
Enabling Docker for HPC

Jonathan Sparks

Compute Products R&D
Cray Inc.

Bloomington, MN, USA
e-mail: jsparks@cray.com

Abstract—Docker is quickly becoming the de facto standard for
containerization. Besides running on all the major Linux
distributions, Docker is supported by each of the major cloud
platform providers. The Docker ecosystem provides the
capabilities necessary to build, manage, and execute containers
on any platform. High-Performance Computer (HPC) systems
present their own unique set of challenges to the standard
deployment of Docker with respect to scale image storage, user
security, and access to host-level resources. This paper presents
a set of Docker API plugins and features to address the HPC
concerns of scaling, security, resource access, and execution in
an HPC Environment.

Keywords-component; Docker, containers, HPC scaling,
security

I. INTRODUCTION
System administrators are tasked with keeping system

resources available and operational for the users. This
includes maintaining a common operating system
environment, libraries, and applications across the system. It
also means that any modifications to the operating system
have to be carefully planned to ensure that they do not impact
availability and the integrity of the system. As a result, system
administrators control the software, configuration, and
deployment of services on the system. Users wishing to run
applications that need a different software environment find
themselves at odds with the traditional “one size fits all”
system administration model used to define the environment.
Some users require a more flexible environment where they
can define the application runtime and configuration
environment.

Traditional administration of HPC systems has been
designed to support a set of applications that are distributed,
compute-intensive, and often latency-sensitive. Weather
modeling and crash simulation are two of the classic examples
that still follow this paradigm. The standard approach to
executing these codes is to use as much homogenous
processing hardware as possible to increase the simulation
resolution or shorten the computational time-to-solution.
Being computation-bound, these applications are typically
scheduled by the number of CPUs and the anticipated wall
clock time required to complete the simulation.

Over the last few years, a new model of HPC computing
has begun taking root. This new paradigm uses container

technologies to execute applications using HPC resources.
These applications may require access to different OS
libraries, configurations, or services, and may leverage
different storage types, such as databases, in order to perform
computation against the data. Other applications may require
access to remote network resources, making network
bandwidth the constraining factor. None of these
contemporary applications are well-served by traditional
scheduling systems that depend on the up-front request of
fixed CPU and wall clock time resources. Furthermore, the
varying natures of these “secondary” resource requirements
(e.g. long running services, dynamic resource use) leaves
these jobs prone to being preempted or killed, due to
oversubscription of system resources or unconstrained
runtimes.

Lightweight virtualization technologies, such as Docker
[1] and CoreOS rkt[2] are becoming the standard in Enterprise
computing. Google has reported that all of its infrastructure
services will use container technology [3], all of the major
cloud providers including Azure Container Services (AKS)
[4], Google Cloud Kubernetes Engine [5], and Amazon
Elastic Container Services [6], provide a Container-as-a-
Service (CaaS) offering. In addition, the major Linux
distributions provide bundled container environments.
Examples include Red Hat OpenShift [7] and Novell SUSE
CaaS Platform [8].

In order to provide better support for this new class of
applications, technologies like Docker have been developed.
At its core, this technology leverages core Linux capabilities
for application isolation. This includes the use of cgroups [9]
for resource controls and kernel namespaces [10] for
providing process isolation. These container ecosystems also
provide methods of deploying and distributing the application
along with associated libraries and configuration.

Docker is the most well-known container platform
available today and has seen wide adoption among Enterprise
vendors and system software developers. Although its
primary purpose is the deployment of scalable microservices,
Docker offers features that are compelling to the
computational science community. The ability to create a self-
contained application including all the dependent libraries and
configuration, packaged in a portable format, has been
revolutionary. The use of Linux cgroups features to allocate
and enforce resource constraints and isolation means that jobs
can be scheduled to minimize or eliminate contention for

system resources. Additionally, since a container can be
isolated from the host, there is no need for the system
administrator to be concerned about conflicts with other
containers or need to deploy alternate OS packages and
libraries for individual users. The National Energy Research
Scientific Computing Center (NERSC) developed Shifter
[11], which is an environment that can execute Docker
containers using a variety of batch workload managers.
Similarly, the Laurence Berkeley National Laboratory
(LBNL) has developed Singularity [12], which is another
container runtime focused on application mobility using a
different image format. Finally, Charliecloud [13] from Los
Alamos National Laboratory (LANL) developed an
infrastructure to execute Docker images with no privileged
operations or use of daemons. These three containers runtimes
are currently the leaders in the HPC community.

