCR_GOOD-based CIs are much 
more reliable than L1_DCA-based CIs.   

 
 

TABLE III.    THE MAIN KERNELS OF THE 2D/3D STENCIL CODES 

5-point 2D stencil code: 
Loops for iter from 1 to niter: 
        PAT_region_begin() 
        Loops for i and j from 2 to n+1: 
                OM(i,j) = 0.25* ( M(i+1,j) + M(i-1,j) + M(i,j+1) + M(i,j-1)  ) 
        PAT_region_end() 
        Loops for i and j from 2 to n+1: 
                M(i,j) = OM(i,j) 

7-point 3D stencil code: 
Loops for iter from 1 to niter: 
        PAT_region_begin() 
        Loops for i, j and k from 2 to n+1: 
                OM(i,j,k) = 0.166666666666666667 * ( M(i+1,j,k) + M(i-1,j,k)                 
                                + M(i,j+1,k) + M(i,j-1,k) + M(i,j,k+1) + M(i,j,k-1)  ) 
        PAT_region_end() 
        Loops for i and j from 2 to n+1: 
                M(i,j,k) = OM(i,j,k) 

 
TABLE IV.    FLOPS, DATA MOVEMENTS AND CI OF THE MAIN KERNELS 

OF THE 2D/3D STENCIL CODES 

5-point 2D stencil code: 
        FLOPs = 4*n*n*niter 
        Data Movements = 5*n*n*niter 
        CI for DP = 4./5/8 = 0.1 FLOPS/byte 
        CI for SP = 4./5/4 = 0.2 FLOPS/byte 
7-point 3D stencil code: 
        FLOPs = 6*n*n*n*niter 
        Data Movements = 7*n*n*n*niter 
        CI for DP = 6./7/8 = 0.1071 FLOPS/byte 
        CI for SP = 6./7/4 = 0.2143 FLOPS/byte 

 

TABLE V.    STATISTICS OF THE RATIO OF MEASURED BYTE OVER 
EXACT BYTE MOVEMENTS 

Counters Min Geometric mean Max 
L1_DCA 1.798 5.87 38.3 

DCR_GOOD 0.569 0.812 1.281 

 

TABLE VI.    STATISTICS OF THE RATIO OF DERIVED CI OVER EXACT CI 

Counters Min Geometric mean Max Max/min 
L1_DCA 0.0261 0.1703 0.556 21.3 

DCR_GOOD 0.781 1.231 1.757 2.25 

 



 

 

 

 

 

 

As a reference, 2D/3D stencil kernels were performed with 
Intel Advisor on Intel E5-2680V4 (Broadwell) processors. 
Figure 9 shows a screenshot of Intel Advisor roofline features 
and Table VII shows computational intensities of DP and SP 
loops. The CI values from Intel Advisor are very close to 
corresponding exact CI values. However, Intel Advisor may 
have the following limitations compared to CrayPat-based 
roofline analysis: 

 
•   Intel Advisor is not compatible with other vendor’s 

processors such as AMD, ARM, and NVIDIA.  
•   Intel Advisor is not compatible with other compilers 

(e.g., cray, pgi, gcc, and arm). 
•   Intel Advisor requires at least two executions (i.e., 

Survey analysis and Trip Counts Analysis with 
FLOP) for roofline features analysis, thus it may not 
be suitable for large-scale simulations.  

 

Figure 6.    The ratio of the measured data movements via CrayPat over the exact data movements of 2D/3D stencil codes 

 

 

Figure 7.    FLOP measurements via CrayPat of 2D/3D stencil codes 

 

 

 

Figure 8.    The ratio of the computed CIs over the exact CIs of 2D/3D stencil codes 

 

 
Figure 9.    A screenshot of Intel Advisor Roofline features; 3D kernel with 

(256+2)3 stencil (red dot for DP, yellow dot for SP)  

TABLE VII.    CI FROM INTEL ADVISOR (INTEL/18.0 WITH -O3 -XHOST) 

