
Managing the SMW as a git Branch

Douglas M. Jacobsen1, Randy Kleinman2 and Harold Longley2

Abstract— Modern software engineering/DevOps techniques
applied to Cray XC Series systems management enable higher
fidelity translation from test to production environments, reduce
administration costs by avoiding duplicate efforts, and increase
reliability. This can be done by using a git repository to track
and manage all system configurations on the SMW(s), and then
adapt a gitflow-like development methodology.

Using git improves change management with peer review of
changes, identification of who made a change, knowing why a
change was made, facilitating easier reversion of bad changes,
and also enables a workflow using the ideas from gitflow with
individual branches for preparing, maintaining, and recording
releases. Using branches enables multiple contributors to work
on different types of change without getting unexpected changes
from another feature area.

We will describe a process to extract/abstract configuration
data, manage it using git, and then re-apply changes to
the SMW(s), similar to NERSC (National Energy Research
Scientific Computing Center).

I. INTRODUCTION

The increasing complexity of High Performance Comput-
ing systems combined with rapidly evolving user require-
ments are creating new challenges in systems management
techniques to ensure that new features and bug corrections
can be integrated into the system without introducing un-
necessary regressions or downtime. The recent availability
of new software engineering tools and DevOps techniques
and the application of these tools to the field of system
engineering provide some solutions for solving these issues.

The Cray Linux Environment (CLE) and the Configuration
Management Framework (CMF) ecosystem introduced with
CLE 6.0 provide the capability to describe the entirety of
the system configuration in machine parseable configuration
files and standard RPM software packages. Because of this it
is trivial to use Software Configuration Management (SCM)
tools like svn or git to manage these documents and track
them over time. Used effectively, the SCM tool can then

This manuscript has been authored by an author at Lawrence Berkeley
National Laboratory under Contract No. DE-AC02-05CH11231 with the
U.S. Department of Energy. The U.S. Government retains, and the publisher,
by accepting the article for publication, acknowledges, that the U.S. Gov-
ernment retains a non-exclusive, paid-up, irrevocable, world-wide license to
publish or reproduce the published form of this manuscript, or allow others
to do so, for U.S. Government purposes.

This paper has been accepted and will be published as an article in a
special issue of Concurrency and Computation Practice and Experience on
the Cray User Group 2018.

1D. M. Jacobsen is a Computer Systems Engineer at the National
Energy Research Scientific Computing Center (NERSC), Lawrence Berke-
ley National Laboratory, 1 Cyclotron Road, Berkeley, California, U.S.A.
dmjacobsen@lbl.gov

2R. Kleinman and H. Longley are Software Engineers at Cray
Inc., 901 Fifth Avenue, Suite 1000, Seattle, Washington, U.S.A.
rkleinman@cray.com, htg@cray.com

provide a given set of configurations all the benefits that
SCM tools have always provided: history and provenance
of changes, collaboration from multiple contributors, and
centralized management of data. The challenge then is not
deciding to use these tools, it is determining a way to use
these tools that derives the greatest benefit.

NERSC’s goals in implementing a new source control
system on top of Cray’s CLE/CMF configuration system
were to:

• provide a mechanism for NERSC Systems Engineers
and Cray On-site Engineers to directly collaborate on
the configuration of the system(s)

• centralize and unify the configuration of the four Cray
XC Series systems operated at NERSC (two production
and two Test and Development systems)

• perform all development and testing of configurations
and system software capabilities on the Test systems
and have a reliable mechanism for deploying those
same configurations and capabilities to the Production
systems

• capability to use test systems for speculative devel-
opment while retaining ability to return to production
configuration

• control and track all pertinent configurations external to
the SMW to ensure we can rebuild the system rapidly
in the case of loss of the SMW

The critical needed capability is to be able to reliably move
an SMW from one fully known state to another – and back
again (if desired). This is a particularly powerful concept
when there is a test system and a production system avail-
able. The test system is configured and managed using the
SCM tools and repositories to create and plan future work.
Then using the self-same SCM repositories to configure and
manage the production system, the production system can
be put into the identical state. This creates a rational testing
and development capability required to meet the objectives
above.

Git[1] was selected as our SCM tool of choice both
because of its technical attributes but also because it enables
a highly-collaborative development-focused workflow. Git is
a highly distributed configuration management tool, wherein
each copy of a repository is (usually) self-sufficient in all
regards. In git terminology a change to the repository is
called a “commit” while the repository is a collection of
commits. Each branch is a specific arrangement of commits
through time. A new branch is created from some commit
reference of its parent branch. Merging two branches results
in a “merge commit” on the target branch which is used to

resolve any conflicts between the branches and create a ref-
erence indicating that all the changes in the merged commits
have been resolved. Git is particularly adept at branching and
managing multiple concurrent lines of development, which
is a key feature in the context of this work. Finally, a
number of tools [2], [3], [4], that provide social software
management and allow policies to be enforced on specific
branches or patterns of branch names, provide peer review
tools, and enable higher-order branching complexities (such
as forking), have emerged which allows a site to enforce
an exquisite level of control in how and when certain types
of operations can be performed and by whom. The term
“gitflow”[5] refers to a particular workflow that organized
git branching can enable. However, in this paper, we refer
to “gitflow” in a more general sense, which is the workflow
that a particular site adopts based on their needs and what
git and git-management tools enable.