This paper provides background on Linux containers and
Docker, and how the native Docker platform can be extended
to meet the requirements of HPC. It then describes different
approaches for leveraging existing Docker APIs and plugins
to address the unique constraints of existing HPC
architectures. Next, we present details on a prototype
implementation of the proposed approach and supporting
benchmark results that compare the performance of the
prototype against a standard Docker deployment; more
general use cases and performance studies have been covered
by previous works, such as that by Containers and virtual
machines at scale [14] and HPC Containers in Use [15].
Finally, we close with a discussion of future work and
conclusions.

II. BACKGROUND
Docker is a tool for user-level virtualization, which is a

server virtualization method whereby the operating system’s
kernel allows for multiple isolated user space instances,
referred to as containers. This allows multiple
applications/processes to execute as if they are running on a
dedicated server, where in reality they are all using a shared
resource. In addition, the server operator has the authority to
regulate workloads and resources across these isolated
containers. Because these containers are isolated, services
executed in and properly resourced in one container will not
be visible to other containers, even if they are running on the
same host.

Docker started as a component of the ‘Platform as a
Server’ provider dotCloud [16]. Docker originally utilized the
Linux Container (LXC) Platform [19] runtime, a user space
interface for the Linux kernel that allows users to create and
manage Linux containers. LXC’s function is to create an
environment as close as possible to a standard Linux
installation without the need for separate kernel. The benefits
of Docker were embraced immediately by developers. One of
the most immediate benefits was the use of Docker for
environment standardization in development and operations
(DevOps). Prior to Docker, testing organizations had to take
special considerations to synchronize the development cycle,
but by using Docker, developers could ensure that the

environments used to develop and test the software would be
consistent.

In March of 2014, Docker released an update to the
environment that included libcontainer [18], which replaced
LXC as the interface for access to Linux kernel isolation
features. Figure 1 shows the basic architecture and the
runtimes supported. This change allowed Docker to have
direct access to container APIs instead of relying on third-
party technology. The change also provided interface
abstraction that allowed Docker to continue to support LXC
as well as other execution environments, such as libvirt.
Docker also teamed up with other companies such as
Microsoft, IBM, Google, RedHat, and the Linux Foundation
to create the Open Container Initiative (OCI), which has a
charter for creating open industry standards around container
formats and runtimes. This standard ensures that developers
will be able to run their containerized applications on any
compliant platform.

Figure 1: Basic Docker Architecture

The following section describes the main Docker

architecture components.

A. Docker Client
The client interacts with the Docker daemon, typically via

the command line interface docker command. This command
actually interacts with the Docker daemon’s REST API, using
a UNIX socket by default (or optionally a TCP socket) to
communicate with the Docker daemon. The Docker client can
communicate with more than one daemon.

B. Docker Daemon
The Docker daemon accepts Docker client connections via

the REST interface or UNIX socket and exposes Docker
Engine functionality. The Docker daemon implements
processes monitoring, container execution, and general
process/image management. By default, the Docker daemon
will listen on the UNIX socket, and it is generally encouraged
for various security reasons [19] to be the only form of
connection unless the API is required to be exported outside
of the host.

C. Docker Engine
The Docker engine provides the execution behind the

Docker daemon. The Docker Engine implements the
libcontainer interface, now under the runC project which
implements the Open Container Specification v1 [20]. This
creates the required kernel namespaces, cgroups, handles,
capabilities, and filesystem access controls.

