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Abstract—DataWarp accelerates performance by making use
of fast SSDs layered between a parallel file system (PFS) and
applications. Transparent caching functionality provides a new
way to accelerate application performance. By configuring the
SSDs as a transparent cache to the PFS, DataWarp enables
improved application performance without requiring users to
manually manage the copying of their data between the PFS
and DataWarp. We provide an overview of the implementation
to show how easy it is to get started. We then cover some of
the challenges encountered during implementation. We discuss
our early experience on Cray development systems and on
NERSC’s Gerty supercomputer. We also discuss future work
opportunities.
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I. INTRODUCTION

Users are attracted to supercomputing platforms because
they help solve their problems faster or cheaper than alterna-
tives. As supercomputers improve, the benefits they provide
increase. Advancements in supercomputing technology are
not uniform, and the bottlenecks that emerge can limit
a system’s and user’s potential. The imbalance between
compute and IO performance is one area that has seen
focused interest.

There are numerous proposals and deployed solutions
that aim to alleviate the disparity in performance between
computation and IO. Compression techniques consume some
amount of excess computation and latency for increased
effective bandwidth. Data caching increases bandwidth and
decreases latency. On Cray systems, a recent example of
a data cache is the on-node DVS client-side cache [1].
On ClusterStor, the NXD flash accelerator improves per-
formance for small IO headed towards spinning disk [2].
DDN’s IME solution has similar goals [3].

DataWarp is another solution for accelerating IO per-
formance [4] that makes use of data caching techniques.
Instead of having one shared data path for all users on a
system, DataWarp can dynamically configure, prepare, and
manage new data paths specific to a user’s job. Since user IO
requirements and properties vary, a personalized data path
using the best available hardware and software can perform
better. Integration with workload managers means that the
sometimes critical SSD hardware resource can be shared

fairly amongst a system’s users. The scratch data path for
DataWarp has been available for some time now with several
published success stories [5], [6].

DataWarp transparent caching introduces a new data path
for users to choose. Using the new data path is easier than
the scratch data path because migration of data between the
parallel filesystem and DataWarp SSD hardware happens
transparently and automatically. Application performance is
improved since data intended for the parallel filesystem
is first placed on to a write-back cache backed by SSDs.
We present an overview of the implementation, including
the user interface, data path, and orchestration layers in
Section II. In Section III we discuss some challenges en-
countered during the implementation. We discuss our early
experience with transparent caching in Section IV. We
conclude and summarize in Section VI.

II. IMPLEMENTATION

DataWarp Transparent Cache functionality extends exist-
ing DataWarp infrastructure [4]. With existing DataWarp,
users request its functionality with #DW directives placed
alongside workload manager directives in batch job script
files. By the time the job script is executing, the allocated
compute environment has been configured to access the
requested SSD-backed DataWarp functionality. By tailoring
the hardware and software environment optimal to the job’s
needs, IO performance is improved and job execution time
is reduced.

The configuration steps performed depend on what the
user has requested. Those steps may involve creating a stor-
age allocation across many DataWarp nodes, instantiating
a new DataWarp scratch filesystem, allocating swap files,
or transferring data from the primary parallel filesystem
to the DataWarp scratch filesystem. Just after compute
node allocation but before batch job script execution the
filesystem or swap files are made accessible to the job’s
compute nodes.

For the most part, cleaning up happens in reverse. Filesys-
tem mounts and swap files are removed from the compute
nodes. Important data is copied from the DataWarp scratch
filesystem to the parallel filesystem. The storage allocation



is removed and the SSD space is immediately available to
new users.

Users can request a DataWarp transparent cache to trans-
parently and automatically accelerate IO to a parallel filesys-
tem. This is in contrast to DataWarp scratch environments
which requires users to manage all data exchange between
it and a parallel filesystem. A workload manager (WLM)
and the DataWarp Service (DWS) software work together
to orchestrate the setup and teardown required for the
transparent cache data path.