Stencil size Source CI with DP CI with SP 
2D: (2048+2)2 Intel Advisor 0.10002 0.20008 
3D: (256+2)3 Intel Advisor 0.10726 0.21477 

 



 

IV.   CRAYPAT-BASED ROOFLINE ANALYSIS FOR HPC 
BENCHMARKS AND POPULAR KERNELS 

Using the DCR_GOOD-based CI, we performed CrayPat-
based roofline analysis for multiple HPC benchmarks on Blue 
Waters (See Appendix A for L1_DCA-based roofline analysis 
plots). We first provide roofline analysis plots for 2D/3D 
stencil kernels discussed in the previous section. Second, we 
report CrayPat-based roofline analysis results for High-
Performance Conjugate Gradients (HPCG) and High-
Performance Geometric Multigrid (HPGMG) benchmarks 
that represent multiple sets of kernels employed by many 
science and engineering applications [6, 13, 14]. Last, we 
introduce roofline analysis plots for sparse linear algebra 
libraries with multiple non-symmetric matrices from a 
computational fluid dynamics (CFD) code [4]. We employed 
PETSc [15] for parallel sparse iterative solvers, and MUMPS 
[16] and SuperLU [17] for parallel sparse direct solvers.  

A.   2D/3D stencil kernels 
We performed CrayPat-based roofline analysis with the 

2D/3D stencil kernels presented in Table III. The executable 
binaries were built with cce/8.5.8 and the O3 optimization, 
and they were instrumented by CrayPat 6.4.6.  

Figure 10 presents CrayPat-based roofline analysis results 
for the 5-point 2D stencil with various stencil sizes (e.g., 
(128+2)2 to (8192+2)2). For all cases, the performance of the 
kernel is bounded by memory bandwidth (e.g., L2 or DRAM 
bandwidth). For small sizes of stencils (i.e., (128+2)2 for DP 
and SP, (256+2)2 for DP and SP), the size of required arrays 
(i.e., M and OM in Table III) for the kernel is less than or equal 
to 1 MB (i.e., L2 data cache size per a single integer core); 
therefore, the performance is bounded by the L2 data cache 
bandwidth. In other cases, the kernel performance is bounded 
by the DRAM bandwidth.  

 
Figure 11 provides CrayPat-based roofline analysis plots 

for the 7-point 3D stencil kernel with multiple stencil sizes 
(e.g., (16+2)3 to (416+2)3). Performance with small stencils 
(e.g., (16+2)3 and (32+2)3 for DP and SP) is bounded by the 
L2 data cache bandwidth, since the required array size for the 
kernel is less than the L2 data cache size for a single integer 

core. For large stencils (e.g., (64+2)3 to (416+2)3), the 
performance is bounded by the DRAM bandwidth.  

 
B.   HPCG and HPGMG 

The HPCG [13] solves a synthetically discretized elliptic 
partial differential equation in 3 dimensions with zero 
Dirichlet boundary conditions and a synthetic right-hand-size 
vector with a 27-point stencil operator. It includes dense and 
sparse computations, dense and sparse collectives, multi-scale 
execution of kernels through truncated multi-grid V cycles, 
and data-driven parallelism for unstructured sparse triangular 
solves. We used gcc/4.9.3 to build the executable binary with 
the following flags: -O3 -ffast-math -ftree-vectorize -
fopenmp. 

We performed CrayPat-based roofline analyses for HPCG 
with 128 MPI ranks on 4 XE nodes for multiple sizes of 
stencils (e.g., 163 to 1283 per MPI rank), as presented in Figure 
12. In all cases, the DCR_GOOD-based CIs are similar to 
each other, and the performance is bounded by DRAM 
bandwidth. We cannot observe cache effect for small stencils.   