Test Systems
Production Systems

bug/123

dev/cle6.0up05

release/cle6.0up05

feature/ldms

feature/slurm17.11

tag=cori/20171215 tag=cori/20180109

Fig. 1. SMW-gitflow. The horizontal lines represent branches of a git
repository. The circles represent commits, non-blue are normal development
commits, blue are merge commits. Lines between branches illustrate merge
directionality.

As shown in figure 1, an example SMW-gitflow allows
parallel development of new features and bug fixes, while
all contributing, over time, to some specific mainline devel-
opment branch. The mainline development branch never gets
any direct updates, these are all done in specialized feature
or bug development branches. All the development work
is performed on the test and development system. In the
most conservative development model, all the configurations
on the SMW can be replaced to match the contents of a
specific git branch. From there system configuration and boot
artifacts can be created, and then the test SMW configura-

tions can be restored to another git branch. This allows a
developer to try forward-looking or risky work that can move
the configuration far afield from the mainline development
without any real risk to the system or its role as a model for
the production machine.

Once the development branch has reached the needed
feature and testing milestones the development branch can
be merged into the release branch. The release branch only
ever gets updates from the development branch, so there is
surety that any testing performed on the development branch
is predictive of the release branch. The separation of the
two allows some level of chaos and reversions to occur in
development that is not exposed to release. The production
systems only use the release branches for configuring the
SMW. In this model the production system is simply an
endpoint while the test and development system gets all the
care and focus of the system developers.

II. METHODS

The basic concept is that SMW configurations, in particu-
lar the source material needed to produce configuration sets,
boot images, and configurations required to boot and manage
the system are stored in git. None of the Cray-provided
system management software is changed or modified to
integrate these, however some additional scripts are used,
with a front-end called “smwflow”[6], to ease the integration
between the git repositories and the SMW.

The methods in this paper are primarily focused on
the NERSC method for merging and abstracting multiple
system configurations into a single abstracted configuration
repository. It should be noted that Cray does provide
a mechanism starting with CLE6.0UP04 to prepare
config sets for export or re-import sets to and from an
SCM repository using the cfgset export perms.py
and cfgset restore perms.py scripts found in
/opt/cray/imps/default/etc[7].

A. Managed Configurations

The SMW has a number of different types of configura-
tions that can be considered for git-based management. The
primary focus for NERSC up to this point has been storing
and managing:

• all the configurations required to generate the global and
CLE config sets [8], these include:

– site-local Ansible plays and roles [7], [9]
– config.yaml documents not generated by the cfgset

tool (i.e., non-Cray config.yaml documents)
– dist files (primarily non-Cray netroot preload files)
– files/roles/SimpleSync data
– configuration worksheets

• the RPMs in the site-local zypper repos (using git-lfs
[10])

• site-local recipe definitions
• site-local package collections
• xtbootsys boot automation scripts
Other important items we are working to get integrated:

• Hardware Supervisory System (HSS) configuration files
stored in /opt/cray/hss/default/etc which
are described in [11], [12], [13], and [14] and enumer-
ated here:

– blade json.sedc
– bm.ini
– bootsys.ini
– cab json.sedc
– sm.ini
– xtbounce.ini
– xtcli.ini
– xtdiscover.ini
– xtnlrd.ini
– xtpcimon.ini
– xtpmd.ini
– xtpmd plugins.ini
– xtpowerd.ini
– xtremoted/xtremoted.ini

• /etc/opt/cray/bootlog profiler/bootprofiler.ini
• /etc/opt/cray/capmc/
• /etc/opt/cray/dumpsys/
• /etc/opt/cray/edumpsys/ *NEW in up06*
• /etc/opt/cray/esd/esd.ini *NEW in up06*
• /etc/opt/cray/llm/
• /etc/opt/cray/modules/Base-opts.default.local
• /var/opt/cray/certificate authority/
• /etc/nginx/conf.d/cray/xtremoted.conf
• /etc/nginx/conf.d/cray/esd.conf *NEW in up06*
• Other SMW localizations (e.g., LDAP/PAM configura-

tion, site administration scripts, etc)

B. Organization of Git Repositories

NERSC has organized configurations into three different
git repositories: nersc-cle6 for most of the “shareable”
text configuration items; nersc-zypper, a git-lfs[10]-
enabled repository for storing RPMs; and imps-secured,
which is a SMW-private repository storing all the root-
equivalent credentials. The primary reason for separating
nersc-cle6 and nersc-zypper is to ease git cloning
and time/effort since more staff are focused on the configura-
tions rather than the binary content. The reason for separating
nersc-cle6 and imps-secured is to provide a security
separation for particularly sensitive information.

The layout of the nersc-cle6 repo is shown in table I.
The layout of the imps-secured repo is similar except it
does not place files in the imps subdirectory.

The nersc-zypper repository has a very simple layout
with one directory per managed zypper repository. Within
each there is an “RPMS” directory and an “SRPMS” di-
rectory. The content of the “RPMS” directory are used to
populate the target zypper repository, whereas the source
RPMs stored in the “SRPMS” directory are used both to aid
in determining provenance of the binary RPMS as well as
providing needed source materials to rebuild in the future if
necessary. The “smwflow” script is able to selectively install
RPMS into the zypper repository to allow for machine-
specific RPMS if necessary. Owing to the extreme ineffi-
ciency of git in managing binary content, we use git-lfs [10]
to manage all RPM content. This allows nersc-zypper

to participate in the branching scheme, thus enabling poly-
morphic transformations of the zypper repositories across
systems, without incurring extreme download or filesystem
performance issues when changing branches or cloning.

