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Abstract— Monitoring the state of an HPC cluster in a timely
and accurate fashion is critical to most system administration
functions. For many Cray users, the first step in monitoring is
ingestion of log files. Unfortunately, log parsing is an inherently
inefficient process, requiring multiple software components to
read and write from files on disk. Cray’s own utilities use a
message bus, the Event Router Daemon (ERD), for a wide
variety of purposes. At the Argonne Leadership Computing
Facility (ALCF), we have begun to use this message bus for
monitoring via a client library written in Go, allowing us to
read in structured data directly from Cray’s services, and in
many instances, bypass log files entirely. In this paper we will
examine the implementation and utilization of this approach
on our 4392 node XC40, Theta, as well as the overall benefits
and drawbacks to using the ERD for real-time monitoring.

I. INTRODUCTION

In 2016, the Argonne Leadership Computing Facility
(ALCF) acquired Theta [4], which is now a 4392-node, 24-
rack Cray XC40 system accompanied by a 10PB Lustre
file system. Each Theta node is equipped with a 64-core
Intel Xeon Phi 7230 and 192GB RAM. [1] For the first
few months of Theta’s operation, administration and system
diagnosis was mostly preformed by searching various log
files and using all vendor-provided tools. By comparison,
the ALCF’s last machine was an IBM BG/Q, and the BG/Q
monitoring stack relied on highly structured and centrally
databased data. [2] Although using a log ingestion stack,
such as ELK, was possible, we ran into a problem: the
hardware error logs, which provide error information for
various components, such as PCIe chips, Cray Aries NICs
and processors, was in a binary format. Cray provides
a tool, xthwerrlog, to parse this binary data, but the
human-readable, multi-line text was sub-optimal for machine
parsing. There was an obvious use-case for placing this data
in a database; we could be notified automatically of failures,
and modern database tools would allow us to track long-term
trends of correctable and uncorrectable errors, potentially
allowing us to find and replace suspect hardware before it
fails. In addition, such data, when in an easily parsed format,
would be of research interest.

It was soon discovered that this hardware error data
reached the log file by way of the ERD, where it was
transmitted in (mostly) the same binary format as the log
files. It was soon decided that reading this error data by
way of the ERD was more efficient than tailing a binary
log file. As the ERD is reachable from outside the System

Management Workstation (SMW), this also meant that we
could avoid running any analytics software on the SMW. An
initial client library was written, and soon after we decided
to start monitoring other data sources via the ERD, most
notably the console logs and System Environmental Data
Collection (SEDCv2) data. This data, once parsed, is shipped
to Elasticsearch and InfluxDB in a structured form. Although
SEDC data already exists in a Cray-provided database, our
use of the ERD allowed us to effortlessly export the data
in real-time to our own analytics stack using the same
interface used by Cray’s own tools, without running any
additional software on the SMW. This design choice meant
that analytics and management software stacks were kept
isolated.

As a result, we have created a number of client libraries, all
written in the programming language Go, that are responsible
for reading from the ERD, as well as parsing data and
inserting it into various databases. This set of libraries
has been dubbed Deluge. While development is ongoing,
Deluge has proven to be production-ready, stable, and easy
to maintain. To aid in the maintenance of these libraries, we
developed a number of harnesses that serve to automatically
re-implement Cray’s own libraries for parsing SEDC and
hardware error data. These libraries allow the Deluge parsing
backend to be regenerated with a single script, making it
effortless to update in response to changes made in Cray’s
parsing logic. Deluge was developed without the benefit
of detailed user-facing documentation for the ERD API.
The presence of development libraries for the Hardware
Supervisory System (HSS) is not well-advertised, so initial
development was done using only tcpdump logs of ERD
messages. With the help of Cray’s development libraries for
the Gemini Hardware Abstraction Layer (GHAL) and HSS,
the rest of the development process proved to be trivial, as the
provided header files contained the struct definitions needed
to interface with various Cray components.

