
eLogin at Scale

Georg Rath
NERSC

Berkeley, USA
gbrath@lbl.gov

Douglas Jacobsen
NERSC

Berkeley, USA
dmjacobsen@lbl.gov

Abstract— NERSC is currently in the process of converting a
Cray CS system to an 800 node eLogin cluster. We operate two
high-throughput Cray CS systems (PDSF and Genepool),
beside four Cray XC production supercomputers (Cori,
Edison, Gerty and Alva). With the adoption of CLE6 and our
SMWFlow system management framework, the configuration
management of the supercomputers was unified, which lead to
reduced cost of system management, consistency across
machines and lower turnaround times for changes in system
configuration. To apply these advantages to the high-
throughput systems we replace the current way of managing
those systems, using xCAT and CFEngine, to one based on the
Cray eLogin management platform. We will describe the
current state of the project and how it will lead to a more
consistent user experience across our systems and a marked
decrease in operational efforts. It will be the cornerstone of a
common job submission system for all systems at NERSC.

I. INTRODUCTION
Through the introduction of SMFlow[1], management of

multiple Cray supercomputers using a common repository
for the state of the system has become possible. This
functionality currently does not extend to the Cray CS line,
as it uses a management stack incompatible with the one of
the XC systems. Changes affecting all systems need to be
kept in sync manually, which is an error prone and laborious
process and leads to subtle differences in configuration
across the systems. By treating our CS clusters as external
login nodes[2][3] we demonstrate how it is possible to reuse
large parts of existing configuration, while providing a
common management interface to operational staff and a
consistent experience to our users.

II. CREATING AN ELOGIN CLUSTER
We set up Gregor as test and development system for our

Mendel cluster. Mendel is hosting the PDSF and Genepool
systems. Gregor is composed of 16 CS300 nodes, connected
to an InfiniBand fabric and Gigabit Ethernet for
management.

A. Cray eLogin Infrastructure
eLogin nodes contain two disks and are provisioned

statefully, the first disk is used to boot host the image, while
the second one persists state across upgrades of the image.
Up until to CLE6.0UP05 the external login nodes on a Cray
XC system are managed using OpenStack[3], hosted on the

Cray Management Controller (CMC), which provides image
storage, provisioning and orchestration capability. Images
and ConfigSets are managed by the Cray System
Management Workstation (SMW), both for the outside and
the inside of the system and then pushed to the CMC, which
hosts the images in the Glance[5] service and deploys them
using Ironic[6]. On initial boot of the image, the ConfigSet is
transferred to disk using Fuel[7]. Starting with CLE6.0UP06
the functionality of the CMC is moved into the SMW and the
OpenStack services are replaced by custom ones.

B. Preparing the ConfigSet
We chose to organize the nodes in our eLogin cluster by

role, currently into “login” and “compute” roles. The
corresponding nodegroups were created in the nodegroups
worksheet. In the relevant worksheets we defined the
necessary management and InfiniBand networks and
disabled the Cray Programming environment, as it would be
of limited use on a non-XC cluster.

C. Image and Infrastructure
We created a new image recipe, by cloning an existing

eLogin recipe and swapping out system specific packages
where necessary. As the image runs a largely unmodified
version of SUSE Linux Enterprise Server (SLES), it is fit to
boot on generic hardware. The resulting image is exported in
qcow2 format.

To be able to quickly validate changes to the ConfigSet
and image, we used a virtual machine with the exported
image as a primary disk and the KVM/qemu direct kernel
boot functionality.

Before being able to boot this image on physical
hardware with only one disk and without setting up the
supporting OpenStack infrastructure, which would require
significant effort, modifications to the image are necessary:
provided that disk setup and provisioning are done through
methods other than OpenStack, the only dependency on its
services is a meta_data.json, file which is transferred by
HTTP, from a link-local address on boot of the image. This
file contains auxiliary data like the hostname and SSH keys.
For testing, this file can be dropped into the image, which
locks the image to a single host, or the link-local address can
be replaced by an address providing a minimal web-service,
serving out host-specific meta_data.json files, based on the
address of the requester. In both cases this is done through
modification of /etc/opt/cray/pre-
pivot.d/10OpenStackMetaData.sh. To skip disk setup of the
second hard drive, /etc/opt/cray/pre-pivot.d/05DiskSetup.sh

needs to be removed or commented out and
/etc/ansible/elogin_persistent.yaml modified accordingly.