C. Configuration Set Construction

As can be seen in table I most of the content
of the nersc-cle6 repository is dedicated to popu-
lating and constructing the CLE and global configura-
tion sets. It is important to note that any configura-
tion sources are stored in the git repository, not con-
tent that can be auto-generated by the Cray-provided
CMF, such as the dist/compute-preload.cray file,
files/roles/common/etc/hosts, and almost all
config/cray *.yaml files. By focusing the git repos-
itory on the storage and management of the source files,
rather than attempting to transfer data backwards from the
configset unnecessarily into git, the error rate is reduced
as well as fewer opportunities for issues to arise as newer
versions of CMF are introduced that may handle generated
content differently than previous versions.

To construct a new configuration set the following steps
are used by the “smwflow” tool:

1) Create a new empty config set. This will initialize the
config set and produce initial versions of all autogen-
erated content. For example:
smw# cfgset create --no-scripts \

--mode=prepare --type=<type> <name>

2) Setup worksheets. To maximize the amount of shared,
non-redundant content, the “smwflow” tool selects and
builds worksheets from a variety of sources in the git
repositories. This process is covered in detail in section
II-D. Once the worksheets are prepared the config set
is updated with the content of the worksheets. For
example:
smw# cfgset update --no-scripts \

--mode=prepare \
-w ’/path/to/worksheets/*.yaml’ \
<name>

3) Build config/*yaml files using sames rules as described
for worksheets in section II-D. No cfgset operations
performed.

4) Copy files/* (SimpleSync/Roles) content to config set
using same selection rules used for worksheets. The
permissions.dat file is used to set custom owner-
ship/permissions in the config set where required. No
cfgset operations performed.

5) Copy dist/* content to config set using same selection
rules used for worksheets. No cfgset operations per-
formed.

6) Copy ansible/* content to config set using same se-
lection rules used for worksheets. Content is de-
structively rsync’d in place (i.e., system-specific con-
tent may replace generic content). Recommend us-
ing system-specific variables for differentiation, not
system-specific ansible plays/roles. No cfgset opera-
tions performed.

7) If global config set, set up the NIMS maps.

TABLE I
NERSC-CLE6 GIT REPOSITORY

Configuration Description

imps/cle ansible Ansible plays and roles for CLE config set
imps/cle config config YAML files to directly inject into cfgset/config
imps/cle dist site-local files to populate cfgset/dist, notably local netroot preload

definitions
imps/cle files roles and SimpleSync files to populate cfgset/files
imps/cle files/permissions.dat non-standard owner/group/permissions
imps/cle worksheets Jinja2 templated worksheets for CLE config sets
imps/cle worksheets vars variable definitions for templated CLE worksheets
imps/<system> cle files roles/SimpleSync specific to the named system
imps/<system> cle files/permissions.dat non-standard owner/group/permissions for the named system
imps/<system> cle worksheets entire cle worksheets specific to the named system
imps/global config YAML files to directly inject into global cfgset/config
imps/global worksheets Jinja2 templated worksheets for global config sets
imps/global worksheets vars variable definitions for templated global worksheets
imps/<system> global config system-specific YAML files to directly inject into global cfgset/config
imps/<system> global worksheets other system-specific global worksheets
imps/image recipes.local.json local image recipe definitions
imps/package collections.local.json local package collection definitions

8) Inject config set construction metadata into
cfgset/config/nersc cfgset.yaml.
Metadata includes the location, branches, and
commits of the nersc-cle6 and imps-secured
repositories.

9) Perform final config set update, allowing postscripts
to run. This is required to produce a bootable con-
fig set that has needed platform files (global) or
/etc/hosts (cle), for example. Runs cfgset
update --mode=prepare <name>. It is impor-
tant that xtalive have a positive response and all
nodes are enabled during this step.

10) Perform config set validation routines. This runs
cfgset validate <name>, as well as parsing
both the input worksheets and the config-set-produced
worksheets and comparing all keys and values to
validate that the worksheets were correctly processed.

11) Any final site-local preparation steps needed. At
NERSC this is used to build the ssh configura-
tion and inject those files into cfgset/files/* in order
to automatically construct ssh known hosts (and so
on) using knowledge of all systems (by parsing all
cray net worksheets under management).

It is important to emphasize the role of worksheets and the
configurator at this point. Worksheets are provided as the pri-
mary vehicle of configuration input because we have found
those to be relatively stable over several versions of CLE
6.0. The key feature however is that the configurator reads
worksheets in as inputs and produces config files directly
from them. It then proceeds to use the config files to produce
the worksheets found in the config set. By comparing the
git-managed input worksheets to the configurator output
worksheets and ensuring that the data within is identical, we
can be certain that the configurator has correctly interpreted
the git input data. If the git-managed input worksheets differ
from the output worksheets, config set construction fails and

produces an error.
The final “cfgset update” operation performed intention-

ally performs no worksheet operations to ensure that all
the needed configurations are correctly added to the con-
fig/*yaml files, even if those are not directly represented in
the worksheets. All “cfgset” operations in the construction
process use “mode=prepare” to ensure non-interactive con-
figurator behavior. This is necessary owing to the require-
ment that all boot artifacts can be generated with no human
intervention.