As far as we are aware, this approach to monitoring an
XC40 appears to be unique, both in philosophy and design.
The design and deployment of Deluge has proven to be much
simpler than expected. This success can be attributed to a
number of factors: the relative stability of the ERD’s API, our
use of the Go language, the choice to re-implement Cray’s
hardware error parsing logic in an automated fashion, and
extensive unit testing to verify program correctness. As a
result of the above factors, Deluge has proven to be useful in



day-to-day operations, allowing us to store data in a machine-
friendly and DevOps friendly format that is easy to visualize,
monitor and store using modern, industry-standard tools.

The rest of this paper is structured as follows: In section
II we will describe the structure of Deluge and its various
helper libraries, and the justification for this design. In
section III we will discuss the performance characteristics
of the Deluge libraries, how that performance has evolved,
and compare it to the corresponding Cray libraries. In section
IV we will discuss how Deluge is being used in production
at ALCF, and how it has assisted in the administration of
Theta.

II. DESIGN

We established a minimal set of requirements for a
monitoring codebase before starting Deluge. It should be
written in a language with good performance characteristics,
memory-safety and easy concurrency primatives, and the
libraries should be easily extensible and scalable.

We chose Golang based on these requirements, and it has
proven to be a sound choice. Although Go is a relatively
young language, with Go 1.0 being released in March of
2012 [3], we felt it was a good candidate based on our needs.
It’s memory safe, strongly typed, garbage collected, has easy
to use concurrency primitives, a rich standard library, and is
under active development. The time to release for Deluge
was relatively short and free of serious bugs due in part to
these characteristics.

Deluge is separated into three major backend libraries:
events, hwerrcore, and sedccore. A number of
monitoring daemons implement these libraries, named
sedclistener, hwerrlistener, and consoles.
The Deluge ecosystem also contains a CLI application
called ghal harness that assists in the maintenance of
hwerrcore. A diagram demonstrating how deluge fits into
the rest of ALCF’s Cray ecosystem can be found in fig. 1.

Deluge takes a very different philosophical approach to
handling data compared to Cray’s own utilities. Deluge is
designed to sit alongside Cray’s tools and passively listen
for data, and does not replace any Cray functionality. Data
produced by Deluge is structured and machine-readable, so it
can be handed off to other data analyis software, or inserted
directly into a database. Many of Cray’s tools provide data
as unstructured text, like the events log, or the output pro-
duced by xthwerrlog. This design choice on Cray’s part
influenced the decision to make Deluge as comprehensive as
it is, as we discovered that if the xthwerrlog functionality
was redesigned from scratch to produce structured data that
could easily be inserted into a database, the resulting library
would have superior performance than an otherwise identical
library that used regex to parse the human-readable string
data returned by the underlying library calls that backed
xthwerrlog.

Although Deluge is written in Go and none of the
monitoring code is built against Cray’s libraries, we did make
use of the development packages provided by Cray. Many
of these development packages contain struct definitions that

were used to make sure that Deluge was correctly handling
the data it received, and it provided some limited insight into
the internal logic of the ERD and the hwerr subsystem. We
developed Deluge using insights provided by the following
packages: lsb-cray-hss-smw-headers-pub,
cray-gni-headers, lsb-cray-hss-smw-devel,
and cray-gni-devel. All of these packages are available
to install from the mom nodes or the SMW.

Data flow starts at events, which is the only library
that directly connects to the ERD on the SMW. As Deluge
is a monitoring codebase, and not designed for command
and control of the cluster, events is an extremely simple
library, and its functionality is limited to sending ’subscribe’
events to the ERD and reading in the events it receives
back. Despite this brevity, events is multithreaded and
has scaled up to the 500,000 events a minute generated by
SEDC on Theta. Consumers can read from events either
by receiving a buffered channel from the library, or calling a
Read() method in a loop. In either case, the API returns a
struct similar to Cray’s own rs event t struct. It can also
optionally parse the service IDs and length headers that are
used at the start of ev data in some events. This library is
highly generic, and is built so that other libraries can reliably
receive and parse network data.
Sedccore contains the parsing logic and data defini-