A. User Interface

The primary way users interact with all variants of Data-
Warp is through #DW batch job script directives placed
alongside other workload manager directives for compute
resources, and environment variables injected in to the batch
job script execution process. For transparent cache, the
#DW jobdw command is extended to allow users to request
it. There are four mandatory parameters:

1) type=cache Requests a transparent caching environ-
ment

2) access mode=striped Requests files be striped across
the entire DataWarp allocation (i.e. over multiple
servers)

3) capacity=100TiB Specifies the minimum size of the
allocation (100TiB in this example)

4) pfs=/pfs/path Specifies which parallel filesystem path
DataWarp will transparently accelerate (/pfs/path
in this example)

When the batch job script executes, rather than access files
under /pfs/path, applications can access the same files
at the path defined in $DW_JOB_STRIPED_CACHE and
the DataWarp transparent cache will work to accelerate IO
operations.

The access_mode=striped combination can take
two additional configuration options. These are specified
enclosed in parenthesis and appended to the end:

1) MFS=1GiB Maximum File Size (1GiB in this exam-
ple)

2) client cache Request use of DVS client-side caching
on compute nodes when using transparent caching [1]

The Maximum File Size configuration option is for help-
ing stop errant IO activity. Since some of the hardware used
by DataWarp are SSDs, and SSDs have a limited write
capacity, DataWarp allows users to specify what types of
IO activity may signify unintentional excessive usage. For
transparent caching, a user may additionally specify two
optional parameters to control how much data can be written
to the SSDs in any length of time. These options have also
been available to scratch environments.

1) write window multiplier=5 Multiplier on capacity
for amount allowed to be written (5 in this example)

2) write window length=43200 Number of seconds be-
fore a write is no longer considered in calculating
excessive usage (43200, or half a day, in this example)

By default, if a user does not specify these two parameters,
their job is limited to 10 times the allocation size in writes
per 86,400 seconds (1 day).

An example Slurm batch job script with no DataWarp
integration can be seen in Figure 1. This basic job script
shows an a.out that uses the path specified at $JOBDIR
for IO performed during the job. In Figure 2, the script
has been modified to request a 100TiB transparent cache
of the parallel filesystem /lus/global. The path spec-
ified at $JOBDIR has been altered to specify use of the
transparent cache. When a.out now runs, its IO now
passes through the transparent cache rather than straight
to lustre. After either job completes, the contents of
/lus/global/my_jobdir are the same. Figure 3 shows
an example with the optional settings supplied, and using
#DW line continuation support.

While each workload manager with DataWarp support
includes its own interface for showing users current Data-
Warp state, the DWS includes the command dwstat for
showing current state. For transparent cache, the dwstat
configurations endpoint includes additional entries for
each transparent caching setup. See Figure 4 for an example.
The primary column of interest is backing_path, which
displays the parallel filesystem path that the transparent
cache configuration will work with. Other information, such
as the size and location of the allocations, are found in other
unmodified dwstat endpoints like dwstat instances.

The DWS includes a separate command, dwcli, to allow
administrators to modify DataWarp setup and manually
create DataWarp environments. For transparent caching, this
type of configuration can be requested. The same options
that a user normally specifies with #DW directives in batch
job scripts appear as options to dwcli. See Figure 5 for an
example that creates a transparent cache configuration on
top of the existing instance $instance.

All operations performed by dwstat, dwcli, and avail-
able to users via #DW directives are funneled through
a RESTful API exposed by the DWS. For transparent
caching, the /dw/v1/configurations/ endpoint has
been augmented to support its new options, such as
backing_path.

B. Data Path

The transparent caching data path is similar to the scratch
data path. The primary difference is in the introduction of a
new filesystem, dcfs or data caching filesystem. The dcfs
manages the contents of a buffer placed between a filesystem
and a user of that filesystem. Whereas in the scratch data
path the dwfs or DataWarp filesystem writes files to an
SSD-backed XFS filesystem, in the transparent cache data



#!/bin/bash
#SBATCH --ntasks 3200

export JOBDIR=/lus/global/my_jobdir
srun -n 3200 a.out

Figure 1. Example Slurm job script with no DataWarp integration. $JOBDIR points to a path on lustre, so a.out’s IO interacts with lustre directly

#!/bin/sh
#SBATCH --ntasks 3200
#DW jobdw type=cache access_mode=striped pfs=/lus/global capacity=100TiB

export JOBDIR=$DW_JOB_STRIPED_CACHE/my_jobdir
srun -n 3200 a.out

Figure 2. Example Slurm job script requesting access to a 100TiB transparent cache of /lus/global. $JOBDIR now points to
$DW_JOB_STRIPED_CACHE/my_jobdir. While to a.out the same files are opened, read, or written as in Figure 1, the IO is actually intercepted
by the DataWarp transparent cache.