D. Configset Object Selection and Construction for Multiple
Systems

To support multiple systems within the same git repos-
itory two different but related strategies are used. First,
for each object type of interest (e.g., ansible, config, dist,
files, worksheets) a number of paths are searched to find
the most appropriate values. These paths range from a
common path (e.g., cle worksheets) to system-specific (e.g.,
cori cle worksheets). The second strategy for supporting
multiple systems is to use Jinja2 templating [15] inject
system-specific variables into worksheets stored in the com-
mon area.

When selecting which objects to use to populate the
config set a number of paths are searched by combining the
object type (e.g., “worksheet”), config set type, system
name, and repository. From lowest to highest priority:

1) Shared content,
nersc-cle6/imps/<type> <object>, e.g.,
nersc-cle6/imps/cle worksheets

2) System generation content,
nersc-cle6/imps/<gen> <type> <object>
e.g., nersc-cle6/imps/n8 cle worksheets

3) System-specific content,
nersc-cle6/imps/<system> <type> <object>,
e.g., nersc-cle6/imps/cori cle worksheets

4) System-specific secured content,
imps-secured/<type> <object>, e.g.,
imps-secured/cle worksheets

Ideally, as much content as possible should be in
the shared directory. The cray net worksheet.yaml and
cray node groups worksheet.yaml files will always be in the
system-specific directory.

To drive as much content as possible into the
nersc-cle6 repository, and as much as possible
into the common directory, some of the almost-
identical worksheets were converted to Jinja2
templates, reading system-specific variables from
nersc-cle6/imps/<type> worksheets vars/
<system>[secrets].yaml or from similar paths in
imps-secured. The “secrets” YAML files are encrypted
with the Ansible Vault, using SMW-specific keys. The
Ansible Vault [16] provides AES-256 encryption of
sensitive data using a pre-shared key. Each SMW (and thus
system) has a separate Ansible Vault key, which is used to
secure data stored in git and within the config set to only
allow secrets to be accessed on the SMW or as root on
the system. Only worksheets support Jinja2 templates - all
other content is simply discovered using the path hierarchy
described above.

E. Gitflow / Branching Strategy

As shown in figure 1, all development is performed in fea-
ture and bugfix branches. These feature and bugfix branches
are merged into the primary development branches via Pull
Requests in NERSC’s internal BitBucket. This affords us
the opportunity to perform code reviews, discuss testing
already performed on the proposed changes, and deployment
strategies prior to merging the code into the mainline. Once
the code is considered stable and ready for use on production
systems, the changes are merged into the release branch,
again via Pull Request and requiring review. The changes
when going from development to release is typically a roll-up
of many commits, potentially resulting in dozens or hundreds
of changes, and so the review is to ensure that all features
planned for upcoming release are included and as a final
verification.

We typically use the development branches as the mainline
target for our test systems. However, as has been discussed
in this document, the test system SMWs are frequently put
onto different branches in support of development activities.
We can even load the release branch onto the test system
SMW if desired.

Multiple development and release branches can be main-
tained simultaneously. These support updates from one ver-
sion of CLE to the next. Thus during a time period of
transition from cle6.0up04 to cle6.0up05, we would sup-
port branches develop/cle6.0up04, develop/cle6.0up05, re-
lease/cle6.0up04, and release/cle6.0up05. Any features that
are merged into one of the develop branches needs to be
pulled into all the other supported develop branches. This
can either be done by the author of the feature/bugfix
changes by performing multiple Pull Requests into each of,
for example, develop/cle6.0up04 and develop/cle6.0up05, or
the maintainers of the develop branches can merge changes
directly from one to another, depending on the need and

the level of difficulty of the merge (typically no difficulty).
Similar to before, changes to the release branches are done
by merging the matching develop to release branches only.

When booting the production systems (or initiating a
rolling update) we tag the HEAD of the release branch
used to boot the system. This eases finding critical release
commits over time, and makes it very easy to determine when
a particular feature actually went into production.

F. Getting Started from Your Current SMW(s)

Starting from scratch takes some effort to properly bring
in all the configurations, and, if multiple systems are to be
managed, to properly separate out the common from system-
specific content. To start, one first needs to initialize their
own version of the nersc-cle6 and nersc-zypper
repositories. Using your test system SMW as the reference,
copy the local package collections.local.json
and image recipes.local.json to the
config git repository. Next copy all of the global
worksheets to global worksheets, and cle
worksheets to cle worksheets. Copy the
cray image groups config.yaml to cle config. Copy
the CLE config set ansible directory to cle ansible in
the git repo. Finally, start examining the CLE config set files
directory, determining which content needs to be stored in
git (e.g., Lustre FGR settings, RSIP configurations, munge
keys, etc).

At this point attempt to generate a new config set and
boot the test system with it. Assuming all works as expected,
you’ll need to start adding the production system. The initial
setup of this is a significant amount of work to identify
exactly where the systems diverge, and minimize those as
much as possible.

