
Improved I/O Using Native Spectrum Scale (GPFS)
Clients on a Cray XC System

Jesse Hanley
Oak Ridge National Laboratory

Oak Ridge, TN
hanleyja@ornl.gov

Chris Muzyn
Oak Ridge National Laboratory

Oak Ridge, TN
muzyncj@ornl.gov

Matt Ezell
Oak Ridge National Laboratory

Oak Ridge, TN
ezellma@ornl.gov

I. Abstract

The National Center for Computational Sciences (NCCS)
created a method for natively routing communication
between Cumulus, a Cray Rhine/Redwood XC40 super-
computer deployed for DOE’s Atmospheric Radiation
Measurement (ARM) facility, and Wolf, a Spectrum Scale
file system, using IP over InfiniBand (IPoIB) and native
Linux kernel tools. Spectrum Scale lacks a routing facility
like Lustre’s LNET capability. To facilitate communication
between storage and compute, Cumulus originally projected
Wolf using Cray’s Data Virtualization Service (DVS). The
lack of native file system support impacted users as they
ported workflows to Cumulus. To support these and future
use cases, the DVS projection method has been replaced
by a native Spectrum Scale cluster on Cumulus that routes
traffic to and from Wolf at comparable performance. This
paper presents an introduction to the systems involved,
a summary of motivations for the work, challenges faced,
and details about the native routing configuration.

II. Introduction

Cumulus, a 112 node Cray Rhine/Redwood XC40 system,
is a system deployed for the Atmospheric Radiation Mea-
surement (ARM) project, sponsored by the US Department
of Energy. Cumulus shares access to Wolf, a center-wide
Spectrum Scale (GPFS) file system composed of Dell R630
servers, with dual-socket Broadwell processors and backed
by DDN Storage 14KX block storage. Wolf provides ~7.7
Petabytes of storage for the low-security zone within the
National Center for Computational Sciences (NCCS). Six
Cumulus nodes, designated for external I/O, connect to
a central EDR Mellanox InfiniBand switch. These nodes
only have FDR adapters.

Historically, NCCS has routed file system traffic through a
number of designated nodes within a given compute cluster.
This allows for scalable access to shared parallel file system
resources. Clustered file systems like Lustre and Spectrum
Scale (GPFS) provide benefits to HPC workloads that
traditional file systems lack. The Lustre Networking (LNet)
protocol can be configured to forward Lustre traffic through
one or more nodes, allowing for communication between

distinct network fabrics. This enables an internal network
fabric, like Cray’s Aries interconnect, to communicate with
storage servers on a separate fabric. Unfortunately, GPFS
lacks such a facility. To enable access to the Wolf file
system from Cumulus’ compute nodes, NCCS originally
deployed Cumulus with six I/O nodes. These nodes were
designated as clients to the file system and used Cray’s
Data Virtualization Service (DVS) to project Wolf to the
compute nodes.

After deployment, there was some disappointment in the
initial performance between Cumulus and Wolf. This
challenged the center to redefine how the XC platform
communicates with a GPFS file system to overcome
lackluster interaction and POSIX issues.

By utilizing routing and network configurations available
in modern kernels, staff can better support the mix of
streaming I/O, interactive use, and small file I/O present on
Cumulus. Additionally, the compute cluster can now lever-
age the benefits of the GPFS client code. This transition
allows for fewer user code changes, supporting advantageous
features of GPFS, like byte-range level locking. In this
paper, we show the design, implementation details, and
trade-offs to deploying this method of file system access.
Site-specific information, such as internal IP addresses, has
been removed.

A. The Problem

Cray XC40 machines rely on the external InfiniBand ports
of the service nodes to perform any kind of external I/O
to the machine. As the compute nodes only have access
to the internal Aries network, the issue being addressed is
how can the gap between the InfiniBand network and the
internal Aries network be bridged.

A secondary problem that arises is where to position the
remote GPFS cluster. A GPFS cluster such as Wolf is
composed of nodes referred to as Network Shared Disk
(NSD) Servers. Mounting the file system created from these
NSD servers requires nodes to be GPFS clients. This is
accomplished by granting access to remote GPFS clusters.
A remote GPFS cluster is used to isolate management

domains, as well as, to protect the file system cluster
from problematic clients. The position of the GPFS cluster
affects the users interface to the the file system.