#!/bin/sh
#SBATCH --ntasks 3200
#DW jobdw type=cache access_mode=striped(MFS=10GiB,client_cache) pfs=/lus/global \
#DW capacity=100TiB write_window_multiplier=5 write_window_length=43200

export JOBDIR=$DW_JOB_STRIPED_CACHE/my_jobdir
srun -n 3200 a.out

Figure 3. Slurm job script requesting transparent caching with many optional settings.

user@host:˜> dwstat configurations --cd
conf state inst type amode activs backing_path
1775 CA--- 1787 cache stripe 1 /lus/snx12345
1776 CA--- 1788 cache stripe 1 /lus/global
1777 CA--- 1789 cache stripe 1 /lus/snx12345/alice

Figure 4. dwstat configurations output. The --cd option shows additional details on each of the transparent cache configurations. Three
transparent cache configurations are viewable to the user, and each is transparently caching different paths.

user@host:˜> dwcli create configuration --instance $instance \
--type cache --access-mode stripe --backing-path /lus/snx12345

create request for configurations entity with id = 1776 accepted, "dwstat
configurations" for status

Figure 5. Creating a transparent cache configuration with dwcli. Transparent cache configurations are linked with an instance, which is an allocation
of space. Instances are linked with a session, which can be though of as a user.
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Figure 6. Visual overview of the transparent cache data path. The dcfs filesystem caches data on to SSD-backed XFS filesystems.

path dwfs writes files to the dcfs filesystem. The transpar-
ent caching data path is covered in depth elsewhere, so only
an overview will be presented here [7]. A visual overview
of the transparent cache data path can be seen in Figure 6.

On the hardware front, DataWarp server nodes are co-
located with compute nodes in Cray XC cabinets. Compute
nodes and DataWarp server nodes are both directly attached
to the Aries-based high speed network (HSN). On the Data-
Warp server nodes are SSDs with an aggregate bandwidth
capacity that matches the capabilities of the Aries NIC.
For a filesystem external to the HSN such as the lustre-
based ClusterStor, additional nodes known as LNet router
nodes, which are attached to both the Aries HSN and storage
network, move IO traffic between lustre clients on the HSN
and the external filesystem.

The XFS, dcfs, dwfs, and DVS server reside on Data-
Warp server nodes. The dcfs automatically manages file
cache data on an XFS filesystem placed on an LVM logical
volume striped over the local SSDs. The dcfs manages files
in 1MiB segments internally called extents. Currently, both
cache eviction and dirty data write-back algorithms are file-
based LRU (least recently used) and can be configured to use

multiple threads. When dcfs processes a read() request,
it first sees if the extents are in the cache. For any cache
misses, dcfs performs a copy-up for these extents from
the PFS in to the cache. Once all extents are in the cache,
the data requested by the read() is returned. Processing of
a write() is similar, as writes go through a read-modify-
write cycle, except for extents wholly overwritten. Cache
eviction and write-back take place automatically after a high
watermark threshold of data or dirty data, respectively, is
exceeded, and continue until a low watermark threshold is
met. Copy-up may trigger eviction, and eviction may trigger
write-back. Actual writes to the XFS filesystem, either
through a copy-up or write() operation, are tabulated and
used to detect potential unintentional excessive usage.

The dwfs manages all inter-node communication be-
tween the DataWarp servers involved in a configured trans-
parent caching environment. The grouping of dwfs are
called a realm. Within the realm are one or more names-
paces. Each namespace is comprised of a namespace tree,
where file metadata resides, and one or more namespace data
repositories, where data objects reside. For the transparent
caching striped access mode, there are as many namespaces



as there are DataWarp servers in the realm. Each server has
a namespace tree, and each namespace has a namespace data
repository on all of the DataWarp servers in the realm. This
setup allows for all files accessed in the transparent caching
environment to be striped across all DataWarp servers in
the realm, and for each DataWarp server in the realm to
service metadata operations. Since for transparent caching
the namespace tree is actually a bind mount of a parallel
file system mount, metadata performance is generally no
better as compared to access through the parallel filesystem
directly. As an example of inter-node communication dwfs
performs, since some data may be in DataWarp and not
on the PFS, some metadata in the PFS is stale. The dwfs
intercepts user requests like stat() and calculates answers
taking the contents of the namespace data repositories in
to consideration. Another example is in forwarding user
unlink() requests to all DataWarp servers containing
stripes of a file.