To keep things simple, NERSC uses the identical im-
age recipes, package collections, and site-local Ansible
plays on all systems. Image recipes and package col-
lections are not differentiated by system in any way,
at all. For ansible, many of our plays look to include
variable files named {{nersc.machineName}}.yaml
or {{nersc.machineName}} secrets.yaml (ansible-
vault) systems. The plays and roles are then modified to
use those. The “nersc.machineName” is defined by adding a
machine-specific config YAML file to the CLE config set.

To determine which worksheets can be shared and which
must be made machine-specific, you can compare two
worksheets using smwflow diff local worksheets
file1.yaml file2.yaml. In this way you can figure
out the best strategy for sharing as many of the worksheets
as possible, turning some into static shared content, others
into templates, and fully specializing some worksheets.

G. Updating Configurations in git

Updating the git configurations is mostly trivial, however
it is important that real administrator user accounts perform
the git operations, not root or crayadm, as those obscure
which real user made some specific changes.

H. Updating SMW Configurations / Changing the SMW
Branch

The SMW copies of the git repositories are root owned
clones of nersc-cle6 and nersc-zypper that are kept
in smw:/var/opt/cray/disk/1/software/git.
These clones have a default “origin” remote of the repo
stored on the NERSC private BitBucket server using the
root ssh key to get read-only (pull-only) access.

To change the git branch that is being used on the smw,
one needs to first update the SMW copies, for example, here
is the manual way:

smw# cd /var/opt/cray/disk/1/software/git
smw# cd nersc-cle6
smw# git pull
smw# git checkout feature/slurm-17.11
smw# cd ../nersc-zypper
smw# git pull
smw# git checkout feature/slurm-17.11

Manually moving all repositories to the correct branch can
be finicky and potentially generate mistakes. Instead of
manually running all the git commands directly on the
SMW root-owned copies of the git repositories, one can
automatically update the repos, check out the appropriate
branch and potentially perform additional validation steps
using the smwflow command:

smw# smwflow checkout <branch>

“smwflow” is the software middle-ware prepared by NERSC
for the purpose of managing the SMW-gitflow process on the
SMW.

Next the configurations stored in those repositories need
to be applied to the SMW. We use scripts which require no
human intervention to actually do this. This allows either
a person to run the scripts manually to perform a custom
set of changes or for the commands to be executed by an
automation agent for standard rebuild and regression tests.

The first step is to replace the SMW-wide configurations
required for building images the git repositories by running:

smw# smwflow update image_inputs

The image inputs update replaces:
1) local package definitions
2) local recipe definitions
3) local zypper repos
No Cray-provided recipe definitions, package collection

definitions, or zypper repositories are managed by git or
smwflow. Those are exclusively managed by the SMW soft-
ware installation and normal Cray patching methodologies.

The next step is to update the global config set and
construct a new CLE config set. It is possible to rebuild
the global config set from scratch using this process,
but the NIMS maps will be destroyed in the process
(which may be OK with you). Before attempting either
global or CLE config set construction/updates ensure
that xtalive is fully responsive and that no nodes
in the system are disabled (check xtshow disabled
for any unexpected output. Failure to do this can result
in unbootable nodes later on that don’t make it into
the global platform definition files. This is because

xthwinv is called as part of the cfgset update process.

To verify the global config set matches the current content
of git:

smw# smwflow verify_cfgset --type global global

To update the global config set:

smw# smwflow update_cfgset --type global global

To create a new config set:

smw# smwflow create_cfgset --type global global

If a new global config set is constructed, it will be
necessary to build a new p0 NIMS map. The NERSC-style
map (orthogonal NIMS groups of admin, service, compute,
login) can be built using:

smw# smwflow create_nimsmap p0

The map creation process relies on all tier2 and login (or
other re-purposed compute nodes) already being re-purposed,
and the “tier2 nodes” and “login nodes” node groups being
populated in the <system> cle worksheets portion of
the nersc-cle6 git repo.

After performing the image input updates and global
config set updates one can then run the image create
... or imgbuilder ... commands as required to create
images. Warning: in many live update situations you’ll want
to avoid automatically mapping the new images, to ensure
that the new image(s) is/are only put in the critical path
after pushing the image root to the boot server in the case of
netboot images, or other more detailed cases discussed later
in section III-B.5.

In parallel with the image builds, the CLE config set can
be constructed. It is possible to update CLE config sets,
but preferred to create new ones in NERSC SMW-gitflow
scheme. This reason for this is to reduce confusion in the case
of rolling updates, wherein the system may be booted with
a diversity of images and configuration set combinations. If
new images and new CLE config sets are always constructed
anew from known commit-level/branches in git, it becomes
possible to map the system changes as a series of state
transitions, which eases debugging and communication of
change.

To build a new CLE config set:

smw# smwflow create_cfgset --type cle \
<system>.<branch>.$(date +%Y%m%d%H%M%S)

At this point all of the currently tracked and managed
configurations by NERSC are updated. Future additions of
the HSS configuration changes may require the system to
be shut down to safely replace them. Changes to the global
config set ansible plays may require cray-ansible to be re-run
on the SMW, or possibly for the SMW to be rebooted to get
fully configured.

