

This paper has been accepted and will be published as an article in
a special issue of Concurrency and Computation Practice and
Experience on the Cray User Group 2018.

Roofline Analysis with Cray Performance Analysis Tools (CrayPat) and Roofline-
based Performance Projections for a Future Architecture

JaeHyuk Kwack, Galen Arnold, Celso Mendes, and Gregory H Bauer
National Center for Supercomputing Applications

University of Illinois at Urbana-Champaign
Urbana, IL 61801, USA

e-mail: {jkwack2, gwarnold, cmendes, gbauer}@illinois.edu

Abstract— The roofline analysis model is a visually intuitive
performance model used to understand hardware performance
limitations as well as potential benefits of optimizations for
science and engineering applications. Intel Advisor has
provided a useful roofline analysis feature since its version 2017
update 2, but it is not widely compatible with other compilers
and chip-architectures. As an alternative, we have employed
Cray Performance Analysis Tools (CrayPat) that are more
flexible for multiple compilers and architectures. First, we
present our procedure for measuring a reliable computational
intensity for roofline analysis. We performed several numerical
studies for validation via manually derived reference data as
well as data from Intel Advisor. Second, we provide roofline
analysis results on Blue Waters for several HPC benchmarks
and sparse linear algebra libraries. In addition, we present an
example of roofline-based performance projection for a future
system.

Keywords-roofline performance analysis; profiling; high
performance computing; CrayPat; performance projection

I. INTRODUCTION
Measuring performance of High-Performance Computing

(HPC) applications is exciting but challenging because their
algorithms are often too complicated for HPC application
developers to readily perceive their major performance
bottlenecks. In addition, modern HPC systems are complex
enough to mask choke points from the developers. As many
experts in HPC communities have realized and raised [1-3],
performance of modern HPC systems and their applications
cannot be simply measured by an outdated kernel that is
closely connected with the peak performance of processors.
The performance of many HPC applications is actually
bounded by other components of modern HPC systems:
latency and bandwidth of cache, memory and network. For
that reason, we have made continuous efforts to develop
comprehensive and accurate benchmarks for modern HPC
systems by employing prevailing kernels used by modern
HPC codes, and popular HPC applications engaged by many
domain-specific science groups [4-6].

The roofline analysis model [7] is a powerful tool for HPC
code developers since it provides visually intuitive plots for
the performance of their applications and kernels in terms of
computational intensity (CI) and flop-rate. Intel® Advisor
started providing a useful cache-aware roofline analysis
model [8] in a handy way since its version 2017 update 2;
however, it is not widely compatible with other compilers

(e.g., PGI, CRAY, GNU) and other processor-architectures
(e.g., AMD, ARM, GPUs). As an alternative, we have
employed Cray Performance Analysis Tools (CrayPat) for a
main platform of our roofline analysis model, making it
flexible for multiple compilers and architectures. We have
validated our CrayPat-based roofline analysis method via
manually counted reference data from our codes as well as
data from Intel Advisor. In addition, we have applied the
proposed method for several HPC benchmarks and sparse
linear algebra libraries in order to characterize them in term of
computational intensity.

For numerical validation and development, we have used
the Blue Waters system managed by National Center for
Supercomputing Applications (NCSA) at University of
Illinois at Urbana-Champaign. Blue Waters [9-10] is a Cray
XE6/XK7 hybrid supercomputer with 22,640 CPU-based
XE6 nodes and 4,228 GPU-enabled XK7 nodes. In this study,
we have mainly used the XE6 dual-socket nodes that are
populated with 2 AMD Interlagos model 6276 CPU
processors with a nominal clock speed of at least 2.3GHz and
64 GB of DDR memory. Each XE node has 16 Floating-Point
Units (FPUs) shared by 32 integer cores, 16 KB L1 data cache
per core, 64 KB instruction cache per FPU, 2 MB L2 data
cache per FPU, and 16 MB L3 data cache per socket.

This paper is organized as follows: Section II presents
roofline measurements of Blue Waters XE nodes. In Section
III, we discuss how to measure computational intensity based
on hardware performance counters and validate it. Section IV
covers our roofline performance analysis results for selected
HPC benchmarks and several sparse direct/iterative linear
equation solvers. Section V presents our roofline-based
performance projection of a production-level science
application for a new processor. In Section VI, we summarize
our work in this study.

II. ROOFLINE MEASUREMENTS OF A BLUE WATERS XE
NODE

We measured the maximum bandwidth for the various
levels of the memory and the maximum flop-rate on a Blue
Waters XE node using the Empirical Roofline Tool (ERT) [11]
version 1.1.0. Three types of compilers were used with the
ERT as follows:

• GNU compiler: gcc/4.9.3 and gcc/6.3.0
• Cray compiler: cce/8.5.8
• PGI compiler: pgi/17.5.0

The ERT basically provides the maximum flop-rates for

double precision (DP) calculations. In order to get the
maximum flop-rates for single precision (SP) calculations, we
changed “double” variables to “float” variables in driver1.c,
kernel1.h, and kernel1.c of the ERT. For both DP and SP, we
considered the following types of peak flop-rates:

• Vector FMA peak flop-rate: the maximum flop-rate

with the SIMD vectorization and the FMA4
instructions

• Vector Add peak flop-rate: the maximum flop-rate
with the SIMD vectorization and without the FMA4
instructions

• Scalar Add peak flop-rate: the maximum flop-rate
without the SIMD vectorization and the FMA4
instructions

We measured three types of peak flop-rates with GNU and

Cray compilers for DP and SP, while we only evaluated the
Vector FMA peak flop-rates for DP and SP with PGI
compiler. Table I presents our ERT measurements on a Blue
Waters XE node. Since multiple executions for SP Vector
FMA peak with Cray compiler generated unreasonable data,
we didn’t add the data to the table. During all evaluations,
ERT missed L3 cache bandwidth of AMD Interlagos
processor, and ERT even missed L2 cache bandwidth during
SP Scalar Add peak measurements. SP peak flop-rates are
generally twice DP peak flop-rates with vectorization (i.e.,

Vector FMA and Vector Add peaks), while SP peaks are
similar to DP peaks without vectorization (i.e., Scalar Add).