The Data Virtualization Service (DVS) has a presence
on both DataWarp servers and compute nodes. In short,
DVS mounts on compute nodes forward IO requests from
user applications over to DVS servers located on Data-
Warp server nodes. For DataWarp environments, DVS acts
less as a generic IO forwarder and more as a DataWarp
filesystem client. DVS understands the dwfs namespace
tree and namespace data repository layout and accesses them
accordingly. IO requests for the same file, or the same stripe
of a file, are always forwarded to the same server. Different
files or different stripes of the same file may be forwarded to
other servers. This determinism comes from selecting servers
based on a hash of each file’s inode number.

C. Orchestration

The orchestration layers of DataWarp involve a workload
manager (WLM), such as Moab/TORQUE, PBS, or Slurm,
and the DataWarp Service (DWS). These components work
together to offer policies regarding DataWarp usage, set
up the user requested data path, migrate data between the
parallel filesystem and DataWarp storage, and clean up the
user requested data path.

A visual overview of the components involved in Data-
Warp orchestration can be seen in Figure 7. WLMs interact
with DataWarp through the dw_wlm_cli command line
client, supplying job context with each invocation. The
dw_wlm_cli parses the supplied job script’s #DW lines
and sends requests to the DWS via a RESTful API located
on a DataWarp API Gateway Node. The dwstat and
dwcli command line clients are for showing status and
submitting state changes, respectively, and also interact with
the RESTful API. The RESTful API itself is implemented
in the combination of the nginx web server and dwrest
client. dwrest directs valid requests to dwsd, or Data-
Warp Scheduler Daemon, which persists state to a local
SQLite database. Based on what a user has requested, which

DataWarp servers are online, and other state, the dwsd will
send a batch of requests to dwmd or DataWarp Manager
Daemons located on the DataWarp server nodes. Since the
batch of requests may be for performing operations on tens
of thousands of nodes, the dwmd uses the node health fanout
daemon xtnhd to scalably execute them in parallel [8]. The
actual interactions with the data path, such as mounting,
unmounting, or staging, happen via python scripts prefixed
with dws, or just dws*.py collectively. User authentication
across TCP/IP is performed using munge [9].

For transparent cache, no additional support is required
from a WLM that already supports DataWarp with scratch
configurations. This is because the WLM’s interest involves
the capacity portion of a user’s request and not the way
in which the capacity is to be configured. This intentional
separation between DataWarp and WLM allows for new data
paths to be introduced in to DataWarp with less work and
coordination. Similarly, the environment variable needed by
users to locate the transparent cache mount is supplied to the
WLM in the same way as the scratch environment variables.
The actual parsing of #DW is handled by changes to the
dw_wlm_cli client.

The DWS has three main responsibilities for transparent
cache. The timing of each specific step is controlled by
callouts from the WLM. The first of these is the set up of the
transparent cache data path. When setting up the data path,
sub-steps tend to be blocked from starting on any node until
prior sub-steps have completed on all nodes, e.g., mount
points on compute nodes are not created until all servers
have been successfully configured. The dwsd daemon man-
ages the scheduling of those steps, and sends messages to
dwmd to perform them. As with scratch, transparent cache
environments are built upon DataWarp instances, which are
allocations of SSD space across one or more DataWarp
servers. On each allocation fragment, the DWS makes an
XFS filesystem. This is used by the DataWarp filesystem
components, dcfs and dwfs, to store file data. The DWS
creates the dcfs mount points, via changes to one of the
dws*.py scripts, and specifies the XFS mount as the device
and the user-requested PFS path as a mount option. The
DWS then creates a dwfs mount point and specifies the
dcfs mount as the device, and the list of other servers in
the allocation as a mount option. The last step on each of the
DataWarp servers is to create a namespace that is configured
to span each server in the allocation. The metadata directory
specified at namespace creation time is a bind mount of the
parallel filesystem directory which means many metadata
operations actually rely on the PFS directly. The DWS sets
up the namespace via a library call that sends an ioctl()
to dwfs. In the final step for setup, the DWS makes a DVS
mount on the nodes communicated to it by the WLM, i.e.,
the batch job’s compute nodes. At mount time, the device
is supplied as the path corresponding to the remote nodes’
namespace metadata directory, and the remote nodes in the
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instance are supplied as well.
The second responsibility the DWS has for transparent