 
 

 
Figure 10.   CrayPat-based roofline analysis plots for 5-point 2D stencil 

kernels 

 
Figure 11.   CrayPat-based roofline analysis plots for 7-point 3D stencil 

kernels 

 
Figure 12.   CrayPat-based roofline analysis plots for HPCG on 4 XE nodes 



 

HPGMG-FV [14] employs a geometric multi-grid method 
to solve an elliptic problem on isotropic Cartesian grids. Using 
4th-order accuracy finite volumes, it calculates a flux term on 
each of the 6 faces on every cell in the entire domain. For the 
solution process, it employs the full multi-grid (FMG) F-cycle 
that is a series of progressively deeper geometric multi-grid 
V-cycles. We built HPGMG-FV with gcc/4.9.3 with the 
following flags: -O3 -ftree-vectorize -ffast-math -fopenmp -
m64. For roofline analyses, we employed 5 different 
resolutions (i.e., 163, 323, 643, 1283 and 2563 cubes per MPI 
ranks) on 16 XE nodes (i.e., 512 MPI ranks). In Figure 13, the 
performance of HPGMG-FV gradually increases as the local 
cube size increases; it is because the ratio of local 
computations over communications becomes higher and the 
load imbalance from the FMG F-cycle is getting negligible. 
The overall performance of HPGMG-FV is bounded by the 
L2 data cache bandwidth.  

 
C.   Sparse Linear Solvers 

PETSc [15] provides a variety of Krylov subspace 
methods and scalable parallel preconditioners. In this section, 
we performed roofline analysis with the transpose free QMR 
(i.e., tfqmr) solver and the classical additive Schwarz (i.e., 
asm_basic) preconditioner from cray-petsc/3.6.3.0. For the 
performance analyses, we employed various compressed 
sparse row (CSR) matrices (i.e., 10K, 83K, 684K and 2Mdofs) 
derived from a computational fluid dynamics (CFD) code [4]. 
Figure 14 presents CrayPat-based roofline analysis plots for 
the selected PETSc solver and preconditioner on 1 XE and 32 
XE nodes. Since the PETSc solver mainly uses FPUs, we 
assigned one MPI rank per one FPU; as a result, we used 16 
MPI ranks on 1 XE node and 512 MPI ranks on 32 XE nodes.  
All cases show pretty similar CI values to each other. Due to 
cache effects, small inputs yield higher performance per node. 
For the same CSR matrices, per-node performance on a single 
node is better than per-node performance on multiple nodes, 
since single-node computation doesn’t require an additional 
networking cost. However, the networking overhead is not 
very critical in Figure 15, so we can expect that PETSc users 

easily accumulate the per-node performance by employing 
more compute nodes to solve their linear equations.  

 
Figures 15 and 16 shows roofline analysis results for 

MUMPS and SuperLU from cray-tpsl/16.03.1. As the CSR 
matrix size increases on 1 XE node, the corresponding 
computational intensity value also increases, and the per-node 
performance increases accordingly. For the same size of CSR 
matrix (i.e., 684Kdofs), the computational intensity on 32 XE 
nodes is lower than on 1 XE node, since the local block size 
per MPI rank decreases. The per-node performance of sparse 
direct solvers is highly dependent on their local block size; 
therefore, their strong scalability may not be competitive with 
other sparse iterative solvers.  

Note that the per-node performance here means 
GFLOPS/s; therefore, it cannot represent the actual 
performance of the sparse solvers. Since sparse iterative or 
sparse direct solvers require totally different numbers of 
FLOPS to get a solution with a certain accuracy, the time-to-
solutions of sparse iterative and direct solvers can be very 
different from each other. Our former study [4] provides more 
details.  

 

 
Figure 13.   CrayPat-based roofline analysis plots for HPGMG-FV on 16 

XE nodes 

 
Figure 14.   CrayPat-based roofline analysis plots for PETSc tfqmr solver 

with asm_basic preconditioner on 1 XE or 32 XE nodes 

 
Figure 15.   CrayPat-based roofline analysis plots for MUMPS on 1 XE or 

32 XE nodes 



 

 

V.   ROOFLINE-BASED PERFORMANCE PROJECTION FOR A 
NEW PROCESSOR 

As an example of roofline-based performance projection 
for a new processor, we employed SETSM (Surface 
Extraction with TIN-based Search-space Minimization) code 
[18] from the ArcticDEM project [19] on Blue Waters.  