B. Challenges of Existing Solution

The existing solution bridges the gap between the networks
by utilizing Cray’s DVS in order to forward a mount of Wolf
from the service nodes to the internal compute nodes. In
this solution, the I/O nodes form the remote GPFS cluster
and mount the GPFS filesystem from the NSD servers over
the InfiniBand network. Several issues were found with the
DVS projection solution. First, cache coherency becomes an
issue, as DVS relies on different modes that are logic based
in order to offer atomicity rather than providing cache
coherence. Second, while DVS may be a convenient way to
leverage the LNET framework to route a file system that
does not have native routing, it lacks features that many
users at NCCS expect. For instance, the ‘flock’ system call
is unavailable on a file system projected by DVS, which
caused issues with user software libraries. Furthermore,
when a GPFS file system is projected by DVS, users lose
the ability to perform byte-level locking on files. In regards
to performance, while the DVS solution excels in large I/O
situations because of caching mechanisms, any use non-
large I/O patterns will return sub optimal performance.

C. Benchmarking

1) mdtest: The mdtest benchmark, now part of the IOR
benchmark repository, provides an extensive tool to sim-
ulate and measure file system performance. It excels at
I/O that results in metadata-intensive workloads. For the
benchmarking referenced within this paper, staff used
mdtest version 1.9.3 and varied the number of processes,
number of hosts, and the amount of data written and read
to see how these combinations would scale.

2) IOR: The IOR benchmark is a frequently used measure
of file system performance. It is heavily tunable and can be
used to demonstrate a variety of workloads. To simulate
traditional HPC file-per-process workloads that run on
Cumulus and other machines within NCCS, staff measured
how IOR performed at various node counts, as well as
the number of tasks per node. Staff performed all IOR
benchmarking using IOR version 2.10.3 against the POSIX
interface, along with the following parameters:

• -F to ensure that each process accessed a separate file
• -i 3 to perform three iterations of the test
• -b 10240g to ensure sufficient data size
• -t 4m to perform operations that could be aligned
with Wolf’s GPFS blocksize

• -C to reorder tasks during readback and minimize
client caching

• -g to use barriers between the phases of the IOR run
• -e to perform an fsync after POSIX write close

• -D to stonewall I/O

III. Linux kernel routing

As part of the Linux kernel, network routing is core to how
machines communicate. These routes contain information
about how to reach network addresses, and are stored in the
routing policy database, also know as the RPDB. During
the benchmarking presented in this paper, Cumulus and
Wolf ran 3.12 and 3.10 versions of the kernel, respectively.
Linux kernel version 2.6.39 introduced a new, more efficient
way to store routes. In this data structure, routes are split
across three tables: local, main, and default. The kernel
manages entries with the local table; these are for local
addresses, such as the route to the loopback device. The
main table generally contains the routes created by users.
If a default route is configured, it will be listed within the
main table. The default table is usually empty, but can be
configured to route packets not routed by other rules. As
of Linux kernel version 4.1, these three tables are collapsed
into one.

When configured, the kernel can also support user-defined
routing tables. Then, using tools like ip, a policy can be
defined. The kernel will then check that policy against
packets to determine how it should be routed. The Linux
kernel also has a feature to enable multiple paths to a
destination, allowing administrators to permit any one of
several nodes to satisfy a routing requirement.

IV. Implementation

A shared EDR InfiniBand switch facilitates communication
between Cumulus and Wolf, represented by a simplified
version in Figure 1. In addition to the Wolf NSD servers,
and the six Cumulus I/O servers, there are other miscella-
neous machines on this fabric, including high-speed data
transfer nodes.

Figure 1. NCCS Open Diagram

A. Kernel Features

To use the advanced routing features described above,
the kernel will need to be complied with the following
configuration flags:

• CONFIG_IP_ROUTE_MULTIPATH=y
• CONFIG_IP_MULTIPLE_TABLES=y

The kernel Wolf ran during this configuration, 3.10 based
from Red Hat Enterprise Linux 7.4, had these options
enabled. The kernel used for login and service nodes within
Cumulus also had these features enabled by default.

B. Networking setup

The Aries network of Cumulus resides on a private /16
network, referenced as 10.100.0.0/16 for the purposes of
this paper. The IPoIB network for the InfiniBand fabric is
10.10.0.0/24. The six I/O service nodes (sn) are dual-homed
on these networks with network addresses documented in
Table 1.