D. Docker Objects
When using Docker, various objects are created. These

objects include images, containers, networks, volumes,
plugins, and other objects. This section gives a brief overview
of the common objects.

1) Images: An image is a read-only template with
instructions for creating a Docker container. Often, an image
is based on another image, with some additional
customization. For example, you may build an image which
is based on the CentOS base image, but your image requires
an additional application and configurations. It is common
practice to use the FROM statement to “pull in” the base
image and then recast the resultant image to a new image.

2) Containers: A container is a runnable intance of an
image. Containers can be created, started, stopped, moved,
and deleted using the Docker REST API or CLI. Containers
can be connected to one or more networks, attached to
storage, or can be exported to a new image based using its
current state and contents.

3) Networks: Containers can be connected together via a
set of network interfaces controlled by the docker engine.
These interfaces can access either the host network stack (no
network namespace isolation), or connect other containers
together by a variety of different networking stacks, such as
bridge, overlay, MACVLAN.

4) Volumes: Data volumes are the preferred mechanism
for perisiting data generated and used by the container. The
use of host bind mounts are dependant on the host filesystem
structure while data volumes are managed by Docker and are
independent of the host.

5) Plugins infrastructure: The Docker plugin
infrastructure allows for out-of-process extensions which can
add capabilities and features to the Docker Engine. Some
common extensions are for additional filesystem support,
authorization (AuthZ), authentication (AuthN) mechanisms,
and for host device access (GPGPU).

III. MOTIVATION
The use of containers on HPC system has been well

documented [11, 15]. The growth has been driven by a
number of factors. Primary among these is the development
of software and packaging of the dependent libraries and
configurations into a single, portable, transferable package. In
some cases, users require specific tools and applications
which are difficult to install on the host system so putting them
into a transferable package eliminates the need for complex
environment setup on each system. In other cases, use of

containers is the simplest method, just load-and-go,
supporting the distribution of software that has been
previously developed and packaged with the knowledge that
it will work on the host environment. Case in point is
Tensorflow [21], it has many build dependencies and
requirements on compilers and build infrastructure support.

There are several existing HPC developed container
runtimes that provide the user with the ability to execute
containers. These runtimes have demonstrated that containers
can be used effectively for science research and the
performance is shown [11, 15, 22] to be very close to that of
native execution. Technologies like NERSC Shifter, LBL
Singularity, and LANL Charliecloud represent the leaders in
HPC container runtimes. All of these implementations have a
common set of characteristics. These include:

• Deployment of user-defined images
• Leverage standard OCI (libcontainer v1) images and

use of compliant registries
• Ability to access host resources and devices
• Secure implementation (no root access or privilege

escalation allowed)

The rest of this paper answers the question “why not use
standard Docker” for HPC workloads. We present a strategy
for how to address the requirements for running containers
using HPC resources, secure the infrastructure so that users
cannot request elevated privileges, provide access to host
resources, and preserve standard Docker semantics and
architecture.

IV. IMPLEMENTATION OVERVIEW
The Docker architecture has some drawbacks when

deploying on HPC systems, namely the reliance on local disk,
access to host resources, and user authentication and
authorization. We will briefly describe a strategy to address
container execution which remains consistent with the
standard Docker framework. This strategy addresses three key
objectives for executing containers, which are:

• Operate in a secure multi-user environment
• Provide scale-out using HPC storage resources
• Allow access to host level resources

By utilizing the Docker plugin infrastructure, it is possible

to extend the Docker functionality to address the above and
still maintain all the features of Docker. We will briefly
describe some of the approaches and provide the rationale for
the approach we chose.

A. Authorization Controls
The Docker command (docker) uses a REST API to

communicate to the daemon. Docker’s default authorization
model implements an all or nothing policy. Any user with
sufficient Linux permissions, typically members of the Unix
group ‘docker’, can access the daemon and run any client
command. Running in a shared environment we require

greater access controls and the ability to set finer grain access
with the environment. Fortunately, Docker allows extensions
to the basic authorization framework by using the Docker
Engine plugin architecture. Using a Docker authorization
plugin, the daemon can be configured for granular access
polices for controlling access to various commands and option
usage. For example, Docker engine access ports can be
secured with client access certificates to ensure that only
trusted sources are allowed access.