We first performed the CrayPat-based roofline analysis, as 
presented in Figure 17. For the analysis, we selected four 
critical groups (i.e., U/VLL, U/main, U/OT, and U/VLL_B) 
that used 84.6% of the entire wall time, as presented in Table 
VIII. According to the CrayPat report, U/main was a serial 
function, while other three groups were multi-threaded 
functions. Based on the roofline analysis results, we assumed 
flop-rates of all groups are bounded by the DRAM bandwidth. 

We selected three types of nodes for this practice: dual Ivy 
Bridge EP processors (i.e., E5-2670V2), dual Haswell 
processors (i.e., E5-2680V3), and dual Broadwell processors 
(i.e., E5-2680V4). Table IX shows the measured DRAM 
bandwidths of an XE node and three target nodes using the 
stream benchmark [20]. We used DRAM bandwidth per 
NUMA domain for the maximum bandwidth of the serial 
processes in the U/main group. While an XE node has four 
NUMA domains, other nodes with Intel processors have two 
NUMA domains. 

We used (5) for the performance projections of multi-
threaded groups (i.e., U/VLL, U/OT and U/VLL_B), and (6) 
was used for the serial group (i.e., U/main). After the 
performance projection of four groups, we computed the 
overall wall time using (7). The constant, 0.846 is the ratio of 
the sum of four groups’ wall times over the total wall time on 
an XE node. As a result, we computed the roofline-based 
performance projections as presented in Table X.  

 
WTtargetthreaded = WTXE*(BWNODE)XE / (BWNODE)target    (5) 
WTtargetserial = WTXE*(BWNUMA)XE / (BWNUMA)target         (6) 
WTtargetoverall = (sum of WTtarget) / 0.846      (7) 

 

Table XI shows actually measured wall times of SETSM on 
the target nodes. The error range of the projected performance 
over the measured performance is from 7% to 10%.  

 

 

 

 

 
 

 
Figure 16.   CrayPat-based roofline analysis plots for SuperLU on 1 XE or 

32 XE nodes 
 

Figure 17.   CrayPat-based roofline analysis plots for SETSM (32 threads on 
1 XE node) with various optimizations 

TABLE VIII.    CRAYPAT PERFORMANCE DATA OF SETSM ON 1 XE NODE  

Groups Wall time (s) Percentiles (%) Note 
U/VLL 997.6 33.1 multi-threaded 
U/main 761.3 25.3 serial 
U/OT 757.8 25.2 multi-threaded 

U/VLL_B 31.1 1.0 multi-threaded 
Others 464.1 15.4  
Total 3011.9 100  

 

TABLE IX.    MEASURED DRAM BANDWIDTHS OF AN XE NODE AND 
TARGET NODES  

Processor type 

DRAM 
bandwidth 
per node 
(GB/s) (a) 

DRAM 
bandwidth 
per NUMA 

(GB/s) 
Dual Interlagos 59.6 14.9(b) 

Dual Ivy Bridge EP (E5-2670V2) 93.5 46.7(c) 
Dual Haswell (E5-2680V3) 112.3 56.2(c) 

Dual Broadwell (E5-2680V4) 125.1 62.5(c) 
(a) Measured via the stream benchmark, (b) Four NUMA domains per node,  

(c) Two NUMA domains per node 
 

TABLE X.    ROOFLINE-BASED PERFORMACE PROJECTIONS 

Processor type Projected 
wall time (s) 

Speed up 
over an XE 

Dual Ivy Bridge EP (E5-2670V2) 1715.3 1.76 
Dual Haswell (E5-2680V3) 1427.7 2.11 

Dual Broadwell (E5-2680V4) 1282.2 2.35 
 

TABLE XI.    MEASURED WALL TIMES ON THE TARGET NODES 

Processor type Measured 
wall time (s) 