This section has discussed in some detail what configura-
tions are updated and how. This however, usually is a simple
set of steps:

smw# smwflow checkout release/cle6.0up05
smw# smwflow update image_inputs
smw# smwflow verify_cfgset --type global global

smw# smwflow create_cfgset --type cle <name>

I. Performing CLE Software Patch and Site-Local Updates
on the Production System(s)

A basic system software update from a minor CLE or
SMW patch or adding some site-local RPMs or modifying
Ansible or other configurations is greatly simplified in the
SMW-gitflow scheme. This is owing to the fact that the
configuration and patches are tested on the test system much
earlier than they get to the production system. Any changes to
system-specific content for the patches in git, need to be done
for all system definitions before the changes can be merged to
the development branch. This ensures that the development
branch is system-agnostic, and that any ordering of system
boots can be supported.

The day before the planned maintenance day the de-
velopment branch is merged into the release branch. Next
the CLE/SMW patches can be installed on the production
SMW and the site-local zypper repos are regenerated from
the updated release branch from nersc-zypper. Finally
images can be built but not mapped.

After the system has been shut down during the planned
maintenance, then the images can be mapped (using saved
output from imgbuilder -s --map --dry-run. The
global and CLE config sets need to be constructed or
updated, and then mapped into the NIMS map.

Finally boot the system with full confidence that every-
thing will work as it did on the test machine, since the
configurations are precisely the same as was created and
tested in the test environment.

J. Performing CLE Software System Updates

When performing a system update, or fresh re-installation,
you can use the existing git repositories to greatly speed the
update/installation process. This is accomplished by doing
all the hard work on the test system(s) in advance of
the production system(s) (as usual), by preparing all the
worksheet specializations and modified image recipes on the
test system. By doing this most of the steps associated with
preparing the global and CLE config sets can be skipped
almost entirely for the production system(s).

The basic process on the test SMW looks like:
1) Perform SMW Installation in a snapshot
2) Construct a new global config set using the “smwflow”

tool. Iterate with git until global config set converges
(i.e., validates with “smwflow” with no issues). You’ll
need to modify the template version information (ig-
nore the DO NOT MODIFY warnings).

3) Reboot SMW into update snapshot
4) Perform any needed xtdiscovery/rtr steps needed to

(re)initialize the SMW
5) Perform any needed xtzap steps to get the HSS system

working properly.
6) Modify local recipes (usually just changing SLES and

Cray ”up” level indicators in the recipe names. Iterate
on building images until the formatting of the recipes
and package collections stabilizes.

7) Construct a CLE config set using the “smwflow” tool.
Iterate with git until CLE config set converges (i.e.,
validates with “smwflow” with no issues). You’ll need
to modify the template version information (ignore the
DO NOT MODIFY warnings).

8) Review all the config set documentation in the install
or upgrade section of [11] making any recommended
changes.

9) Modify all system-specific worksheets to work with
the update.

10) Map the images
11) Boot the system

The basic process on a production system is very
similar, except that there should be no need to iterate
for convergence. As shown in figure 2, the git branch-
ing strategy for managing a system update is uses one
development and one release branch per system soft-
ware version. For example, the TDS system(s) would use
branch dev/cle6.0up05 for SMW software installations for
cle6.0up05, and branch dev/cle6.0up06 for SMW software
installations of cle6.0up06. Similarly the production systems
use release/cle6.0up05 and release/cle6.0up06 for SMW soft-
ware installations of cle6.0up05 and cle6.0up06 respectively.
This is done because the git configuration repositories are
tuned to configure the relevant software versions, which may
imply needed differences in a minority of the configurations
(usually). In general commits on feature or bugfix branches
can can be merged into either branch (or cherry-picked
depending on the context) so long as the developer is careful
to merge frequently. As usual the release branches should
only get merged from the development branches to ensure
that all changes are fully tested and that no commits (other
than merge commits) exist solely on the release branches.

Test Systems
Production Systems

bug/123

dev/cle6.0up05

dev/cle6.0up06

release/cle6.0up05

release/cle6.0up06

bug/234

cori/20180410 edison/20180507

cori/20180501 edison/20180525

Fig. 2. SMW-gitflow for CLE version updates. The circles represent com-
mits, non-blue are normal development commits, blue are merge commits.
Lines between branches illustrate merge directionality.

III. DISCUSSION

A. NERSC Experiences

NERSC has been using an evolving version of these
techniques since late 2016, and has successfully updated
from cle6.0up02 → cle6.0up03 → cle6.0up04 → cle6.0up05
using a form of what has been presented here (though the full
suite of tools was only used for the cle6.0up04 patch mainte-
nances (many) and the cle6.0up04 → cle6.0up05 transition).
NERSC has derived a great deal of value from having the
edison and cori system configurations fully converged. In
many ways it is possible to view them as the same system
now, such that most bugs or issues are present on both
systems, and a correction of one implements the correction
for both. This is despite the fact that these systems are vastly
different architectures – edison is an Ivybridge system using
RSIP and older networking configurations, while cori is a
heterogeneous Haswell and Knights Landing system with
DataWarp and using a new Software Defined Networking
scheme that NERSC has been developing as well as a variety
of other differences. Thus the techniques described here are
flexible enough to account for rather large differences in
scale, architecture, and configuration.