Figure 1 presents the maximum values of measured
bandwidths and flop-rates from Table I, and corresponding
rooflines for a Blue Waters XE node. The red lines represent
rooflines for L1, L2 and DRAM bandwidths. Two blue lines
describes Vector FMA peaks for SP and DP, while the
magenta lines present rooflines of Vector Add peak flop-rates
for SP and DP. The green line shows Scalar Add peak
performance for SP and DP.

III. COMPUTATIONAL INTENSITIES BASED ON HARDWARE
PERFORMANCE COUNTERS

Computational intensity (i.e., arithmetic intensity,
operational intensity) is the ratio of floating-point operations
(FLOPS) to data movements (bytes) among processor
registers, L1/L2/L3 data caches and DRAM. One of the most
challenging aspects of performing roofline analysis with
CrayPat is how to validate if the measured computational
intensity (CI) with selected hardware performance counters
via CrayPat is reliable or not. For that, we have investigated
many types of hardware performance counters and validated
the derived CIs via manually-counted data from our own
codes as well as arithmetic intensity data from Intel Advisor.

A. Validation via Kernels for Computing Geometric Series
In order to find an optimal set of hardware performance

counters for a reliable CI measurement, we implemented
kernels for computing a geometric series. The nth order of
geometric series in (1) requires only 2 memory references
(i.e., 1 read and 1 store) as presented in (2); therefore, data
movements for a geometric series with SP and DP are 8 bytes
and 16 bytes, respectively. Even though FLOPS depend on the
implementation and its compiler optimization, the nth order
geometric series includes at least n additions and n-1
multiplications; accordingly, the minimum FLOPS is 2n-1 as
given in (3). As a result, kernels for computing geometric
series can cover a wide range of CIs simply by employing
various orders of series, as defined in (4). For DP, the CI is

TABLE I. EMPIRICAL ROOFLINE TOOL (ERT) MEASUREMENTS ON A
BLUE WATERS XE NODE

Type Compiler Flop-rate
(GFLOP/s)

Bandwidth (GB/s)
L1 L2 DRAM

DP
Vector
FMA

gcc/4.9.3 223.7 833.1 383.0 62.0
gcc/6.3.0 222.5 812.7 386.5 62.6
cce/8.5.8 228.2 943.9 388.0 62.2
pgi/17.5.0 211.4 980.0 398.1 62.2

Max 228.2 980.0 398.1 62.6

SP
Vector
FMA

gcc/4.9.3 447.0 823.9 382.2 62.2
gcc/6.3.0 450.8 815.4 385.0 61.7
pgi/17.5.0 414.3 592.1 360.7 62.2

Max 450.8 823.9 385.0 62.2

DP
Vector

Add

gcc/4.9.3 114.6 824.2 383.6 62.2
gcc/6.3.0 115.8 715.0 389.2 62.2
cce/8.5.8 117.8 940.5 382.1 62.2

Max 117.8 940.5 389.2 62.2

SP
Vector

Add

gcc/4.9.3 225.5 816.8 385.9 61.8
gcc/6.3.0 234.6 822.5 386.3 62.0
cce/8.5.8 235.3 934.9 382.6 62.1

Max 235.3 934.9 385.9 62.1

DP
Scalar
Add

gcc/4.9.3 60.1 495.0 357.5 62.1
gcc/6.3.0 64.7 492.4 362.3 62.4
cce/8.5.8 60.3 547.9 379.8 62.2

Max 64.7 547.9 379.8 62.4

SP
Scalar
Add

gcc/4.9.3 60.8 266.6

62.3
gcc/6.3.0 64.1 274.4 62.3
cce/8.5.8 61.1 260.1 62.2

Max 64.1 274.4 62.3

Figure 1. ERT measurements-based rooflines of a Blue Waters XE node

greater than or equal to 0.0625 FLOPS/byte, while it is greater
than or equal to 0.125 FLOPS/byte for SP.

OM(n) = 1+M+M2+M3+ … +Mn (1)
Data movement = 2 variables (2)
Minimum FLOPs = 2n – 1 (3)
CI = (2n-1) / (2 variables) (4)

We implemented the geometric series computation in

three ways (i.e., inline-implementation, recursive loops, and
flat loops) as presented in Table II. All kernels start with a
m´m array whose components are initialized by different
random numbers. We tested the kernels for the order from 1
to 29; therefore, the ranges of theoretical CI in FLOPS/byte
are from 0.0625 to 3.5625 for DP and from 0.125 to 7.125 for
SP. Using 32 MPI ranks, we fully activated all cores in a single
XE node during these tests.