tions for parsing SEDC events. The core parsing logic is
extremely compact, and the majority of the code consists
of autogenerated constants that turn SEDC scan IDs into
strings. The relative simplicity of SEDC for Deluge is
due to the configuration of ALCF’s Cray machines. Cray
introduced a new version of SEDC (referred to internally
as SEDCv2) in UP03. Development on Deluge was started
shortly after all of ALCF’s Cray machines were moved
to UP03, negating any need to add in support for both
versions of SEDC. The process used to autogenerate the Scan
ID maps from Cray’s definitions is also relatively simple.
The sedc scanid info table on the PMDB contains the
mapping of Scan IDs to string names, and a simple 100-line
Go program turns a CSV dump of the table into a Go source
file.
Hwerrcore is the largest and most sophisticated li-

brary in Deluge, with auto-generated code totaling 76,000
lines. It supports all Aries errors, as well as Sandy Bridge
and Knight’s Landing (KNL) machine check errors. These
limitations, obviously, were designed around ALCF’s Cray
installation. The most interesting part of hwerrcore is the
autogeneration: a CLI tool called ghal harness builds a
simple C application against Cray’s libxthwerrdecode
library. This code generates a hardware error event for every
known Aries error, and parses it using the verbose output of
ghal decode error(). This produces the same output
as if one passed --decode to xthwerrlog. Another
component, written in Go, parses this output, and uses it
to generate maps containing the variables needed to parse
each individual hardware error. On an XC40, hardware
error events consist of, among other things, a 16 bit error
code and an array of 8 unsigned 64 bit memory-mapped



Fig. 1. Deluge’s place within the rest of the Cray ecosystem

registers (MMR). The resulting data structures are 2 dimen-
sional maps, with the parent map corresponding to a single
hardware error code, and the inner maps corresponding to
individual fields of each MMR. This autogeneration harness
significantly reduces the maintenance and upkeep of the Del-
uge codebase, as updating our code in response to changes on
Cray’s part requires running a single bash script. We added
support for KNL and Sandy Bridge machine check errors by
hand rather than using the harness to autogenerate them, due
to their complexity. Although this did take time, it proved
to be worth the effort, as we did find bugs in Cray’s parsing
of KNL machine check errors as a result. Both bugs were
reported and Cray provided patches.

III. PERFORMANCE

Measuring the performance characteristics of Go appli-
cations is a trivial process, as the Go toolchain includes
benchmarking, profiling and tracing tools built in. We used
these tools throughout the development of Deluge, and they
optimize memory usage and runtime performance. However,
we must put these performance numbers in context, which
is more difficult. Many of the functions performed by Del-
uge are also performed by Cray’s own libraries, however,
Cray’s libraries and Deluge take very different approaches
to solving the same problem. For example, the function
ghal decode error() takes a hardware error data struc-
ture (like the data in the binary-encoded hwerrlog files)
and returns a string buffer with formatted human-readable
text that is printed by the CLI utility xthwerrlog. The
equivalent Deluge function, ParseHwerr takes the same
data structure, but returns a Go struct that contains the same
detailed information about the MMRs. This is an important
caveat to keep in mind as we discuss performance and
compare difference between Cray’s software and our own.

For those not familiar with Go’s benchmarking tools,
a short overview may be helpful. Benchmarks in

Go take the form of a function with the signature
BenchmarkBENCHNAME(b *testing.B). The data
structure passed into the function contains a counter, b.N,
that acts as an iterator for the test. Tests are run multiple
times with different values of b.N, to find an interval
where the benchmark runs long enough to be timed reliably,
because of this, not all benchmarks run with the same
number of iterations. After the test is completed, it prints
the sum of b.N, and the average time, in nanoseconds, that
each iteration took. For example, the main benchmark for
ParseHwerr looks like this:

f o r i := 0 ; i < b .N; i ++ {
, := ParseHwer r ( t e s t E v e n t , 0 x591a1577 )

}

For the sake of equalizing the test environment, Cray’s
libraries were also tested using Go’s Benchmarking tools,
by way of the language’s Foreign Fuction Interface (FFI).
Effort was taken to eliminate any additional overhead of the
wrappers used to call C within Go.