Table I

Host Aries Address IPoIB Address

sn1 10.100.0.91 10.10.0.11
sn2 10.100.0.92 10.10.0.12
sn3 10.100.0.93 10.10.0.13
sn4 10.100.0.94 10.10.0.14
sn5 10.100.0.95 10.10.0.15
sn6 10.100.0.96 10.10.0.16

1) Storage servers: For the Wolf servers, the ad-
vanced routing configuration was accomplished with the
NetworkManager-dispatcher-routing-rules, available
in the optional RedHat Enterprise Linux repository. We
created configuration files to configure these networks on
boot. These rules define which table to use based on the
source address. For the six I/O nodes in Cumulus, the
configuration is like so:

/etc/sysconfig/network-scripts/rule-interface
from 10.10.0.11 table 1
from 10.10.0.12 table 2
from 10.10.0.13 table 3
from 10.10.0.14 table 4
from 10.10.0.15 table 5
from 10.10.0.16 table 6

For each of these lookup tables, we define a default route
that ensures response traffic on the IPoIB network uses
the same I/O node. Finally, each of the I/O nodes are
treated as a potential network for multipath routing to the
compute nodes. This is achieved by the nexthop directive
in the configuration:

/etc/sysconfig/network-scripts/route-interface

10.100.0.0/16 dev ib1 scope link table 1
default via 10.10.1.91 table 1
10.100.0.0/16 dev ib1 scope link table 2
default via 10.10.1.92 table 2
10.100.0.0/16 dev ib1 scope link table 3
default via 10.10.1.93 table 3

10.100.0.0/16 dev ib1 scope link table 4
default via 10.10.1.94 table 4
10.100.0.0/16 dev ib1 scope link table 5
default via 10.10.1.95 table 5
10.100.0.0/16 dev ib1 scope link table 6
default via 10.10.1.96 table 6
10.100.0.0/16 scope global \

nexthop dev ib1 via 10.10.0.11 \
nexthop dev ib1 via 10.10.0.12 \
nexthop dev ib1 via 10.10.0.13 \
nexthop dev ib1 via 10.10.0.14 \
nexthop dev ib1 via 10.10.0.15 \
nexthop dev ib1 via 10.10.0.16

Though routes can be weighted differently, the default
equal-priority works well for the deployment at NCCS.
Information about the route selection can be tracked by the
kernel. If configured with the CONFIG_IP_FIB_TRIE_STATS
kernel config option, information about the internal trie
structures is available through procfs by viewing the
/proc/net/fib_triestat file. This kernel config option
is enabled by default on stock RHEL 7 installations.

2) Compute: Cumulus has six service nodes that are
connected to the storage network via IPoIB. IP forwarding
has been enabled on the service nodes in order for traffic
to pass from the compute nodes to the storage network.
Since the service nodes no longer mount the GPFS file
system, they no longer form a GPFS cluster. Instead, every
compute and login node in the system will now form a
single encompassing GPFS cluster. In order for the compute
nodes to join the cluster, changes in the options of the
Cray compute kernel were made. The options pertain to
Advanced Routing features that are enabled on the service
node kernels by default. Cray has been asked to include
the following options as a default in their compute kernels
going forward.

CONFIG_IP_MULTICAST=y
CONFIG_IP_ADVANCED_ROUTER=y
CONFIG_IP_MULTIPLE_TABLES=y
CONFIG_IP_ROUTE_MULTIPATH=y
CONFIG_IP_ROUTE_VERBOSE=y

Once these kernel options have been compiled into the
running kernel, routing tables similar to those on Wolf can
be used to route traffic through the service nodes to the
compute network. There exists one table per service node
in the system. These tables are created upon each boot via
an Ansible play. Note that the “iproute2” package must
be installed from the Cray provided SLES repositories in
order to set and view tables.