We have tested a large set of hardware performance

counters to measure data movements for roofline performance
analysis, and then selected one of the most reliable counters,
DATA_CACHE_REFILLS_FROM_L2_OR_NORTHBRID
GE: GOOD that represents the number of data cache refills
satisfied from the L2 cache and/or the system with valid final
status [12]. Each increment of this counter reflects a 64-byte
transfer, so we convert the raw data to bytes with the ratio. In
this paper we use DCR_GOOD as an abbreviation for
DATA_CACHE_REFILLS_FROM_L2_OR_NORTHBRID
GE: GOOD.

As a default, CrayPat uses L1_DCA (i.e., level 1 data
cache accesses) data for data movements in computing the
default CI. L1_DCA reports the number of load and store
references, and we consider a single reference as a single
vector length (i.e., 16 bytes = 128 bits for Interlagos
processors). We compare our choice (i.e., DCR_GOOD) of
hardware counter data with the CrayPat-default data (i.e.,
L1_DCA) in this section.

We performed the validation tests with an extensive set of
runtime parameters (i.e., 4176 cases in total) as follows:

• The order of the series: 1 to 29 (i.e., 29 cases)
• The size of array per MPI rank: 642, 2562, 10242, and

40962 (i.e., 4 cases)
• Variable type: 4-byte SP and 8-byte DP (i.e., 2 cases)
• Compiler type: gnu, cray, and pgi (i.e., 3 cases)
• Optimization level: O0 and O3 (i.e., 2 cases)
• Implementation type: inline, recursive loop, and flat

loop (i.e., 3 cases)

Due to the limited space in this paper, we cannot provide
data for all 4176 cases. Instead, we present statistical data and
several selected data for discussion.

Figures 2(a) and 2(b) present the coefficients of variation
(i.e., ratios of the standard deviation over the mean value) of
hardware performance counter data for byte movements with
the O3 and O0 optimizations, respectively. Figure 3(a) and
3(b) show the range of the minimum and maximum values of
byte measurements with the O3 and O0 optimization. Each
figure has four plots for L1_DCA with DP, L1_DCA with SP,
DCR_GOOD with DP, and DCR_GOOD with SP. Each point
of the plots represents 29 cases that use the same size of array,
variable type, compiler type, optimization level and
implementation type, but compute different orders of the
geometric series. The x-axis represents the characteristics of
the case in the format of {compiler type}-{implementation
type}-{row size of the tested array}. In general,
DCR_GOOD-based measurements show very little variation
compared to L1_DCA-based byte measurements. Depending
on case conditions, L1_DCA with the O3 optimization
provides relatively small variation for some cases (e.g.,
cray_RecurLoop and pgi_RecurLoop cases), but L1_DCA
with the O0 optimization provides very large variation for all
cases. From this comparison, we realize that L1_DCA-based
measurements are not precise enough for measuring byte
movements for roofline analysis, and DCR_GOOD provides
very reliable data for byte measurements.

Based on the variation plots in Figures 2 and 3, we selected
several cases to see raw data and corresponding exact values
(based on (2)) as presented in Figure 4. Figure 4(a) shows a
case, cray-RecurLoop-m4096-O3 that uses cray compiler
with the O3 optimization and computes the geometric series
for a 40962 array with recursive loops. As presented in the
variation plots, DCR_GOOD and L1_DCA data of Figure
4(a) show little variation, and both of them provide very
accurate data compared to the exact values. In Figures 4(b),
4(c), 4(d), and 4(e), L1_DCA plots show large variation as
well as inaccurate data, while DCR_GOOD plots show very
precise and accurate data. In Figure 4(f), L1_DCA plots show
very little variation as presented in Figures 2 and 3; however,
the measured data overestimate the byte movements, so it
turns out the accuracy of L1_DCA is poor on the case.

TABLE II. THREE TYPES OF KERNELS IMPLEMENTED FOR COMPUTING
N-TH GEOMETRIC SERIES

Inline-implementation:
Loops for i and j from 1 to m:
 OM(i,j) = 1.0 + M(i,j) + M(i,j)^2 + M(i,j)^3 + ... + M(i,j)^n

Recursive loops:
Loops for i and j from 1 to m:
 OM(i,j) = 1.0
 A loop for k from 1 to n:
 OM(i,j) = OM(i,j)*M(i,j) + 1.0

Flat loops:
Loops for i and j from 1 to m:
 OM(i,j) = 1.0
 A loop for k from 1 to n:
 OM(i,j) = OM(i,j) + M(i,j)^k

(a) The O3 optimization

(b) The O0 optimization

Figure 2. The coefficients of variation of hardware counter data for byte movements with the O3 and O0 optimizations

(a) The O3 optimization

(b) The O0 optimization

Figure 3. The range of the minimum and maximum values of byte measurements with the O3 and O0 optimizations

(a) cray-RecurLoop-m4096-O3 (b) gnu-Inline-m1024-O3 (c) pgi-FlatLoop-m0256-O3

(d) cray-RecurLoop-m4096-O0 (e) gnu-FlatLoop-m0256-O3 (f) pgi-RecurLoop-m1024-O3

Figure 4. Raw data of byte movements for selected cases (i.e., {compiler type}-{implementation type}-{row size of array}-{optimization level})

(a) The O3 optimization

(b) The O0 optimization

Figure 5. The ratio of the mean value of hardware counter data over the exact byte movements with the O3 and O0 optimizations

Figure 5 presents plots for the ratio of the mean value of
hardware counter data over the exact byte movements for all
cases that represents overall accuracy of L1_DCA and
DCR_GOOD measurements. DCR_GOOD generates very
consistent and accurate data for byte movements for all cases,
while L1_DCA data are fluctuating and unreliable.
Accordingly, it turns out that the CrayPat-default CI is not
reliable to estimate the ratio of FLOPS over bytes. Instead, we
recommend using DCR_GOOD-based CI for roofline
performance analysis.