The parsers for ec hw error data were the first to be
completed and put into production, and so will be dis-
cussed first. The ParseHwerr benchmark was performed
by passing a raw hardware error event (You can view a
human-readable form of this data by passing the -R flag to
xthwerrlog) for an Link Control Block (LCB) Transmit
Lane Error and a KNL Integrated Memory Controller (IMC0)
machine-check error. Both of these error messages were
taken from real machine data, and represent two of the
more common errors on the system. Deluge takes an entirely
different code path for CPU machine check errors, and the
available development headers from Cray suggests they are
doing something similar. This function returns a Go struct
that contains all the data that would be produced by passing
the --decode flag to xthwerrlog, but in a data structure.



TABLE I
PARSING TIMES FOR HARDWARE ERROR MESSAGES

Function
LCB CRC error
average time in NS
(iterations)

IMC0 error
average time in NS
(iterations)

LCB CRC error
iterations

IMC0 error
iterations

ParseHwerr() 1590.6 2730.0 5,000,000 2,500,000
ghal decode error() 2347.0 1778.0 2,500,000 5,000,000

TABLE II
PARSING TIMES FOR SEDC MESSAGES

Function Average parse
time in NS

Number of
iterations

ParseSedcErd() 4206.8 1,700,000
crms print sedc2 data data() 27627.8 250,000

You can view the results of these tests in Table I. Deluge
was much faster at parsing the LCB Transmit Lane error.
However, Deluge performed much worse when parsing the
IMC0 error. Using Go’s built-in CPU performance profiler,
we can see that this has nothing to do with the different
parsing logic, but instead with the choice to use a hashmap
to carry the detailed debugging MMR data. Although this
may seem like a sound choice from a design perspective,
as MMR data varies widely from error to error, there is
additional overhead involved in using hashmaps. In the case
of this test, the MMR data for the IMC0 error has more
information than the MMR data for the LCB error, requiring
more calls to the underlying mapassign function. According
to the performance profiler, parsing the IMC0 error required
spending 12.92% of runtime in the mapassign faststr
library call, while parsing the LCB error required 3.05%
of runtime in mapassign faststr. For Cray’s code,
we benchmarked the ghal decode error() function,
using the same input data sets. Although Go’s performance
profiling does not provide insight into C functions, we can
use it to calculate the overhead of the FFI/wrappers used for
the benchmark. In this case, the call into the C function was
98.85% of the total benchmark runtime. Using this number,
we can calculated the runtimes used on the table.

The setup for benchmarking the SEDC parser was slightly
more complicated. We used events to dump a raw
ec sedc data packet, then formatted it and declared
it as a constant. The Deluge function under test was
ParseSedcErd(), which takes an ERD packet, and re-
turns a Go struct that contains an array of fully parsed
SEDC events, each item in the array being a Go struct
that represents a single SEDC datapoint. The results can be
viewed in Table II. The biggest contribution to the runtime
was the function that iteratively walks over every event in
the packet and returns an array of parsed datapoints, followed
by the map lookups that translate SEDC scan IDs into string
names. Finding a Cray equivalent to this was challenging.
Eventually the crms print sedc2 data data() func-
tion, provided as part of the development packages on the
mom nodes, was chosen, as the data it outputs is most similar

to the data provided by ParseSedcErd(). Once again,
the Deluge function outputs structured data, while Cray’s
writes human-readable output to a string buffer. According
to the profiling data, the time spent in the C code represented
99.88% of runtime, making for an adjusted runtime of
27626.8 ns.

It should be emphasized that these numbers are not pro-
vided to prove the superiority or inferiority of any codebase,
but more to lend legitimacy to Deluge’s approach, and
justify the time spent developing it, as opposed to simply
attaching wrappers around existing code. To emphasize how
these different design requirements relate to the performance
numbers above, we modified the ParseHwerr LCB Bench-
mark, passing the resulting struct to a printf statement
using Go’s %v format specifier, which prints a detailed,
human-readable string of the passed variable. In this test,
across 1,500,000 iterations, the average time was 5542.4
ns, which is significantly slower than the Deluge or Cray
implementations. In addition to this, we can’t seem to find
any production Cray CLI tools/daemons that make heavy use
of crms print sedc2 data data().