ip route show table all
default via 10.100.0.91 dev ipogif0 table 1
10.10.1.0/24 dev ipogif0 table 1 scope link
default via 10.100.0.92 dev ipogif0 table 2
10.10.1.0/24 dev ipogif0 table 2 scope link

default via 10.100.0.93 dev ipogif0 table 3
10.10.1.0/24 dev ipogif0 table 3 scope link
default via 10.100.0.94 dev ipogif0 table 4
10.10.1.0/24 dev ipogif0 table 4 scope link
default via 10.100.0.95 dev ipogif0 table 5
10.10.1.0/24 dev ipogif0 table 5 scope link
default via 10.100.0.96 dev ipogif0 table 6
10.10.1.0/24 dev ipogif0 table 6 scope link
10.10.1.0/24

nexthop via 10.100.0.91 dev ipogif0 weight 1
nexthop via 10.100.0.92 dev ipogif0 weight 1
nexthop via 10.100.0.93 dev ipogif0 weight 1
nexthop via 10.100.0.94 dev ipogif0 weight 1
nexthop via 10.100.0.95 dev ipogif0 weight 1
nexthop via 10.100.0.96 dev ipogif0 weight 1

10.100.0.0/16 dev ipogif0 proto kernel
scope link src 10.100.0.1

broadcast 10.100.0.0 dev ipogif0 table
local proto kernel scope link src 10.100.0.1

local 10.100.0.1 dev ipogif0 table local
proto kernel scope host src 10.100.0.1

broadcast 10.100.255.255 dev ipogif0 table
local proto kernel scope link src 10.100.0.1

broadcast 127.0.0.0 dev lo table local
proto kernel scope link src 127.0.0.1

local 127.0.0.0/8 dev lo table local
proto kernel scope host src 127.0.0.1

local 127.0.0.1 dev lo table local
proto kernel scope host src 127.0.0.1

broadcast 127.255.255.255 dev lo table local
proto kernel scope link src 127.0.0.1

The six service nodes required the use of a persistent
/var/mmfs/ directory, which is the same for the compute
and login nodes. Once the directory was made persistent
via the Cray Configurator, the GPFS GPL layer was able
to be compiled.

C. Tuning

1) Storage servers: Due to the reliance on InfiniBand over
IP (IPoIB), the networking layer has to be tuned for optimal
performance. This is typically achieved by increasing more
memory to the corresponding network buffers. The majority
of tunings applied come from both site experience tuning
networks for data transfer, as well as tunings from ESnet
and Mellanox.

Most of the tcp tuning deployed is heavily documented in
guides for high-bandwidth Ethernet networks. Since IPoIB
relies on some of the same principles, the tuning carries over
well. For the benchmarks discussed in this paper, the Wolf
NSD servers were configured with the following sysctl
tunings:

net.ipv4.tcp_timestamps=0
net.ipv4.tcp_sack=1

net.ipv4.tcp_low_latency=1
net.ipv4.tcp_adv_win_scale=1
net.core.netdev_max_backlog=250000
net.core.rmem_max=536870912
net.core.wmem_max=536870912
net.core.optmem_max=536870912
net.ipv4.tcp_mem=4096 87380 268435456
net.ipv4.tcp_rmem=4096 87380 268435456
net.ipv4.tcp_wmem=4096 87380 268435456
net.ipv4.tcp_no_metrics_save=1
net.core.default_qdisc=fq
net.ipv4.tcp_congestion_control=htcp
net.ipv4.tcp_mtu_probing=1
net.ipv4.tcp_fin_timeout=30
net.ipv4.tcp_tw_recycle=1
net.ipv4.tcp_tw_reuse=1

One of the most influential tunings was the change from
datagram mode to connected mode on the InfiniBand
interfaces. By switching to connected mode, the IPoIB
interface can operate at a larger MTU, increasing the
amount of traffic transferred per packet. Additionally, we
increased the txqueuelen on the InfiniBand interfaces to
10000.

2) Compute Cluster GPFS: The Cumulus compute nodes
received similiar tuning. They were less aggressively tuned
in order to reduce impact on users.

D. Performance Changes

1) Single client performance: One of the largest changes ob-
served from this deployment is to single client performance.
With a native Spectrum Scale (GPFS) client, compute
nodes saw an increase in streaming read speeds. Table II
shows the benchmarking results from a DVS projected file
system, while Table III shows results after moving to a
Native Spectrum Scale (GPFS) client. There is also a slight
improvement to streaming write speeds with I/O threads.
These changes are visualized in Figure 2.