B. Validation via 2D/3D stencil codes
In addition to the geometric series code, we implemented

our own stencil codes in 2D and 3D in order to validate
measured byte movements and FLOPs via CrayPat, and
corresponding CIs. Table III shows main kernels of 2D and
3D stencil codes instrumented by CrayPat API. As presented
in Table IV, the 5-point 2D stencil kernel includes 4 floating-
point operations and 5 data movements (i.e., 4 reads and 1
stores) per point, so CIs for DP and SP are 0.1 and 0.2
FLOPS/byte. The 7-point 3D stencil kernel includes 6
floating-point operations and 7 data movements (i.e., 6 reads
and 1 stores); therefore, CIs for DP and SP are 0.1071 and
0.2143 in FLOPS/byte, respectively.

During validation tests, we fully activated all cores in a

single XE node by launching kernels on 32 MPI ranks. With

CrayPat version 6.4.6, we collected hardware performance
counter data only for the main kernels enclosed by CrayPat
API. We performed the kernels with a large set of parameters
(i.e., 72 cases in total) as follows:

• Stencil size per MPI rank (i.e., (n+2)2 for 2D and

(n+2)3 for 3D): (2048+2)2, (4096+2)2, (8192+2)2 for
2D, and (128+2)2, (256+2)2, (416+2)2 for 3D (i.e., 6
cases in total)

• Variable type: 4-byte SP and 8-byte DP (i.e., 2 cases)
• Compiler type: gnu 4.9.3, cray 8.5.8, and pgi 17.5.0

(i.e., 3 cases)
• Optimization level: O0 and O3 (i.e., 2 cases)

Figure 6 presents the ratio of the measured data

movements via CrayPat over the exact data movements.
L1_DCA measurements show big fluctuations between the
O0 and O3 optimizations as well as between DP and SP.
DCR_GOOD measurements are relatively consistent for all
compiler types, stencil sizes, optimization levels and variable
types. The ratio of DCR_GOOD measurements over exact
byte movements is from 0.569 to 1.281, while the ratio of
L1_DCA measurements over the exact byte transfers is
between 1.798 and 38.3 as presented in Table V. Accordingly,
the geometric mean of L1_DCA-based ratios is 5.87, while
the geometric mean of DCR_GOOD-based ratios is 0.812.
Therefore, it turns out DCR_GOOD measurements are more
precise and accurate than L1_DCA measurements for data
movements.

Figure 7 shows the measured FLOPs via CrayPat as well

as the exact FLOPs. For all compiler types, variables types,
stencil sizes and optimization levels, the FLOP measurements
are extremely accurate. Figure 8 presents the ratio of the
computed CIs over the exact CIs. DCR_GOOD-based CIs are
much more accurate than L1_DCA-based CIs. As given in
Table VI, the geometric mean of DCR_GOOD-based CIs is
23.1% higher than the exact CIs, while the geometric mean of
L1_DCA-based CIs is around one sixth of the exact CIs. The
ratio of the maximum CI over the minimum CI of L1_DCA-
based CIs is 21.3, while the ratio of DCR_GOOD-based CIs
is only 2.25. In summary, DCR_GOOD-based CIs are much
more reliable than L1_DCA-based CIs.

TABLE III. THE MAIN KERNELS OF THE 2D/3D STENCIL CODES

5-point 2D stencil code:
Loops for iter from 1 to niter:
 PAT_region_begin()
 Loops for i and j from 2 to n+1:
 OM(i,j) = 0.25* (M(i+1,j) + M(i-1,j) + M(i,j+1) + M(i,j-1))
 PAT_region_end()
 Loops for i and j from 2 to n+1:
 M(i,j) = OM(i,j)

7-point 3D stencil code:
Loops for iter from 1 to niter:
 PAT_region_begin()
 Loops for i, j and k from 2 to n+1:
 OM(i,j,k) = 0.166666666666666667 * (M(i+1,j,k) + M(i-1,j,k)
 + M(i,j+1,k) + M(i,j-1,k) + M(i,j,k+1) + M(i,j,k-1))
 PAT_region_end()
 Loops for i and j from 2 to n+1:
 M(i,j,k) = OM(i,j,k)

TABLE IV. FLOPS, DATA MOVEMENTS AND CI OF THE MAIN KERNELS

OF THE 2D/3D STENCIL CODES

5-point 2D stencil code:
 FLOPs = 4*n*n*niter
 Data Movements = 5*n*n*niter
 CI for DP = 4./5/8 = 0.1 FLOPS/byte
 CI for SP = 4./5/4 = 0.2 FLOPS/byte
7-point 3D stencil code:
 FLOPs = 6*n*n*n*niter
 Data Movements = 7*n*n*n*niter
 CI for DP = 6./7/8 = 0.1071 FLOPS/byte
 CI for SP = 6./7/4 = 0.2143 FLOPS/byte

TABLE V. STATISTICS OF THE RATIO OF MEASURED BYTE OVER
EXACT BYTE MOVEMENTS

Counters Min Geometric mean Max
L1_DCA 1.798 5.87 38.3

DCR_GOOD 0.569 0.812 1.281

TABLE VI. STATISTICS OF THE RATIO OF DERIVED CI OVER EXACT CI

Counters Min Geometric mean Max Max/min
L1_DCA 0.0261 0.1703 0.556 21.3

DCR_GOOD 0.781 1.231 1.757 2.25

As a reference, 2D/3D stencil kernels were performed with
Intel Advisor on Intel E5-2680V4 (Broadwell) processors.
Figure 9 shows a screenshot of Intel Advisor roofline features
and Table VII shows computational intensities of DP and SP
loops. The CI values from Intel Advisor are very close to
corresponding exact CI values. However, Intel Advisor may
have the following limitations compared to CrayPat-based
roofline analysis:

• Intel Advisor is not compatible with other vendor’s

processors such as AMD, ARM, and NVIDIA.
• Intel Advisor is not compatible with other compilers

(e.g., cray, pgi, gcc, and arm).
• Intel Advisor requires at least two executions (i.e.,

Survey analysis and Trip Counts Analysis with
FLOP) for roofline features analysis, thus it may not
be suitable for large-scale simulations.

Figure 6. The ratio of the measured data movements via CrayPat over the exact data movements of 2D/3D stencil codes

Figure 7. FLOP measurements via CrayPat of 2D/3D stencil codes

Figure 8. The ratio of the computed CIs over the exact CIs of 2D/3D stencil codes

Figure 9. A screenshot of Intel Advisor Roofline features; 3D kernel with

(256+2)3 stencil (red dot for DP, yellow dot for SP)

TABLE VII. CI FROM INTEL ADVISOR (INTEL/18.0 WITH -O3 -XHOST)

Stencil size Source CI with DP CI with SP
2D: (2048+2)2 Intel Advisor 0.10002 0.20008
3D: (256+2)3 Intel Advisor 0.10726 0.21477

IV. CRAYPAT-BASED ROOFLINE ANALYSIS FOR HPC
BENCHMARKS AND POPULAR KERNELS

Using the DCR_GOOD-based CI, we performed CrayPat-
based roofline analysis for multiple HPC benchmarks on Blue
Waters (See Appendix A for L1_DCA-based roofline analysis
plots). We first provide roofline analysis plots for 2D/3D
stencil kernels discussed in the previous section. Second, we
report CrayPat-based roofline analysis results for High-
Performance Conjugate Gradients (HPCG) and High-
Performance Geometric Multigrid (HPGMG) benchmarks
that represent multiple sets of kernels employed by many
science and engineering applications [6, 13, 14]. Last, we
introduce roofline analysis plots for sparse linear algebra
libraries with multiple non-symmetric matrices from a
computational fluid dynamics (CFD) code [4]. We employed
PETSc [15] for parallel sparse iterative solvers, and MUMPS
[16] and SuperLU [17] for parallel sparse direct solvers.

A. 2D/3D stencil kernels
We performed CrayPat-based roofline analysis with the

2D/3D stencil kernels presented in Table III. The executable
binaries were built with cce/8.5.8 and the O3 optimization,
and they were instrumented by CrayPat 6.4.6.

Figure 10 presents CrayPat-based roofline analysis results
for the 5-point 2D stencil with various stencil sizes (e.g.,
(128+2)2 to (8192+2)2). For all cases, the performance of the
kernel is bounded by memory bandwidth (e.g., L2 or DRAM
bandwidth). For small sizes of stencils (i.e., (128+2)2 for DP
and SP, (256+2)2 for DP and SP), the size of required arrays
(i.e., M and OM in Table III) for the kernel is less than or equal
to 1 MB (i.e., L2 data cache size per a single integer core);
therefore, the performance is bounded by the L2 data cache
bandwidth. In other cases, the kernel performance is bounded
by the DRAM bandwidth.

Figure 11 provides CrayPat-based roofline analysis plots

for the 7-point 3D stencil kernel with multiple stencil sizes
(e.g., (16+2)3 to (416+2)3). Performance with small stencils
(e.g., (16+2)3 and (32+2)3 for DP and SP) is bounded by the
L2 data cache bandwidth, since the required array size for the
kernel is less than the L2 data cache size for a single integer

core. For large stencils (e.g., (64+2)3 to (416+2)3), the
performance is bounded by the DRAM bandwidth.

B. HPCG and HPGMG

The HPCG [13] solves a synthetically discretized elliptic
partial differential equation in 3 dimensions with zero
Dirichlet boundary conditions and a synthetic right-hand-size
vector with a 27-point stencil operator. It includes dense and
sparse computations, dense and sparse collectives, multi-scale
execution of kernels through truncated multi-grid V cycles,
and data-driven parallelism for unstructured sparse triangular
solves. We used gcc/4.9.3 to build the executable binary with
the following flags: -O3 -ffast-math -ftree-vectorize -
fopenmp.

We performed CrayPat-based roofline analyses for HPCG
with 128 MPI ranks on 4 XE nodes for multiple sizes of
stencils (e.g., 163 to 1283 per MPI rank), as presented in Figure
12. In all cases, the DCR_GOOD-based CIs are similar to
each other, and the performance is bounded by DRAM
bandwidth. We cannot observe cache effect for small stencils.