IV. USAGE

The deployment and usage of Deluge at ALCF is rela-
tively straightforward. Hardware error data and console data
are shipped to Elasticsearch and visualized with Kibana.
There is one main hardware error Kibana dashboard, which
provides a 24-hour view of Machine Check Errors (MCE)
and Aries error counts divided by node/link, and charts that
break the data down by individual Aries errors and KNL
machine check errors, as well as a view of any uncorrectable
errors. This visualization has proven immensely valuable
for providing a quick view of the machine state, as well
as quickly identifying anomalous behavior. Without this
dashboard, trying to get a similar idea of machine state would
normally be accomplished by searching through multiple log
files. With Elasticsearch and Kibana, it’s easy to identify
issues that need to be immediately addressed, as well as
view trends over time.

We are also using the hardware error data in Elasticsearch
to calculate the Bit Error Rate (BER) for Aries links, which



Fig. 2. A 10 hour graph of the top 4 Aries links on Theta by BER, showing one link (blue) with a high error rate compared to the rest of the links,
demonstrating how we can visually track Aries links

is normally performed by the netwatch log. In our case, it
made more sense to extract the BER data directly from the
hardware error logs, rather than ingesting the netwatch logs
separately, as as it provided us with detailed historical data
that could be used to graph trends over time and in some
cases, predict link failures due to an excessive BER.

To calculate the BER, a python script queries Elasticsearch
for a list of all LCB CRC lane error messages. The script
filters and reduces the data, and calculates the BER using
the following formula:

( TOTAL CRC ERR CNT
GOOD UP CNT+TOTAL CRC ERR CNT )

480

This data is then graphed, allowing us to view trends over
time. An example of this graph can be found in Fig. 2.

By default, if an Aries link reaches a sustained BER of
1.0e-10, it will be disabled, and the Aries will be quiesced for
a re-route. It should be noted that this isn’t the only failure
mode for an Aries link, and that sometimes the BER can
grow at a rapid or unpredictable rate. However, this graph
has proven to be informative and useful.

SEDC data is stored in InfluxDB, and visualized using
Grafana. The wealth of data available through SEDC has
allowed us to create a number of real-time visualizations,
using everything from air temps to CPU-level views of
temperature and current.

We store all SEDC metrics going back since the Deluge
deployment. We can discover trends in humidity, air temps,
and water temps with a level of detail that often exceeds

the upstream datacenter monitoring. This data has proven
invaluable in discovering upstream datacenter environmental
issues. On multiple occasions, these visualizations have been
used to discover brief or subtle anomalies in inlet tempera-
tures or humidity that would have been easy to overlook if
one was just viewing the results of a SELECT statement in
postgresql. An example of this can be found in Fig. 3.

V. CONCLUSIONS AND FUTURE WORK

There are a number of ways in which we would like to
expand Deluge with time, and also new avenues for making
use of the data we already have. The most obvious would be
to ingest more data from the ERD itself, as the three events
we are collecting now (ec sedc data, ec console log
and ec hw error) represent only a fraction of what the
ERD is used for.

In addition, because Deluge allows us to store hardware
error data and SEDC error data in a structured format, we can
easily export data for use by outside researchers. Normally,
the PMDB only retains SEDC data for a short period of time,
and hardware error data is in a binary format, making these
data sources much harder for researchers to use.

Code optimization is also a fruitful area of exploration.
Although it would require significant refactoring, there is the
possibility that moving from maps to autogenerated structs
for carrying parsed MMR data could provide significant
performance improvements. However, Go is a strongly typed
language, and it’s possible that the extra runtime overhead of



Fig. 3. An example of brief ’hunting’ behavior in inlet water temperatures due to problems with upstream water chillers

managing thousands of different custom types could mitigate
some of these performance boosts.

Data analysis and visualization is probably the most fruit-
ful area of exploration. With some additional data science,
more interesting trends may be discovered in the hardware
error and SEDC data. There’s also the work of correlating
hardware error and SEDC data to user jobs, which could be
useful to both administrators and end users.

In this paper we have presented our work on gathering
useful data directly via the ERD, using our own codebase.
Deluge was started because we wanted to build a database-
backed monitoring system that avoided storing and parsing
human-readable text. As we have demonstrated, the devel-
opment and research time put into Deluge has proven to be
fruitful, and the resulting data is a valuable resource for the
ALCF.
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