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Abstract—Docker is quickly becoming the de facto standard for 
containerization. Besides running on all the major Linux 
distributions, Docker is supported by each of the major cloud 
platform providers. The Docker ecosystem provides the 
capabilities necessary to build, manage, and execute containers 
on any platform. High-Performance Computer (HPC) systems 
present their own unique set of challenges to the standard 
deployment of Docker with respect to scale image storage, user 
security, and access to host-level resources. This paper presents 
a set of Docker API plugins and features to address the HPC 
concerns of scaling, security, resource access, and execution in 
an HPC Environment.  
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I.  INTRODUCTION 
System administrators are tasked with keeping system 

resources available and operational for the users. This 
includes maintaining a common operating system 
environment, libraries, and applications across the system. It 
also means that any modifications to the operating system 
have to be carefully planned to ensure that they do not impact 
availability and the integrity of the system. As a result, system 
administrators control the software, configuration, and 
deployment of services on the system. Users wishing to run 
applications that need a different software environment find 
themselves at odds with the traditional “one size fits all” 
system administration model used to define the environment. 
Some users require a more flexible environment where they 
can define the application runtime and configuration 
environment. 

Traditional administration of HPC systems has been 
designed to support a set of applications that are distributed, 
compute-intensive, and often latency-sensitive. Weather 
modeling and crash simulation are two of the classic examples 
that still follow this paradigm. The standard approach to 
executing these codes is to use as much homogenous 
processing hardware as possible to increase the simulation 
resolution or shorten the computational time-to-solution. 
Being computation-bound, these applications are typically 
scheduled by the number of CPUs and the anticipated wall 
clock time required to complete the simulation. 

Over the last few years, a new model of HPC computing 
has begun taking root. This new paradigm uses container 

technologies to execute applications using HPC resources. 
These applications may require access to different OS 
libraries, configurations, or services, and may leverage 
different storage types, such as databases, in order to perform 
computation against the data. Other applications may require 
access to remote network resources, making network 
bandwidth the constraining factor. None of these 
contemporary applications are well-served by traditional 
scheduling systems that depend on the up-front request of 
fixed CPU and wall clock time resources. Furthermore, the 
varying natures of these “secondary” resource requirements 
(e.g. long running services, dynamic resource use) leaves 
these jobs prone to being preempted or killed, due to 
oversubscription of system resources or unconstrained 
runtimes.  

Lightweight virtualization technologies, such as Docker 
[1] and CoreOS rkt[2] are becoming the standard in Enterprise 
computing. Google has reported that all of its infrastructure 
services will use container technology [3], all of the major 
cloud providers including Azure Container Services (AKS) 
[4], Google Cloud Kubernetes Engine [5], and Amazon 
Elastic Container Services [6], provide a Container-as-a-
Service (CaaS) offering. In addition, the major Linux 
distributions provide bundled container environments. 
Examples include Red Hat OpenShift [7] and Novell SUSE 
CaaS Platform [8]. 

In order to provide better support for this new class of 
applications, technologies like Docker have been developed. 
At its core, this technology leverages core Linux capabilities 
for application isolation. This includes the use of cgroups [9] 
for resource controls and kernel namespaces [10] for 
providing process isolation. These container ecosystems also 
provide methods of deploying and distributing the application 
along with associated libraries and configuration. 

Docker is the most well-known container platform 
available today and has seen wide adoption among Enterprise 
vendors and system software developers. Although its 
primary purpose is the deployment of scalable microservices, 
Docker offers features that are compelling to the 
computational science community. The ability to create a self-
contained application including all the dependent libraries and 
configuration, packaged in a portable format, has been 
revolutionary. The use of Linux cgroups features to allocate 
and enforce resource constraints and isolation means that jobs 
can be scheduled to minimize or eliminate contention for 



system resources. Additionally, since a container can be 
isolated from the host, there is no need for the system 
administrator to be concerned about conflicts with other 
containers or need to deploy alternate OS packages and 
libraries for individual users. The National Energy Research 
Scientific Computing Center (NERSC) developed Shifter 
[11], which is an environment that can execute Docker 
containers using a variety of batch workload managers. 
Similarly, the Laurence Berkeley National Laboratory 
(LBNL) has developed Singularity [12], which is another 
container runtime focused on application mobility using a 
different image format. Finally, Charliecloud [13] from Los 
Alamos National Laboratory (LANL) developed an 
infrastructure to execute Docker images with no privileged 
operations or use of daemons. These three containers runtimes 
are currently the leaders in the HPC community.  