Despite liveupdates being disabled in the ConfigSet of
the hosts, by modifiying /etc/opt/cray/liveupdates.conf to use
a server hosting the necessary repositories, it will function
anyway. In our case we set up an NGINX server proxying to
the repositories hosted on the SMW.

To make the boot process more robust to repeated DHCP
failures on heavily utilized management networks, the ifup
script of the image initrd needed to modified to retry until
success, as passing Dracut parameters via kernel command
line did not prove to be effective.

D. Preparing the Node
The current setup of the test cluster requires the image to

be present on the local disk, no automated mechanism for
image rollout has been set up. In the current state of the
project this is a minor issue, as nodes can be updated using a
combination of the live update mechanism, for changes to
the packages composing the image, and synchronization of
ConfigSets from the SMW, for changes in configuration. We
set up the partition structure as needed and chose the
simplest way write the image to disk and used dd.

E. Booting
To boot the image we reuse the stateless boot model of

the existing xCAT infrastructure. This enables us to debug
issues with the image by providing an intermediary stage and
acting as a de-facto boot loader. In the future we plan on
using this stage to sync updated image versions and
ConfigSets, using the InfiniBand network, on boot. After
xCAT has booted into its stateless image, we use kexec to
pivot onto the image stored on disk:
kexec --load /sda/vmlinuz
 --initrd=/sda/initrd
 --append="root=/dev/sda"
rmmod mlx5_ib mlx5_core
sync
umount -a
kexec –e

III. DISCUSSION

A. NERSC Experiences
Setting up Gregor required a thorough and deep
understanding of the Configuration Management
Framework (CMF), the Image Management and
Provisioning System (IMPS) and of the image boot
process in general. Whereas high level management
functions are documented, it was necessary to dive into
low level portions of the stack. Implementation of the
functionality in human-readable, interpreted code (as
opposed to binary blobs), and building on open-source
technologies like Ansible was very helpful, although a

comparison of features and caveats between Ansible and
Cray-Ansible would have been much appreciated,
especially for people with prior experience with vanilla
Ansible.
After the initial setup was complete and the configuration
used on the other systems could be applied to Gregor,
only minor changes in configuration parameters and
Ansible plays were necessary to produce an exact copy of
the environment we use on our XC machines. Changes
and improvements made to our centralized Ansible plays
now also apply our CS systems.

B. Future Work
1) Upgrade to UP06: With UP06 it will be possible to

remove the custom xCAT intermediary layer and do disk
setup and provisioning through the SMW.

2) Base image on OpenSUSE: For licensing reasons it
could be beneficial to use OpenSUSE instead of SLES as a
base operating system for the image. Preliminary tests have
shown promising results, replacing SLES with OpenSUSE
repositories provides a bootable image.

3) Federated Systems: Building on a unified compute
environment, we plan to federate our Slurm clusters to a
provide a seamless scheduling experience to our users.

IV. CONCLUSION
Through the adoption of a single management system

across all the machines at NERSC, we reduce the effort
necessary to manage those systems, while at the same time
providing more consistent systems and ultimately enabling
us to quickly provision and change systems to adapt to the
ever changing requirements of the scientific community.

ACKNOWLEDGMENT
This manuscript has been authored by an author at

Lawrence Berkeley National Laboratory under Contract No.
DE-AC02-05CH11231 with the U.S. Department of Energy.

REFERENCES
[1] Jacbsen, DM (2018): Managing the SMW as a git Branch, Available

at https://github.com/NERSC/smwflow
[2] Cray Inc: XC™ Series SMW-managed eLogin Administration Guide

(CLE 6.0.UP06) S-3021 Rev A
[3] Cray Inc: XC™ Series eLogin Administration Guide (CLE 6.0.UP05)

S-2570
[4] OpenStack: https://www.openstack.org/
[5] OpenStack Glance: https://docs.openstack.org/glance/latest/
[6] OpenStack Ironic: https://wiki.openstack.org/wiki/Ironic
[7] OpenStack Fuel: https://wiki.openstack.org/wiki/Fuel