cache is managing dirty data in the cache prior to teardown.
Generally, any dirty data in the transparent cache environ-
ment should be allowed to be written back to the PFS prior
to teardown taking place. This is the default behavior. There
are cases where the dirty data may not need to be preserved,
such as a failure in the compute job or a permanent partial
failure of the DataWarp instance. As with scratch, when
there is interest in saving dirty data, the DWS, or dwsd
specifically, will not allow the data path to be completely
torn down until it has confirmation from it that the data
has been successfully preserved. For transparent cache, prior
to removing a dwfs namespace the DWS will call in to
the filesystem by having dwsd dispatch a request to dwmd,
which will invoke a dws*.py script, which will use an
ioctl() targeting dcfs designed to both initiate write-
back of any dirty data and block returning until success or
error. On error, the message is logged and the operation
retried after a short period of time.

The third responsibility the DWS has for transparent cache
is teardown of the data path. Generally, teardown takes
place in reverse order from that of setup. The DVS mount
points on all compute nodes are unmounted first. Then,
the previously mentioned dirty data management step takes
place. It is crucial that the DVS mount points were removed
first because dirty data could have been in a DVS client-
side cache, or in transit between the compute nodes and
DataWarp nodes. After all dirty data has been written back
to the PFS or the DWS has been instructed to skip this step,
server teardown steps take place. The DWS removes the
namespaces on each server via a library call that sends an
ioctl() to dwfs. It then removes the bind mount of the
PFS used during namespace setup. The DWS then unmounts

the dwfs, dcfs, and XFS filesystems, in that order. The
DWS then performs instance removal steps as it does with
the scratch filesystem.

III. CHALLENGES

We faced a number of challenges in developing transpar-
ent caching. Our first implementation of the data path did not
re-use the dwfs component used in the scratch filesystem.
Instead, all the responsibilities of dwfs and dcfs were
contained in a single filesystem layer, dwcfs or DataWarp
Caching Filesystem. This led to several problems such as
higher maintenance costs and higher development costs.
By splitting the intra-node responsibilities (dcfs) from the
inter-node responsibilities (dwfs) we were able to reduce
both of these costs. Having a more modular solution also
reduced the learning curve associated with working on the
implementation.

Just prior to the first release of transparent caching we
realized that the orchestration layer would allow users to
transparently cache directories that PFS filesystem permis-
sions would otherwise suggest the user could not access.
For example, when interacting with a file path on a PFS,
it is necessary to have execute permissions on all parent
directories. Since the orchestration layer originally allowed
a user to supply any PFS path, and the orchestration layer
would then bind mount that path on to a dwfs namespace
tree as root, the parent directory permissions were effectively
ignored. To handle this problem, administrators can now
configure the DWS to be more restrictive when processing
transparent cache configuration requests.

Since the transparent cache data path relies on the PFS for
metadata operations, it generally does not accelerate them.
Since these operations must route through DVS in addition
to through the PFS, the extra overhead can even result



in decreased metadata performance. We are considering
improvements to DVS to reduce this overhead. Since the
number of PFS clients in a transparent cache data path is
the number of DataWarp servers rather than the number
of compute nodes, it is possible to get better metadata
performance. For large jobs where the compute node count
is larger than the number of DataWarp servers, the fewer
PFS clients means less coordination is required overall.

Throughout the course of development and testing we ran
in to bugs that needed to be triaged and fixed. What made
this trickier was running in to PFS bugs. In particular for
lustre we found issues involving group lock functionality
and open by handle functionality. Collaborating with lustre
experts was critical in understanding and making progress
on these issues.

Implementing recovery of transparent caching filesystems
on server crash or reboot has also proven challenging, and
is not present in the current implementation. We have found
bugs in how XFS manages sparse files that prevent us from
using it during recovery. While the bugs are fixed in newer
Linux releases, the fixes are not easily back-ported to current
CLE releases.