Figure 10. CrayPat-based roofline analysis plots for 5-point 2D stencil

kernels

Figure 11. CrayPat-based roofline analysis plots for 7-point 3D stencil

kernels

Figure 12. CrayPat-based roofline analysis plots for HPCG on 4 XE nodes

HPGMG-FV [14] employs a geometric multi-grid method
to solve an elliptic problem on isotropic Cartesian grids. Using
4th-order accuracy finite volumes, it calculates a flux term on
each of the 6 faces on every cell in the entire domain. For the
solution process, it employs the full multi-grid (FMG) F-cycle
that is a series of progressively deeper geometric multi-grid
V-cycles. We built HPGMG-FV with gcc/4.9.3 with the
following flags: -O3 -ftree-vectorize -ffast-math -fopenmp -
m64. For roofline analyses, we employed 5 different
resolutions (i.e., 163, 323, 643, 1283 and 2563 cubes per MPI
ranks) on 16 XE nodes (i.e., 512 MPI ranks). In Figure 13, the
performance of HPGMG-FV gradually increases as the local
cube size increases; it is because the ratio of local
computations over communications becomes higher and the
load imbalance from the FMG F-cycle is getting negligible.
The overall performance of HPGMG-FV is bounded by the
L2 data cache bandwidth.

C. Sparse Linear Solvers

PETSc [15] provides a variety of Krylov subspace
methods and scalable parallel preconditioners. In this section,
we performed roofline analysis with the transpose free QMR
(i.e., tfqmr) solver and the classical additive Schwarz (i.e.,
asm_basic) preconditioner from cray-petsc/3.6.3.0. For the
performance analyses, we employed various compressed
sparse row (CSR) matrices (i.e., 10K, 83K, 684K and 2Mdofs)
derived from a computational fluid dynamics (CFD) code [4].
Figure 14 presents CrayPat-based roofline analysis plots for
the selected PETSc solver and preconditioner on 1 XE and 32
XE nodes. Since the PETSc solver mainly uses FPUs, we
assigned one MPI rank per one FPU; as a result, we used 16
MPI ranks on 1 XE node and 512 MPI ranks on 32 XE nodes.
All cases show pretty similar CI values to each other. Due to
cache effects, small inputs yield higher performance per node.
For the same CSR matrices, per-node performance on a single
node is better than per-node performance on multiple nodes,
since single-node computation doesn’t require an additional
networking cost. However, the networking overhead is not
very critical in Figure 15, so we can expect that PETSc users

easily accumulate the per-node performance by employing
more compute nodes to solve their linear equations.

Figures 15 and 16 shows roofline analysis results for

MUMPS and SuperLU from cray-tpsl/16.03.1. As the CSR
matrix size increases on 1 XE node, the corresponding
computational intensity value also increases, and the per-node
performance increases accordingly. For the same size of CSR
matrix (i.e., 684Kdofs), the computational intensity on 32 XE
nodes is lower than on 1 XE node, since the local block size
per MPI rank decreases. The per-node performance of sparse
direct solvers is highly dependent on their local block size;
therefore, their strong scalability may not be competitive with
other sparse iterative solvers.

Note that the per-node performance here means
GFLOPS/s; therefore, it cannot represent the actual
performance of the sparse solvers. Since sparse iterative or
sparse direct solvers require totally different numbers of
FLOPS to get a solution with a certain accuracy, the time-to-
solutions of sparse iterative and direct solvers can be very
different from each other. Our former study [4] provides more
details.

Figure 13. CrayPat-based roofline analysis plots for HPGMG-FV on 16

XE nodes

Figure 14. CrayPat-based roofline analysis plots for PETSc tfqmr solver

with asm_basic preconditioner on 1 XE or 32 XE nodes

Figure 15. CrayPat-based roofline analysis plots for MUMPS on 1 XE or

32 XE nodes

V. ROOFLINE-BASED PERFORMANCE PROJECTION FOR A
NEW PROCESSOR

As an example of roofline-based performance projection
for a new processor, we employed SETSM (Surface
Extraction with TIN-based Search-space Minimization) code
[18] from the ArcticDEM project [19] on Blue Waters.

We first performed the CrayPat-based roofline analysis, as
presented in Figure 17. For the analysis, we selected four
critical groups (i.e., U/VLL, U/main, U/OT, and U/VLL_B)
that used 84.6% of the entire wall time, as presented in Table
VIII. According to the CrayPat report, U/main was a serial
function, while other three groups were multi-threaded
functions. Based on the roofline analysis results, we assumed
flop-rates of all groups are bounded by the DRAM bandwidth.

We selected three types of nodes for this practice: dual Ivy
Bridge EP processors (i.e., E5-2670V2), dual Haswell
processors (i.e., E5-2680V3), and dual Broadwell processors
(i.e., E5-2680V4). Table IX shows the measured DRAM
bandwidths of an XE node and three target nodes using the
stream benchmark [20]. We used DRAM bandwidth per
NUMA domain for the maximum bandwidth of the serial
processes in the U/main group. While an XE node has four
NUMA domains, other nodes with Intel processors have two
NUMA domains.

We used (5) for the performance projections of multi-
threaded groups (i.e., U/VLL, U/OT and U/VLL_B), and (6)
was used for the serial group (i.e., U/main). After the
performance projection of four groups, we computed the
overall wall time using (7). The constant, 0.846 is the ratio of
the sum of four groups’ wall times over the total wall time on
an XE node. As a result, we computed the roofline-based
performance projections as presented in Table X.

WTtargetthreaded = WTXE*(BWNODE)XE / (BWNODE)target (5)
WTtargetserial = WTXE*(BWNUMA)XE / (BWNUMA)target (6)
WTtargetoverall = (sum of WTtarget) / 0.846 (7)

Table XI shows actually measured wall times of SETSM on
the target nodes. The error range of the projected performance
over the measured performance is from 7% to 10%.