NERSC runs four Cray XC systems, two production sys-
tems (edison and cori), and two test and development systems
(alva and gerty). All four systems share the configurations
in the git repositories, and a single branch encompasses
all four systems. We have found that, in practice, running
tests on our larger test system, gerty, is quite predictive
of success on either production system. To that end we
have specialized the roles of each test system. The alva test
system is more focused on experimental and forward looking
software installations, such as building new development
branches for the latest CLE update level, or attempting new
configurations of SMW software. The gerty system on the
other hand is more focused on the production state, or
sampling configurations based on same SMW/CLE/SLES
patch level as the production systems.

Because the test systems can be re-spun so quickly into
production configurations, we have found that it dramatically
lowers the cost of allowing several different development and
administrative activities to proceed simultaneously on the test
systems. This has proved invaluable for allowing administra-
tors to experiment on the system to gain experience.

Finally, we have found that we can cut the length of most
software-only maintenances. Because the configurations can
be tested ahead of time and transferred from the test systems
to the production systems via git and smwflow, we can be
confident that any bootable configuration tested on gerty is
very likely to boot on edison and cori. By staging all the
changes the day before and following the procedures de-
scribed here, we have found that most software maintenances
last just 3-4 hours now instead of the longer all day affairs
we used to experience. CLE updates are sped up using these
techniques but still tend to be a whole-day maintenance.

B. NERSC Future Work
1) Adding More Configurations: In the coming months,

NERSC plans to add capabilities to store the HSS configura-
tion files in the same configuration repositories. To support
multiple systems, the diversity of configuration values will
need to be reviewed to determine the best strategy to try
to consolidate the configuration across systems as much as
possible. It is likely that we will make use of the Jinja2
templating once again for these. The other complication will
be determining when it is safe to deploy these configurations
– potentially only when the machine is shut down.

Another configuration target of interest is to consolidate
and manage the Sonexion puppet and Lustre server config-
urations to help improve how the system is managed and
ensure that desired values are exposed to the system man-
agement team. An initial target is simply to make adjustments
to the ssh configuration to meet local security policies.

The final component that we are missing is local configura-
tions and management scripts on the SMW itself. The SMW
is largely manually configured with management scripts in
/usr/local, not managed by RPM installations. A clear direc-
tion here is to start populating the global ansible with
plays to be executed by the SMW. The only complication is
that global ansible/roles is included in non-SMW
ansible roles search path, thus some care will be required to
avoid unintended side-effects.

2) System Management Automation: The design objec-
tives of this project required that no human intervention be
required for any of the SMW configuration, branch change,
boot artifact creation, or even boot processes. This capability
allows an automation agent to be used to perform many of
the functions described in this document. We have already
implemented a proof-of-concept capability to automatically
change branches, rebuild localized software packages from
remote branch HEADs, rebuild images, and reboot both an
Air Cooled XC system as well as the eLogin nodes attached
to it using smwflow constructed images and configsets using
the Jenkins Continuous Integration software package [17].
This level of automation reduces about nine hours of hu-
man work to just over two hours, and could easily enable
automated regression testing. The short term goal will be
to run builds and tests on up to five branches per day on
our software development with full slurm [18] regression
test suite and our local reframe [19] regression test suite to
validate user functionality. The longer term goal is to begin
implementing some level of administrative automation on
the production systems, especially attempting to implement
limited forms of rolling updates.

3) Secure Commits: One capability we are interested in
exploring is further securing our git repositories by using
GPG-key signing commits. This would allow us to verify
that all modifications originated from our team.

4) Automated Configuration Pre-Computation: The move
to always rebuilding configuration sets by using the smwflow
tool gives the opportunity to further automate some aspects
of the system configuration. As of this writing we have al-
ready implemented ssh and LDMS configuration postscripts

to smwflow which create new SimpleSync or Ansible content
used for configuring those services. Looking more forward,
we envision integrating the node group, image group, and
image construction scheme, to directly execute some partic-
ularly slow ansible scripts ahead of time in the image chroot
and populate the results in SimpleSync. This could be a
mechanism for retaining an extremely flexible configuration
management system while speeding boot times.

5) Enabling Rolling Updates: Enabling rolling updates of
site-local software and configurations is a central objective
for the systems engineering team at NERSC. Using the
smwflow tools the system over time can now be decomposed
to a series of known state transitions. If a given update
only requires rebooting non-service nodes like computes
and elogins, we may be able to automate the rebooting of
nodes to the new configuration state either using CNAT[12],
Slurm[18], or automation agents on the SMW to manipulate
elogin nodes. One major weakness of rolling updates that the
known-state tracking may be able to help with is monitoring
the updating system. We cannot disable system monitoring
for several days while we wait for a rolling update to com-
plete. Instead, if, when a node boots, it were to communicate
which image and CLE config set it booted with (now possible
with the smwflow metatdata injected into the config set),
then the monitoring system can adapt as specific high-value
nodes reboot and potentially services move from one node
to another.

6) Boot Performance Tracking: Since the configuration
git repository is tracking the state of the system over time it
would be advantageous to collect bootprofiler data for
each configuration set booted. Summaries of these could be
committed back into the configuration repository to aid in
boot timing bisection to track both which commit levels and
patch levels might be related to regressions or enhancements
in boot performance.