Error of 
projection 

(%)  
Dual Ivy Bridge EP (E5-2670V2) 1603.0 7.00 

Dual Haswell (E5-2680V3) 1293.0 10.42 
Dual Broadwell (E5-2680V4) 1168.0 9.78 

 



 

VI.   CONCLUDING REMARKS 
We propose a reliable and practical method for the roofline 

analysis model with CrayPat. It is widely compatible with 
many types of compilers and various processor architectures. 
We first employed CrayPat-default computational intensity 
data for roofline analysis; however, it turned out the default 
configuration was not accurate, since the employed hardware 
performance counter for data movements was not reliable for 
different optimization levels, multiple compiler types and 
various problem sizes. We have performed an extensive set of 
tests to find one of the most optimal hardware counters for 
data movements; as a result, we recommend using the number 
of data cache refills satisfied from the L2 cache and/or the 
system (e.g., L3 cache or DRAM) with valid final status to 
measure data movements for the roofline analysis. During the 
investigation processes, we have used our homegrown test 
kernels (e.g., multiple kernels for computing geometric series, 
a 5-point 2D stencil kernel, and a 7-point 3D stencil kernel) to 
verify our procedure.  

After intensive verification and validation processes, we 
have performed the proposed CrayPat-based roofline analysis 
for multiple kernels, HPC benchmarks and popular linear 
algebra libraries for HPC applications. Based on the “visually-
intuitive” roofline performance plots, we present our 
discussion about performance characteristics of the employed 
applications. In addition, we present an example of the 
roofline analysis model for a performance projection on a new 
processor. Using CrayPat and the proposed method, we first 
analyzed the performance characteristics of several important 
groups of a production-level code on Blue Waters; then, we 
projected the groups’ performance for target processors based 
on the characteristics and accumulated the projected 
performance to represent the overall performance of the code 
on the new processor. After having the projected overall 
performance, we performed the simulation on the target 
processor, and validated our performance projection 
approach. It turns out our performance projection method is a 
reasonable way to estimate overall performance of HPC 
applications on new processors.  

We plan to perform similar analyses with GPU nodes and 
other processors (e.g., ARM), and we will share our developed 
python scripts for general roofline performance model, 
General Roofline Evaluation Gadget (GREG) via our public 
GitHub repository [21]. We hope our study will help other 
Cray users characterize and optimize their science and 
engineering applications via the proposed CrayPat-based 
roofline analysis at scale on their HPC systems. In addition, 
we hope the introduced methodology will be used to 
determine an optimal method for roofline analyses on other 
Cray systems.  
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APPENDIX A 
Section IV includes roofline performance analysis plots 

based on DCR_GOOD measurements. As a reference, we 
provide roofline plots based on L1_DCA measurements in 
Appendix A. Since L1_DCA always overestimates the byte 
transfer, L1_DCA-based CI values are much smaller than 
DCR_GOOD-based CIs in Section IV.  

 

 

 

 

 

 
 

 
Figure 18.   L1_DCA-based roofline analysis plots for 5-point 2D stencil 

kernels 

 
Figure 19.   L1_DCA-based roofline analysis plots for 7-point 3D stencil 

kernels 

 
Figure 20.   L1_DCA-based roofline analysis plots for HPCG on 4 XE 

nodes 

 
Figure 21.   L1_DCA-based roofline analysis plots for HPGMG-FV on 16 

XE nodes 

 
Figure 22.   L1_DCA-based roofline analysis plots for PETSc tfqmr solver 

with asm_basic preconditioner on 1 XE or 32 XE nodes 



 

 
 

 
 

 
Figure 23.   L1_DCA-based roofline analysis plots for MUMPS on 1 XE or 

32 XE nodes 

 
Figure 24.   L1_DCA-based roofline analysis plots for SuperLU on 1 XE or 

32 XE nodes 