Docker’s plugin infrastructure [23] can be used to extend
Docker capabilities by loading, removing, and
communicating with external components using the
documented API. Using this mechanism, the daemon can be
configured to leverage extended authentication mechanisms.
This approach can be used to authenticate user requested
actions to the Docker daemon based on the current
authentication context, requested command, and arbitrary
payload information. The authentication context contains all
user details and the authentication method. The command
context contains all the request actions based on the REST
API requested action, and also any additional payload
information, such as flags and optional user supplied options.

The system administrator is responsible for registering
plugins as part of the Docker daemon configuration and
startup. When a client request is made to the Docker daemon
through the CLI or via the Engine REST API, the
authentication subsystem passes the request to the installed
authentication plugin. The request contains the user identity
and command context. The plugin is responsible for deciding
whether to allow or deny the request based on the site defined
policy.

Figure 2 shows the sequence of events to allow or deny a
user request based on user identification, requested command
(REST call), and payload options.

Figure 2. Authorization Request/Response Scenario

Each request sent to the plugin includes the authenticated

user identity, the HTTP headers, and the request/response
body. The authorization plugin will approve or deny client
requests to the daemon, based on the “authentication context”,
command context, and optional payload attributes. The
authorization context contains the user identity based on a CA

certificate name, the authentication method in use, and other
information such as the location. The command context
contains the requested action, based on the REST function
being called, and any optional arguments to the command (an
example could be setting the privileged flag to true). The
plugin algorithm first validates the incoming user identity
against the configured site access policy. Secondly, the
requested command is verified against the permitted
operations, such as create container. And lastly, if command
payload contains any options not allowed by the site policy,
the user request is denied. This last option is important, as it is
filtering on command line options, such as request capabilities
or extra privilege requests. The following is an example of a
policy file:

{
 "name": "policy_1",
 "users": [
 "authclients"
],
 "allow_actions": [
 "docker_*",
 "image_*",
 "container_create"
],
 "deny_payloads": [
 "Privileged",
 "CapAdd"
]
}

The basic plugin architecture was taken from Twistlock’s

[24] contributions to the Docker community and was adapted
to add extra control over command payload options, such as
requests for extra capabilities or elevated security. The above
is an example of a site policy file for a given user using the
“authclinets” certificate, allowing the caller to issue any
docker_*, image_*, or container_create REST calls to the
daemon. The added security options will deny the user from
requesting any additional capabilities, such as requesting
privileged operations.

B. Docker Graph Storage
The Docker daemon/engine stores and manages images,

containers, and other meta-data information using storage
graph drivers. Typically, this information is stored under
/var/lib/docker, which is located on a local disk. Many HPC
nodes run diskless and use a network accessible parallel
filesystem for data storage. Therefore, we need to configure
an alternate on-node storage solution. Simply switching this
to use tmpfs (in-memory file system) on compute nodes is also
not acceptable. Even though Docker at the node level will
attempt to share the container contents between several
processes using the same base image, each container will incur
a storage overhead for the read-write layer. Container
operations will persist containers even after the containers
have stopped, unless requested to be removed by the
user/administrator. This can lead to storage exhaustion unless
this space is carefully managed.

A good solution is to use remote off-node storage. Figure
3 shows how the out-of-process image graph can implement
the different layers of the Docker image on shared storage.

Figure 3: Out-of-process Graph Driver

All Docker images are constructed from layers using a

storage (graph) driver. Dockerd can be configured to use any
of the following drivers: overlayfs, aufs, btrfs, etc. The most
common graph is overlayfs. Overlayfs layers two or more
directories on a single host and presents them as a single
merged directory. These directories are called layers and the
unification process is referred to as a union mount. Figure 4
shows how a Docker image and a Docker container are
layered. The image layer is the lowerdir and the container
layer is the upperdir. The unified view is exposed through a
directory called “merged” which is effectively the container’s
mount point.