7) Room for Improvement: The CMF tools allow for
exquisite control over the system, however there are some
things which could ease integration with external SCM tools
like git. The managed json documents, in particular, are not
well suited to git management without a little post-processing
to ensure that changes over time are properly tracked when
merging distant branches. Additionally, it would be advan-
tageous if the recipe and pkgcoll tool had options to
operate on an administrator’s copy of the configuration git
repository.

Probably the biggest improvement would be if we could
standardize a method for injecting configurations to avoid
some of the excess scripts that are required to dance con-
figuration data back and forth between the git repository
and the SMW. One possibility would be for the SMW to
simply read configurations directly out of the git repository.
In a limited way this is possible with image recipes and
package collections already by overriding the “local edits”
files specified in /etc/opt/cray/imps/imps.json,
however until this is combined with some of the other
enhancements, it would be of limited value.

IV. CONCLUSION

The SMW-centralized configuration management in CLE
6.0 is a key feature that enables the work described in this
paper. By further organizing and abstracting the configu-
rations of multiple systems into a set of coordinated git
repositories, and a minimal software layer to integrate those
data onto the SMWs, we can effectively co-manage multiple,
diverse systems of varying requirements and capabilities.
Using git’s enormously flexible branching capabilities and
formulating the SMW configurations in such a way that the
entire configuration of all managed systems is encapsulated
by a branch, an administrator is able to mutate a system far
afield from its initial configuration and immediately revert
back to the production configuration. When applied to a
test system, rewriting the SMW configuration from a git
branch allows the test system to be used for a variety of
development activities, in parallel, while still retaining its
value as a model for the production system. Providing these
essentially sandboxed branches on a test system affords
administrators an opportunity to explore and gain experience
with a test system from development and system manage-
ment perspectives which improves both the configuration
and staff capabilities for the production environment. The
use of shared configurations between the test and production
systems reduces cost by avoiding duplication of efforts,
and ensures faithful transfer of the configurations to the
production system. Taking advantage of social git services
like Bitbucket Server[2] or GitLab[4] enables Peer Review
of proposed changes which further increases staff knowledge
of changes and provides a feedback mechanism to help
improve the configurations, as well as providing mechanisms
to interface with Continuous Integration/Continuous Deploy-
ment (CI/CD) services like Jenkins CI [17]. Managing the
SMW as a git branch is an enabling technology for DevOps
methodologies on Cray Systems and will lead to continuous
integration of software and configurations increasing system
availability, system stability, and system capability for users.

REFERENCES

[1] Hamano, J. and Torvalds, L. (2005): git. Available at http://git-
scm.com

[2] Atlassian. (2018): Bitbucket Server. Available at
https://www.atlassian.com/software/bitbucket/server

[3] GitHub, Inc. (2018): GitHub Enterprise. Available at
https://enterprise.github.com/home

[4] GitLab. (2018): GitLab. Available at https://about.gitlab.com/
[5] Driessen, V. (2010): A Successful Git branching model. Available at

http://nvie.com/posts/a-successful-git-branching-model/
[6] Jacobsen, DM (2018): smwflow: gitflow tools for Cray Systems

Management. Available at https://github.com/NERSC/smwflow
[7] Cray, Inc. (2018): XCTMSeries Ansible Play Writing Guide (CLE

6.0.UP06 S-2582) Available at https://pubs.cray.com/
[8] Cray, Inc. (2018): XCTMSeries System Configurator User Guide (CLE

6.0.UP06 S-2560) Available at https://pubs.cray.com/
[9] Redhat (2012): Ansible. Available at https://www.ansible.com/

[10] git-lfs (2014): Git Large File Storage. Available at https://git-
lfs.github.com/

[11] Cray, Inc. (2018): XCTMSeries System Software Installation
and Configuration Guide (CLE 6.0.UP06 S-2559) Available at
https://pubs.cray.com/

[12] Cray, Inc. (2018): XCTMSeries System Administration Guide (CLE
6.0.UP06 S-2393) Available at https://pubs.cray.com/

[13] Cray, Inc. (2018): XCTMSeries Power Management Administration
Guide (CLE 6.0.UP06 S-0043 Available at https://pubs.cray.com/

[14] Cray, Inc. (2018): XCTMSeries System Environment Data Collections
(SEDC) Administration Guide (CLE 6.0.UP06 S-2491) Available at
https://pubs.cray.com/

[15] Ronacher, A. (2008): Jinja2. Available at http://jinja.pocoo.org/
[16] Redhat (2018): Ansible Vault documentation. Available at

http://docs.ansible.com/ansible/devel/user guide/vault.html
[17] Armenise, V., (2015) Continuous delivery with Jenkins: Jenkins solu-

tions to implement continuous delivery. RELENG ’15 Proceedings of
the Third International Workshop on Release Engineering. Available
at https://jenkins.io/

[18] Jette, M., Yoo, AB., and Grondona, M., (2002) SLURM: Simple Linux
Utility for Resource Management, In Lecture Notes in Computer Sci-
ence: Proceedings of Job Scheduling Strategies for Parallel Processing
(JSSPP) 2003. Available at http://schedmd.com

[19] Karakasis, V., Rusu, VH., Jocksch, A., Piccinali, J-G., and Peretti-
Pezzi, G. (2017) ReFrame: A regression framework for checking the
health of large HPC systems. Cray User Group 2017. Available at
https://github.com/eth-cscs/reframe