IV. EARLY EXPERIENCE

A. NERSC

Implementation of Transparent Cache DataWarp (TC) for
the NERSC user environment was of particular interest due
to the wide range of user skill set and breadth of applications
deployed on the XC40 (Cori). DataWarp usage had been
well accepted by users, was stable and performant. It did
however require a bit of forethought to determine input and
output file requirements (names, location, size) for staging
and allocation size directives. The Transparent Cache #DW
directives simplifies the implementation for less technical
users while still providing improved filesystem performance.

Cray’s development of Transparent Cache was still ongo-
ing and was not yet a released product that could be installed
without risk of destabilizing the production system (Cori).
Like many sites, NERSC maintains a TDS for each of the
main production systems (Test and Development System).
The initial installation was then targeted for the TDS. The
TDS (Gerty) has a minimalistic DataWarp configuration
comprising two DW-servers with 12TB of SSD. The soft-
ware revisions on the TDS mirror those of the main system.

The primary purpose of the TDS is to support the in-
stallation of new OS releases or patch sets prior to roll out
onto Cori. The installation of the pre-release of Transparent
Cache would render this functionality ineffective due to the
differences in the software levels and code differences (for
example DVS). Therefore a plan was developed where both
purposes could be served. A snapshot of the TDS’ current
SMW filesystem (BTRFS) containing the base configuration
sets (cfgsets) and images (P0 images) would be created
to revert back to. The TC filesets were then applied to

the TDS, images generated for each type of node and
another BTRFS snapshot taken. This would allow switching
between snapshots, selecting which node image to boot
(cnode update), and booting the TDS in either ‘normal
mode’ or ‘TC mode’. Management and coordination of this
activity is aided by a ‘gitflow’-like environment [10].

After rebooting the TDS with the TC-images the DWS
configuration had to be restored from a JSON backup due
to the change in revision levels. This involved two simple
steps, one before updating and one after- using the “dwcli
config” command with:

1) backup - backup node/pool configuration to stdout
(json)

2) restore - attempt to restore a previously saved config-
uration from stdin (json)

For our initial performance testing we used two plasma
physics applications; VPIC (writing output to a single
file using the HDF5 interface) and BD-CATS (Big Data
Clustering at Trillion Particle Scale cosmology) as shown in
Figure 8. The performance returned from Transparent Cache
indicates a speed up of 1.5 to 2.2 times that of the Lustre
filesystem.

B. Cray

As compared to the scratch data path, the transparent
cache data path includes the additional dcfs layer. To see
the cost of this layer in the absence of write-back, we set
up experiments with IOR comparing File Per Process (FPP)
and Single Shared file (SSF) access patterns.

All experiments were run on an internal XC system orion
targeting 4 DataWarp nodes. Each DataWarp node had two
Intel P3608 SSDs [11]. The orion system was running
prerelease CLE software. While the DataWarp servers were
dedicated to this benchmarking effort the compute and lustre
environments were shared with other users. Each DataWarp
instance size was exactly 1TiB.

Each IOR run consisted of 512 compute ranks spread
across 32 compute nodes. The compute node CPU types
varied from run to run but were all Intel x86 64 processors,
including some KNL nodes. All transfer sizes were 1MiB.
For the write phase an fsync() was performed at the end.
For the read and write tests, we used IOR’s intra-test barrier
option. The aggregate quantity of data written was 388GiB
for the scratch vs cache comparisons and 1TiB for the write-
back thread count comparison.

In Figure 9 we plot IOR read and write performance for
a FPP workload using the scratch data path (dashes) and
cache data path (solid). IOR reported 19,827.80 MB/sec for
scratch write, and 28,921.43MB/sec for scratch read. For the
transparent cache data path, IOR reported 19,381.86MB/sec
for write and 28,310.38MB/sec. Comparing scratch to cache,
cache was 2.2% slower for writes and 2.1% slower for reads.

In Figure 10 we plot IOR read and write performance for a
SSF workload using the scratch data path (dashes) and cache
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data path (solid). IOR reported 15,055.83MB/sec for scratch
write, and 27,189.43MB/sec for scratch read. For the trans-
parent cache data path, IOR reported 13,040.54MB/sec for
write and 24,503.36MB/sec for reads. Comparing scratch to
cache, cache was 13.4% slower for writes and 9.9% slower
for reads. The dwfs layer uses a sub-striping technique to
improve SSF performance, but we have not yet tuned it for
the transparent cache data path. We believe this explains
some of the performance difference.