Figure 4 : Overlayfs File Structure

Where the image layer and the container layer contain the

same files, the container layer “wins” and obscures the
existence of the same files in the image layer.

While the standard overlay driver only works with a single
lower OverlayFS layer and hence requires hard links for
implementation of multi-layered images, the newer overlay2
driver natively supports up to 128 lower OverlayFS layers.
This capability provides better performance for layer-related
Docker commands such as docker build and docker commit,
and consumes fewer inodes on the backing filesystem.

Our proposal is to implement an overlayfs2 filesystem
which mimics the current standard Docker implementation,
but use xfs (or ext4) to loopback mount the layers from a file
on shared storage. This loopback mount is similar to that
already being used on other products such as Cray Docker for
compute and Shifter. Formatting this loopback file as an xfs
file system provides better scaling and metadata performance
than stock ext4.

One adaptation to the above concept is to use a hybrid
approach, splitting out certain directories which need higher
performance, namely the container and overlay directories
which are used for read/write operations. Figure 5 shows the
concept of using different storage options

Figure 5 : Hybrid-storage Graph

C. Allow Containers toAaccess Host-level
Resources
Containers may require access to host-level resources that

cannot be virtualized, such as non-virtual Ethernet device
drivers or external storage.

Docker, in its default operation mode, implements several
privileged Linux namespaces to isolate the container from the
host. These namespaces can be manipulated by the operator
and user to attain the correct level of isolation or pass-through
device access. Using the CLI a user can enable or disable the
namespace isolation used when executing the container. For
example, “–net=host” disables the network namespace so that
a process within a container has access to the hosts networks.

V. BENCHMARKINGS AND COMPARISIONS

In section IV we described some of the potential options

for how to implement the extensions to Docker daemon and
engine to support the unique needs of HPC use cases. Here we
compare some of these approaches. For the authentication
plugin, we do not have benchmarks, but will illustrate the
components working and selectively denying user access to
various commands and options. To benchmark the
performance of the image graph, we use a Docker graph
benchmark docker-storage-benchmark. This benchmark can
be used to benchmark various file operations from within a
container and hence measure the image graph file
performance. Figure 6 shows the benchmark performance,
using a local btrfs filesystem, against a loopback xfs mounted
from Lustre and a hybrid filesystem using both tmpfs and a
loopback filesystem. Table 1 shows the time it takes to
download an image from an external image repository
(dockerhub) and to create an image using these different
image graph and backing store solutions.

The image graph benchmarks are testing the container
graph performance, typically an application within the
container would read and write directly to the parallel
filesystem (PFS) via a container volume mount and not to the
container’s filesystem directly. That said, the following
benchmarks do highlight the performance characteristics of
tmpfs, loopback xfs, and the hybrid filesystems approach.

Figure 6: Image Graph Benchmarks

While these tests are not exhaustive, they do illustrate in-
container filesystem performance using different types of
backing store. When the hybrid graph is used, as expected we
achieve close to native overlay over tmpfs performance, with
a slight overhead due to metadata operations going back to the
loopback file residing parallel network filesystem.

As previously mentioned, best practices suggest writing
directly to the PFS filesystems using a host bind mount.

Table 1: Image Download Times

Image size

btrfs
Login

overlay/tmpfs
Compute

Overlay/loopback xfs
Compute

800MB (c)
1.2GB

1:20.27 1:18.13 1:19.90

5.4GB (c)
15.1GB

18:10.95 9:51.14 11:57.72

The above table shows that we are achieving slightly better
performance on the compute nodes for image download using
the loopback device as compared to the login node’s
implementation of btrfs.

VI. FUTURE WORK
There are still a number of topics that require further

investigation. First, the current method of passing the user
identity is based on CA x509 certificates. We are investigating
using the standard UNIX credentials such as user id and group
id and passing these unaltered to the Docker daemon. We are
also considering several alternate methods of projecting the
image graph to the node, and making it read-only and shared
between nodes. Finally, an investigation is being conducted
into how to enable the site administrator to define site specific
parameters, such as standard container mount points (/home),
host device mappings, and other site wide parameters.