This paper provides background on Linux containers and 
Docker, and how the native Docker platform can be extended 
to meet the requirements of HPC. It then describes different 
approaches for leveraging existing Docker APIs and plugins 
to address the unique constraints of existing HPC 
architectures. Next, we present details on a prototype 
implementation of the proposed approach and supporting 
benchmark results that compare the performance of the 
prototype against a standard Docker deployment; more 
general use cases and performance studies have been covered 
by previous works, such as that by Containers and virtual 
machines at scale [14] and HPC Containers in Use [15]. 
Finally, we close with a discussion of future work and 
conclusions. 

 

II. BACKGROUND 
Docker is a tool for user-level virtualization, which is a 

server virtualization method whereby the operating system’s 
kernel allows for multiple isolated user space instances, 
referred to as containers. This allows multiple 
applications/processes to execute as if they are running on a 
dedicated server, where in reality they are all using a shared 
resource. In addition, the server operator has the authority to 
regulate workloads and resources across these isolated 
containers. Because these containers are isolated, services 
executed in and properly resourced in one container will not 
be visible to other containers, even if they are running on the 
same host. 

Docker started as a component of the ‘Platform as a 
Server’ provider dotCloud [16]. Docker originally utilized the 
Linux Container (LXC) Platform [19] runtime, a user space 
interface for the Linux kernel that allows users to create and 
manage Linux containers. LXC’s function is to create an 
environment as close as possible to a standard Linux 
installation without the need for separate kernel. The benefits 
of Docker were embraced immediately by developers. One of 
the most immediate benefits was the use of Docker for 
environment standardization in development and operations 
(DevOps). Prior to Docker, testing organizations had to take 
special considerations to synchronize the development cycle, 
but by using Docker, developers could ensure that the 

environments used to develop and test the software would be 
consistent. 

In March of 2014, Docker released an update to the 
environment that included libcontainer [18], which replaced 
LXC as the interface for access to Linux kernel isolation 
features. Figure 1 shows the basic architecture and the 
runtimes supported. This change allowed Docker to have 
direct access to container APIs instead of relying on third-
party technology. The change also provided interface 
abstraction that allowed Docker to continue to support LXC 
as well as other execution environments, such as libvirt. 
Docker also teamed up with other companies such as 
Microsoft, IBM, Google, RedHat, and the Linux Foundation 
to create the Open Container Initiative (OCI), which has a 
charter for creating open industry standards around container 
formats and runtimes. This standard ensures that developers 
will be able to run their containerized applications on any 
compliant platform. 

 

 
Figure 1: Basic Docker Architecture 

 
The following section describes the main Docker 

architecture components.  

A. Docker Client 
The client interacts with the Docker daemon, typically via 

the command line interface docker command. This command 
actually interacts with the Docker daemon’s REST API, using 
a UNIX socket by default (or optionally a TCP socket) to 
communicate with the Docker daemon. The Docker client can 
communicate with more than one daemon. 

B. Docker Daemon 
The Docker daemon accepts Docker client connections via 

the REST interface or UNIX socket and exposes Docker 
Engine functionality. The Docker daemon implements 
processes monitoring, container execution, and general 
process/image management. By default, the Docker daemon 
will listen on the UNIX socket, and it is generally encouraged 
for various security reasons [19] to be the only form of 
connection unless the API is required to be exported outside 
of the host. 



C. Docker Engine 
The Docker engine provides the execution behind the 

Docker daemon. The Docker Engine implements the 
libcontainer interface, now under the runC project which 
implements the Open Container Specification v1 [20]. This 
creates the required kernel namespaces, cgroups, handles, 
capabilities, and filesystem access controls. 

D. Docker Objects 
When using Docker, various objects are created. These 

objects include images, containers, networks, volumes, 
plugins, and other objects. This section gives a brief overview 
of the common objects. 

1) Images: An image is a read-only template with 
instructions for creating a Docker container. Often, an image 
is based on another image, with some additional 
customization. For example, you may build an image which 
is based on the CentOS base image, but your image requires 
an additional application and configurations. It is common 
practice to use the FROM statement to “pull in” the base 
image and then recast the resultant image to a new image. 

2) Containers: A container is a runnable intance of an 
image. Containers can be created, started, stopped, moved, 
and deleted using the Docker REST API or CLI. Containers 
can be connected to one or more networks, attached to 
storage, or can be exported to a new image based using its 
current state and contents. 