Figure 16. CrayPat-based roofline analysis plots for SuperLU on 1 XE or

32 XE nodes

Figure 17. CrayPat-based roofline analysis plots for SETSM (32 threads on
1 XE node) with various optimizations

TABLE VIII. CRAYPAT PERFORMANCE DATA OF SETSM ON 1 XE NODE

Groups Wall time (s) Percentiles (%) Note
U/VLL 997.6 33.1 multi-threaded
U/main 761.3 25.3 serial
U/OT 757.8 25.2 multi-threaded

U/VLL_B 31.1 1.0 multi-threaded
Others 464.1 15.4
Total 3011.9 100

TABLE IX. MEASURED DRAM BANDWIDTHS OF AN XE NODE AND
TARGET NODES

Processor type

DRAM
bandwidth
per node
(GB/s) (a)

DRAM
bandwidth
per NUMA

(GB/s)
Dual Interlagos 59.6 14.9(b)

Dual Ivy Bridge EP (E5-2670V2) 93.5 46.7(c)
Dual Haswell (E5-2680V3) 112.3 56.2(c)

Dual Broadwell (E5-2680V4) 125.1 62.5(c)
(a) Measured via the stream benchmark, (b) Four NUMA domains per node,

(c) Two NUMA domains per node

TABLE X. ROOFLINE-BASED PERFORMACE PROJECTIONS

Processor type Projected
wall time (s)

Speed up
over an XE

Dual Ivy Bridge EP (E5-2670V2) 1715.3 1.76
Dual Haswell (E5-2680V3) 1427.7 2.11

Dual Broadwell (E5-2680V4) 1282.2 2.35

TABLE XI. MEASURED WALL TIMES ON THE TARGET NODES

Processor type Measured
wall time (s)

Error of
projection

(%)
Dual Ivy Bridge EP (E5-2670V2) 1603.0 7.00

Dual Haswell (E5-2680V3) 1293.0 10.42
Dual Broadwell (E5-2680V4) 1168.0 9.78

VI. CONCLUDING REMARKS
We propose a reliable and practical method for the roofline

analysis model with CrayPat. It is widely compatible with
many types of compilers and various processor architectures.
We first employed CrayPat-default computational intensity
data for roofline analysis; however, it turned out the default
configuration was not accurate, since the employed hardware
performance counter for data movements was not reliable for
different optimization levels, multiple compiler types and
various problem sizes. We have performed an extensive set of
tests to find one of the most optimal hardware counters for
data movements; as a result, we recommend using the number
of data cache refills satisfied from the L2 cache and/or the
system (e.g., L3 cache or DRAM) with valid final status to
measure data movements for the roofline analysis. During the
investigation processes, we have used our homegrown test
kernels (e.g., multiple kernels for computing geometric series,
a 5-point 2D stencil kernel, and a 7-point 3D stencil kernel) to
verify our procedure.

After intensive verification and validation processes, we
have performed the proposed CrayPat-based roofline analysis
for multiple kernels, HPC benchmarks and popular linear
algebra libraries for HPC applications. Based on the “visually-
intuitive” roofline performance plots, we present our
discussion about performance characteristics of the employed
applications. In addition, we present an example of the
roofline analysis model for a performance projection on a new
processor. Using CrayPat and the proposed method, we first
analyzed the performance characteristics of several important
groups of a production-level code on Blue Waters; then, we
projected the groups’ performance for target processors based
on the characteristics and accumulated the projected
performance to represent the overall performance of the code
on the new processor. After having the projected overall
performance, we performed the simulation on the target
processor, and validated our performance projection
approach. It turns out our performance projection method is a
reasonable way to estimate overall performance of HPC
applications on new processors.

We plan to perform similar analyses with GPU nodes and
other processors (e.g., ARM), and we will share our developed
python scripts for general roofline performance model,
General Roofline Evaluation Gadget (GREG) via our public
GitHub repository [21]. We hope our study will help other
Cray users characterize and optimize their science and
engineering applications via the proposed CrayPat-based
roofline analysis at scale on their HPC systems. In addition,
we hope the introduced methodology will be used to
determine an optimal method for roofline analyses on other
Cray systems.

ACKNOWLEDGMENT
This study is part of the Blue Waters sustained-petascale

computing project, which is supported by the National
Science Foundation (awards OCI-0725070 and ACI-
1238993) and the state of Illinois. Blue Waters is a joint effort
of the University of Illinois at Urbana-Champaign and its
National Center for Supercomputing Applications.

REFERENCES
[1] W. Kramer, Keynote talk: Top500 versus sustained performance—or

the top problems with the TOP500 list—and what to do about them.
The 21st International Conference on Parallel Architectures and
Compilation Techniques—PACT, Minneapolis, MN; 2012. 

[2] J. Dongarra, M. A. Heroux, Toward a new metric for ranking high
performance computing systems. Sandia National Laboratories
Technical Report. SAND2013-­‐‑4744: 2013;312. 

[3] M. Adams, J. Brown, J. Shalf, B. Straalen, E. Strohmaier, S. Williams
, HPGMG 1.0: A benchmark for ranking high performance computing
systems. LBNL Technical Report, LBNL 6630E, 2014.

[4] J. Kwack, G. Bauer and S. Koric, “Performance Test of Parallel Linear
Equation Solvers on Blue Waters – Cray XE6/XK7 system,”
Preceedings of the Cray Users Group Meeting (CUG2016), London,
England, May 2016.

[5] G. Bauer, V. Anisimov, G. Arnold, B. Bode, R. Brunner, T. Cortese,
R. Haas, A. Kot, W. Kramer, J. Kwack, J. Li, C. Mendes, R. Mokos, C.
Steffen, "Updating the SPP Benchmark Suite for Extreme-Scale
Systems," Proceedings of the Cray Users Group Meeting (CUG2017),
Redmond, WA, May 2017.