For transparent cache, automatic write-back begins once
an internal high water mark is exceeded. For the version of
DataWarp used in benchmarking, this threshold is exceeded
once 45% of the data in dcfs is dirty. In Figure 11
we compare the impact on performance for a FPP IO
pattern when there are 1 thread per server performing write-
back versus 8 threads per server performing write-back. At
approximately 23 seconds in both runs begin write-back
of dirty data to orion’s parallel filesystem. When write-
back occurs, these threads compute for CPU, SSD, and
network resources and slow down write performance from
an application’s perspective.

With only 1 write-back thread, once write-back begins
performance degrades from about 20GB/sec to 18GB/sec.
At around 53 seconds application IO performance plummets
to 2GB/sec and remains low until finishing up around
75 seconds later. The SSD cache has filled up and the
application’s performance is now limited to how fast the one
thread on each of the four DataWarp servers can write-back
dirty data to the parallel filesystem.

With 8 write-back threads, performance degrades down to
around 14GB/sec. Dirty data is more quickly moved to the
parallel filesystem as compared to the 1 thread variant. At
around 71 seconds the application completes writing. In this
example, 8 threads were able to write-back enough dirty data
to the parallel filesystem while the application was writing
to the SSDs to prevent the application’s performance from
degrading even further as was seen in the 1 write-back thread
example.

V. FUTURE WORK

Load balance access mode for transparent caching is
meant to greatly accelerate read-only workloads. While the
old transparent caching data path implementation supported
this access mode, the new implementation does not yet do
so. Rather than striping files across all DataWarp servers
as in striped access mode, with load balance access mode
files are duplicated on each DataWarp server. Then, each
compute node forwards all IO requests to just one of the
DataWarp nodes. When many ranks all need to read the
same file simultaneously, the full bandwidth from all servers
is used immediately.

While transparent caching does automatically copy up
data from the PFS in to the transparent cache on demand,
it can still be useful to preload the cache before a batch job
starts. This is similar to the scratch data path environment,
where files can be staged (copied) on to the SSDs prior to
when a batch job script executes. For batch job scripts that
start out reading a large input file such as a checkpoint or
database, copying up the file in to the cache beforehand is
beneficial. We envision this as new batch job script directive,
#DW preload.

Similarly, while transparent caching does automatically
manage the contents of the cache, if given hints by a user it
can perform better. By allowing users to explicitly request
copy-up, eviction, write-back, or invalidation, the cache hit
ratio can be improved and batch job execution time can be
decreased.

The thresholds used by the current transparent caching
eviction and write-back algorithms are preliminary and not
optimal for all batch jobs. With more experience and em-
pirical data, we will change these thresholds to be better for
jobs on average, and allow for per-job configuration of these
values.

The old transparent caching implementation exposed
statistics or accounting data via a C library API, but the
new implementation does not expose this information. The
data is useful in seeing how effectively the transparent cache
operated, such as seeing the cache hit ratio. The information
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Figure 11. I/O rate comparison in the presence of write-back with 1 or 8 write-back threads.

can be used to inform increasing or decreasing the size of
the transparent cache environment.

The default behavior for close() and fsync()-like
operations in transparent caching is to sync all dirty data to
the SSDs. Allowing this behavior to be configurable, e.g., so
that all dirty data is guaranteed to have been written to the
PFS on successful completion, will allow for users to choose
between speed of operation and having a simple method for
guaranteeing durability of data.

VI. CONCLUSION

DataWarp provides a scalable, highly performant I/O
system for the challenges of science at scale. Technically
capable scientists can take full advantage of the raw per-
formance delivered with a few carefully placed job script
directives and modifications. For those scientists that are not
technically savvy the new transparent cache data path gives
them access to improved I/O performance by easily fitting
in to their existing scientific workflows; no explicit stage-in
or stage-out of their datasets is required. As the transparent
caching data path is tuned and matures, the performance
gap between it and the scratch data path will narrow. Other
future work will help improve read-only workloads and give
sophisticated users more control over their transparent cache
data path.
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