3) Networks: Containers can be connected together via a 
set of network interfaces controlled by the docker engine. 
These interfaces can access either the host network stack (no 
network namespace isolation), or connect other containers 
together by a variety of different networking stacks, such as 
bridge, overlay, MACVLAN. 

4) Volumes: Data volumes are the preferred mechanism 
for perisiting data generated and used by the container. The 
use of host bind mounts are dependant on the host filesystem 
structure while data volumes are managed by Docker and are 
independent of the host. 

5) Plugins infrastructure: The Docker plugin 
infrastructure allows for out-of-process extensions which can 
add capabilities and features to the Docker Engine. Some 
common extensions are for additional filesystem support, 
authorization (AuthZ), authentication (AuthN) mechanisms, 
and for host device access (GPGPU). 

III. MOTIVATION 
The use of containers on HPC system has been well 

documented [11, 15]. The growth has been driven by a 
number of factors. Primary among these is the development 
of software and packaging of the dependent libraries and 
configurations into a single, portable, transferable package. In 
some cases, users require specific tools and applications 
which are difficult to install on the host system so putting them 
into a transferable package eliminates the need for complex 
environment setup on each system. In other cases, use of 

containers is the simplest method, just load-and-go, 
supporting the distribution of software that has been 
previously developed and packaged with the knowledge that 
it will work on the host environment. Case in point is 
Tensorflow [21], it has many build dependencies and 
requirements on compilers and build infrastructure support. 

There are several existing HPC developed container 
runtimes that provide the user with the ability to execute 
containers. These runtimes have demonstrated that containers 
can be used effectively for science research and the 
performance is shown [11, 15, 22] to be very close to that of 
native execution. Technologies like NERSC Shifter, LBL 
Singularity, and LANL Charliecloud represent the leaders in 
HPC container runtimes. All of these implementations have a 
common set of characteristics. These include: 

 
• Deployment of user-defined images 
• Leverage standard OCI (libcontainer v1) images and 

use of compliant registries 
• Ability to access host resources and devices 
• Secure implementation (no root access or privilege 

escalation allowed) 
 

The rest of this paper answers the question “why not use 
standard Docker” for HPC workloads. We present a strategy 
for how to address the requirements for running containers 
using HPC resources, secure the infrastructure so that users 
cannot request elevated privileges, provide access to host 
resources, and preserve standard Docker semantics and 
architecture.  

IV. IMPLEMENTATION OVERVIEW 
The Docker architecture has some drawbacks when 

deploying on HPC systems, namely the reliance on local disk, 
access to host resources, and user authentication and 
authorization. We will briefly describe a strategy to address 
container execution which remains consistent with the 
standard Docker framework. This strategy addresses three key 
objectives for executing containers, which are: 

 
• Operate in a secure multi-user environment 
• Provide scale-out using HPC storage resources 
• Allow access to host level resources 

 
By utilizing the Docker plugin infrastructure, it is possible 

to extend the Docker functionality to address the above and 
still maintain all the features of Docker. We will briefly 
describe some of the approaches and provide the rationale for 
the approach we chose. 

 

A. Authorization Controls 
The Docker command (docker) uses a REST API to 

communicate to the daemon. Docker’s default authorization 
model implements an all or nothing policy. Any user with 
sufficient Linux permissions, typically members of the Unix 
group ‘docker’, can access the daemon and run any client 
command. Running in a shared environment we require 



greater access controls and the ability to set finer grain access 
with the environment. Fortunately, Docker allows extensions 
to the basic authorization framework by using the Docker 
Engine plugin architecture. Using a Docker authorization 
plugin, the daemon can be configured for granular access 
polices for controlling access to various commands and option 
usage. For example, Docker engine access ports can be 
secured with client access certificates to ensure that only 
trusted sources are allowed access. 

Docker’s plugin infrastructure [23] can be used to extend 
Docker capabilities by loading, removing, and 
communicating with external components using the 
documented API. Using this mechanism, the daemon can be 
configured to leverage extended authentication mechanisms. 
This approach can be used to authenticate user requested 
actions to the Docker daemon based on the current 
authentication context, requested command, and arbitrary 
payload information. The authentication context contains all 
user details and the authentication method. The command 
context contains all the request actions based on the REST 
API requested action, and also any additional payload 
information, such as flags and optional user supplied options. 