VII. CONCLUSION

With the increased interest in container technology,

creating and managing containers for scientific and HPC
community becomes much easier for developers and scientists
when using an industry standard platform. It is likely that
container computing coupled with new methods of images
and package management and orchestration will dominate
how applications are developed, delivered, and executed in
the coming years. By using standard interfaces, users can
easily leverage a consistent approach for executing workloads
from laptop to HPC to cloud, lessening the learning required
when moving between environments, and enabling the user to
focus on the application and not the idiosyncrasies of each
systems.

While we consider this investigation in scaling Docker as
exploratory, we believe it will serve as the starting point for
Cray to develop extensions for scalability that can be
leveraged more broadly by the community.

ACKNOWLEDGMENT

The author would like to acknowledge the following
people for their assistance and insights during this research –
Kitrick Sheets, Pierre Carrier, Larry Kaplan for Cray, and
Christian Kniep from Docker.

REFERENCES

[1] Docker, https://www.docker.com/.
[2] rtk, https://coreos.com/rkt/.
[3] https://www.theregister.co.uk/2014/05/23/google_containerization_t

wo_billion/.
[4] Azure Container Services, https://azure.microsoft.com/en-

us/services/container-service/.
[5] Google Clound Kubernetes Engine,

https://cloud.google.com/kubernetes-engine/.
[6] Amazon Elastic Contatiner Service, https://aws.amazon.com/ecs/.
[7] Red Hat OpenShift, https://www.openshift.com.
[8] Novel SUSE Caas Platform, https://www.suse.com/products/caas-

platform/.
[9] Linux cgroups, https://www.kernel.org/doc/Documentation/cgroup-

v1/cgroups.txt.
[10] Linux namespaces, https://en.wikipedia.org/wiki/Linux_namespaces.
[11] D. Jacobsen, S. Canon, “Contain this, unleashing Docker for HPC,”

presented at the Cray User Group., Chicago, IL., 2015
[12] Singularity, http://singularity.lbl.gov
[13] Reid Priedhorsky, Tim Randles, “Charliecloud: unprivleged containers

for user-define software stacks in HPC”, SC ’17 Proceedings of the
Internalional Conference for High Performance Computing,
Networking, Storage and Analysis, Article No. 36. Denver, Colorado,
November 2017

[14] . Lucas Chaufournier, Prateek Sharma, Prashant Shenoy, Y.C. Yay,
“Containers and virtual machines at scale: a comparative
study”,Middleware '16 Proceedings of the 17th International
Middleware Conference, Trento, Italy, December 12 -16, 2016

0.1

1

10

100

1000

Se
co
nd

s	

Test	case

Image	Graph	Benchmarks

btrfs overlay.tmpfs xfs.loopback loopback.tmpfs.hybrid

[15] Jonathan Sparks, “HPC Containers in Use”, presented at Cray User
Group, WA., 2017

[16] dotCloud, https://blog.docker.com/2013/10/dotcloud-is-becoming-
docker-inc/

[17] LXC (Linux Containers), https://linuxcontainers.org
[18] Libcontainer, https://blog.docker.com/2014/03/docker-0-9-

introducing-execution-drivers-and-libcontainer/
[19] Docker security, https://docs.docker.com/engine/security/security/
[20] Open Container Inititive, https://www.opencontainers.org

[21] “Building Tensorflow”, https://www.tensorflow.org/serving/setup
[22] Donald Bahls, “Evaluating Shifter for HPC applications”, presented at

the Cray User Group., London, UK., 2016
[23] “Use Docker Engine plugins”,

https://docs.docker.com/engine/extend/legacy_plugins/#types-of-
plugins

[24] “Docker AuthZ Plugins: Twistlock’s Contribution to Docker
Security”,https://www.twistlock.com/2016/02/18/docker-authz-
plugins/)