[6] J. Kwack and G. Bauer, “HPCG and HPGMG benchmark tests on
Multiple Program, Multiple Data (MPMD) mode on Blue Waters - a
Cray XE6/XK7 hybrid system,” Concurrency and Computation,
Practice and Experience journal 30(1), 10.1002/cpe.4298, 2017.

[7] S. Williams, A. Waterman and D. Patterson, “Roofline: An Insightful
Visual Performance Model for Floating-Point Programs and Multicore
Architectures,” Communications of the ACM, 52(4), 65-76, 2009.

[8] A. Ilic, F. Pratas and L. Sousa, “Cache-aware Roofline model:
Upgrading the loft,” IEEE Computer Architecture Letters, 13(1), 21-
24, 2014.

[9] B. Bode, M. Butler, T. Dunning, W. Gropp, T. Hoe-fler, W. Hwu, and
W. Kramer (alphabetical), “The Blue Waters Super-System for Super-
Science,” Contemporary HPC Architectures, Jeffery Vetter editor.
Sitka Publications, November 2012.Edited by Jeffrey S . Vetter,
Chapman and Hall/CRC 2013, Print ISBN: 978-1-4665-6834-1, eBook
ISBN: 978-1-4665-6835-8.

[10] W. Kramer, M. Butler, G. Bauer, K. Chadalavada and C. Mendes,
“Blue Waters Parallel I/O Storage Sub-system,” High Performance
Parallel I/O, Prabhat and Quincey Koziol editors, CRC Publications,
Taylor and Francis Group, Boca Raton FL, 2015, Hardback Print ISBN
13:978-1-4665-8234-7.

[11] Y. Lo, S. Williams, B. Straalen, T. Ligocki, M. Cordery, N. Wright, M.
Hall, L. Oliker, “Roofline Model Toolkit: A Practical Tool for
Architectural and Program Analysis,” Performance Modeling,
Benchmarking, and Simulation (PMBS), November 2014, doi:
10.1007/978-3-319-17248-4_7.

[12] Advanced Micro Devides, “BIOS and Kernel Developer’s Guide
(BKDG) for AMD Family 15h Models 00h-0Fh Processors”, 42301
Rev 3.14, January 23, 2013.

[13] J. Dongarra, M. Heroux and P. Luszczek “HPCG Benchmark: a New
Metric for Ranking High Performance Computing Systems,” Technical
Report, Electrical Engineering and Computer Sciente Department,
Knoxville, Tennessee, UT-EECS-15-736, November, 2015.

[14] S. Williams, “4th Order HPGMG-FV Implementation,” HPGMG BoF,
Supercomputing, November 2015.

[15] S. Balay, J. Brown, K. Buschelman, V. Eijkhout, W. D. Gropp, D.
Kaushik, M. G. Knepley, L. C. McInnes, B. F. Smith, and H. Zhang,
“PETSc Web page,” https://www.mcs.anl.gov/petsc, 2018.

[16] P. R. Amestoy, A. Guermouche, J.-Y. L’Excellent and S. Pralet,
“Hybrid scheduling for the parallel solution of linear systems,” Parallel
Computing, 32(2),136-156, 2006.

[17] X. S. Li and J. W. Demmel, “A Scalable Distributed-Memory Sparse
Direct Solver for Unsymmetric Linear Systems,” ACM Trans.
Mathematical Software, 29(2),110-140, 2003.

[18] M. J. Noh, I. M. Howat, C. C. Porter, M. J. Willis, P. J. Morin, “Arctic
Digital Elevation Models (DEMs) generated by Surface Extraction

from TIN-Based Searchspace Minimization (SETSM) algorithm from
RPCs-based Imagery,” American Geophysical Union, Fall General
Assembly 2016.

[19] P. Morin, J. Pundsack, “The Polar Geospacial Center web page,”
https://www.pgc.umn.edu, 2018.

[20] J. D. McCalpin, “Memory Bandwidth and Machine Balance in Current
High Performance Computers," IEEE Computer Society Technical
Committee on Computer Architecture (TCCA) Newsletter, December
1995.

[21] NCSA, “NCSA GitHub repository for GREG: General Roofline
Evaluation Gadget,” https://github.com/ncsa/GREG, 2018.

APPENDIX A
Section IV includes roofline performance analysis plots

based on DCR_GOOD measurements. As a reference, we
provide roofline plots based on L1_DCA measurements in
Appendix A. Since L1_DCA always overestimates the byte
transfer, L1_DCA-based CI values are much smaller than
DCR_GOOD-based CIs in Section IV.

Figure 18. L1_DCA-based roofline analysis plots for 5-point 2D stencil

kernels

Figure 19. L1_DCA-based roofline analysis plots for 7-point 3D stencil

kernels

Figure 20. L1_DCA-based roofline analysis plots for HPCG on 4 XE

nodes

Figure 21. L1_DCA-based roofline analysis plots for HPGMG-FV on 16

XE nodes

Figure 22. L1_DCA-based roofline analysis plots for PETSc tfqmr solver

with asm_basic preconditioner on 1 XE or 32 XE nodes

Figure 23. L1_DCA-based roofline analysis plots for MUMPS on 1 XE or

32 XE nodes

Figure 24. L1_DCA-based roofline analysis plots for SuperLU on 1 XE or

32 XE nodes