The system administrator is responsible for registering 
plugins as part of the Docker daemon configuration and 
startup. When a client request is made to the Docker daemon 
through the CLI or via the Engine REST API, the 
authentication subsystem passes the request to the installed 
authentication plugin. The request contains the user identity 
and command context. The plugin is responsible for deciding 
whether to allow or deny the request based on the site defined 
policy. 

Figure 2 shows the sequence of events to allow or deny a 
user request based on user identification, requested command 
(REST call), and payload options. 

 

 
Figure 2. Authorization Request/Response Scenario 

 
Each request sent to the plugin includes the authenticated 

user identity, the HTTP headers, and the request/response 
body. The authorization plugin will approve or deny client 
requests to the daemon, based on the “authentication context”, 
command context, and optional payload attributes. The 
authorization context contains the user identity based on a CA 

certificate name, the authentication method in use, and other 
information such as the location. The command context 
contains the requested action, based on the REST function 
being called, and any optional arguments to the command (an 
example could be setting the privileged flag to true). The 
plugin algorithm first validates the incoming user identity 
against the configured site access policy. Secondly, the 
requested command is verified against the permitted 
operations, such as create container. And lastly, if command 
payload contains any options not allowed by the site policy, 
the user request is denied. This last option is important, as it is 
filtering on command line options, such as request capabilities 
or extra privilege requests. The following is an example of a 
policy file: 

 
{ 
   "name": "policy_1", 
   "users": [ 
      "authclients" 
   ], 
   "allow_actions": [ 
      "docker_*", 
      "image_*", 
      "container_create" 
   ], 
   "deny_payloads": [ 
      "Privileged", 
      "CapAdd" 
   ] 
} 
 
The basic plugin architecture was taken from Twistlock’s 

[24] contributions to the Docker community and was adapted 
to add extra control over command payload options, such as 
requests for extra capabilities or elevated security. The above 
is an example of a site policy file for a given user using the 
“authclinets” certificate, allowing the caller to issue any 
docker_*, image_*, or container_create REST calls to the 
daemon. The added security options will deny the user from 
requesting any additional capabilities, such as requesting 
privileged operations. 

B. Docker Graph Storage 
The Docker daemon/engine stores and manages images, 

containers, and other meta-data information using storage 
graph drivers. Typically, this information is stored under 
/var/lib/docker, which is located on a local disk. Many HPC 
nodes run diskless and use a network accessible parallel 
filesystem for data storage. Therefore, we need to configure 
an alternate on-node storage solution. Simply switching this 
to use tmpfs (in-memory file system) on compute nodes is also 
not acceptable. Even though Docker at the node level will 
attempt to share the container contents between several 
processes using the same base image, each container will incur 
a storage overhead for the read-write layer. Container 
operations will persist containers even after the containers 
have stopped, unless requested to be removed by the 
user/administrator. This can lead to storage exhaustion unless 
this space is carefully managed. 



A good solution is to use remote off-node storage.  Figure 
3 shows how the out-of-process image graph can implement 
the different layers of the Docker image on shared storage.  

 

 
Figure 3: Out-of-process Graph Driver 

 
All Docker images are constructed from layers using a 

storage (graph) driver. Dockerd can be configured to use any 
of the following drivers: overlayfs, aufs, btrfs, etc. The most 
common graph is overlayfs. Overlayfs layers two or more 
directories on a single host and presents them as a single 
merged directory. These directories are called layers and the 
unification process is referred to as a union mount. Figure 4 
shows how a Docker image and a Docker container are 
layered. The image layer is the lowerdir and the container 
layer is the upperdir. The unified view is exposed through a 
directory called “merged” which is effectively the container’s 
mount point. 

 

 
Figure 4 : Overlayfs File Structure 

 
Where the image layer and the container layer contain the 

same files, the container layer “wins” and obscures the 
existence of the same files in the image layer.  

While the standard overlay driver only works with a single 
lower OverlayFS layer and hence requires hard links for 
implementation of multi-layered images, the newer overlay2 
driver natively supports up to 128 lower OverlayFS layers. 
This capability provides better performance for layer-related 
Docker commands such as docker build and docker commit, 
and consumes fewer inodes on the backing filesystem.   

Our proposal is to implement an overlayfs2 filesystem 
which mimics the current standard Docker implementation, 
but use xfs (or ext4) to loopback mount the layers from a file 
on shared storage. This loopback mount is similar to that 
already being used on other products such as Cray Docker for 
compute and Shifter. Formatting this loopback file as an xfs 
file system provides better scaling and metadata performance 
than stock ext4.  

One adaptation to the above concept is to use a hybrid 
approach, splitting out certain directories which need higher 
performance, namely the container and overlay directories 
which are used for read/write operations. Figure 5 shows the 
concept of using different storage options 

 

 
Figure 5 : Hybrid-storage Graph 

 

C. Allow Containers toAaccess Host-level 
Resources  
Containers may require access to host-level resources that 

cannot be virtualized, such as non-virtual Ethernet device 
drivers or external storage.  

Docker, in its default operation mode, implements several 
privileged Linux namespaces to isolate the container from the 
host. These namespaces can be manipulated by the operator 
and user to attain the correct level of isolation or pass-through 
device access. Using the CLI a user can enable or disable the 
namespace isolation used when executing the container. For 
example, “–net=host” disables the network namespace so that 
a process within a container has access to the hosts networks.  

 

V. BENCHMARKINGS AND COMPARISIONS 
 
In section IV we described some of the potential options 

for how to implement the extensions to Docker daemon and 
engine to support the unique needs of HPC use cases. Here we 
compare some of these approaches. For the authentication 
plugin, we do not have benchmarks, but will illustrate the 
components working and selectively denying user access to 
various commands and options. To benchmark the 
performance of the image graph, we use a Docker graph 
benchmark docker-storage-benchmark. This benchmark can 
be used to benchmark various file operations from within a 
container and hence measure the image graph file 
performance. Figure 6 shows the benchmark performance, 
using a local btrfs filesystem, against a loopback xfs mounted 
from Lustre and a hybrid filesystem using both tmpfs and a 
loopback filesystem. Table 1 shows the time it takes to 
download an image from an external image repository 
(dockerhub) and to create an image using these different 
image graph and backing store solutions.  



The image graph benchmarks are testing the container 
graph performance, typically an application within the 
container would read and write directly to the parallel 
filesystem (PFS) via a container volume mount and not to the 
container’s filesystem directly. That said, the following 
benchmarks do highlight the performance characteristics of 
tmpfs, loopback xfs, and the hybrid filesystems approach. 

 

 
 

Figure 6: Image Graph Benchmarks 
 

While these tests are not exhaustive, they do illustrate in-
container filesystem performance using different types of 
backing store. When the hybrid graph is used, as expected we 
achieve close to native overlay over tmpfs performance, with 
a slight overhead due to metadata operations going back to the 
loopback file residing parallel network filesystem. 

As previously mentioned, best practices suggest writing 
directly to the PFS filesystems using a host bind mount. 

 
Table 1: Image Download Times 

Image size 
 

btrfs 
Login 

overlay/tmpfs 
Compute 

Overlay/loopback xfs 
Compute 

800MB (c) 
1.2GB 

1:20.27 1:18.13 1:19.90 

5.4GB (c) 
15.1GB  

18:10.95 9:51.14 11:57.72 

 
The above table shows that we are achieving slightly better 
performance on the compute nodes for image download using 
the loopback device as compared to the login node’s 
implementation of btrfs. 

VI. FUTURE WORK 
There are still a number of topics that require further 

investigation. First, the current method of passing the user 
identity is based on CA x509 certificates. We are investigating 
using the standard UNIX credentials such as user id and group 
id and passing these unaltered to the Docker daemon. We are 
also considering several alternate methods of projecting the 
image graph to the node, and making it read-only and shared 
between nodes. Finally, an investigation is being conducted 
into how to enable the site administrator to define site specific 
parameters, such as standard container mount points (/home), 
host device mappings, and other site wide parameters. 

VII. CONCLUSION 
 
With the increased interest in container technology, 

creating and managing containers for scientific and HPC 
community becomes much easier for developers and scientists 
when using an industry standard platform. It is likely that 
container computing coupled with new methods of images 
and package management and orchestration will dominate 
how applications are developed, delivered, and executed in 
the coming years. By using standard interfaces, users can 
easily leverage a consistent approach for executing workloads 
from laptop to HPC to cloud, lessening the learning required 
when moving between environments, and enabling the user to 
focus on the application and not the idiosyncrasies of each 
systems.  

While we consider this investigation in scaling Docker as 
exploratory, we believe it will serve as the starting point for 
Cray to develop extensions for scalability that can be 
leveraged more broadly by the community. 
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