Table II

Task per node Write (MB/s) Read (MB/s)

1 3053.26 2008.49
2 4531.97 2660.09
4 5617.79 2759.58
8 5504.65 3654.27

Table III

Task per node Write (MB/s) Read (MB/s)

1 2912.81 4029.48
2 5229.82 7593.69
4 6213.73 9358.46
8 6303.60 8867.00

In addition to some streaming I/O benefit, there are
large improvements to metadata operations. File creation,

stat, and removal rates saw signficant improvements when
running with a native Spectrum Scale (GPFS) client. Table
IV and Table V show metadata benchmarks performed
with mdtest, including writing and reading various amounts
of data to a set of ten-thousand files. Only the file creation,
deletion and stat rates are recorded in these tables.

Table IV

Tasks Write Data Read Data Creates Stat Removals

1 0 0 321 13472 225
1 1024 1024 239 13250 242
1 4096 4096 157 13066 227
1 32768 32768 155 12918 232
2 0 0 906 23808 425
2 1024 1024 618 22988 530
2 4096 4096 350 22168 533
2 32768 32768 350 22316 535
4 0 0 2039 45016 925
4 1024 1024 1363 38862 1160
4 4096 4096 771 35991 923
4 32768 32768 755 35215 817
6 0 0 3336 67625 1028
6 1024 1024 2095 45785 1040
6 4096 4096 1160 39224 1298
6 32768 32768 1149 39052 1000
8 0 0 4202 80737 1336
8 1024 1024 2894 72797 1261
8 4096 4096 1512 46889 1238
8 32768 32768 1513 49482 1153

Table V

Tasks Write Data Read Data Creates Stat Removals

1 0 0 13241 279038 20418
1 1024 1024 1179 286249 20827
1 4096 4096 715 284019 20728
1 32768 32768 709 287963 20585
2 0 0 26915 427140 39281
2 1024 1024 2497 434452 37055
2 4096 4096 1522 432041 37154
2 32768 32768 1496 435386 36666
4 0 0 30320 666998 68725
4 1024 1024 4997 730824 68547
4 4096 4096 2934 724235 60700
4 32768 32768 2906 719860 56447
6 0 0 16330 1014392 65745
6 1024 1024 7520 1009505 70702
6 4096 4096 4036 1012704 66587
6 32768 32768 3995 1004775 66093
8 0 0 12493 1269373 73599
8 1024 1024 9664 1268438 76963
8 4096 4096 5179 1271087 77932
8 32768 32768 5238 1270283 77263

Figure 3, Figure 4, Figure 5, and Figure 6 show single client
performance comparisons between a DVS projected version
of Wolf and a native client mount for file sizes of 0 bytes,
1024 bytes, 4096 byte, and 32768 bytes. The number of
file stats performed per second is omitted from the figures.
The native client performs the action so quickly for the
number of test files that the rate skews the other results
when visualized.

2) Multi-client performance: Scaled I/O across multiple
clients shows a potential bottleneck in the native cluster

Figure 2. Single Client Streaming Performance

Figure 3. Metadata Performance (0 length files)

Figure 4. Metadata Performance (1024 byte length files)

Figure 5. Metadata Performance (4096 byte length files)

Figure 6. Metadata Performance (32768 byte length files)

method. Streaming I/O does not scale as well when using a
native client. In our testing, the DVS projected file system
reached a higher peak performance, and was able to do so
with a small portion of the total number of compute nodes.
Figure 7 and Figure 8 show the results of streaming I/O
benchmarks across 16 and 64 nodes, respectively.

Though single client performance is improved with a native
mount, the total bandwidth to and from the file system is
reduced.

However, metadata operations do show much better scaling
with the native client than with the DVS projected
file system. Results from these benchmarking jobs are
summarized in Table VI and Table VII for the DVS
projected file system and the native mount, respectively.
The number of tasks listed refers to the number of processes
on each of the 64 compute nodes involved in the profiling.
Though the mdtest benchmark provides benchmarks on a

Figure 7. Streaming Performance - 16 clients

Figure 8. Streaming Performance- 64 clients

number of metadata actions, only statistics for file creates,
stats, and removals are recorded in these tables.

Table VI

Tasks Write Data Read Data Creates Stat Removals

1 0 0 21802 379091 9567
1 1024 1024 13042 71530 9354
1 4096 4096 6364 340077 9527
1 32768 32768 5160 239251 8881
2 0 0 10806 319709 11596
2 1024 1024 11724 64701 11649
2 4096 4096 6812 318545 11593
2 32768 32768 7130 345619 11165
4 0 0 11699 301274 13761
4 1024 1024 10732 58568 13811
4 4096 4096 7102 290813 13695
4 32768 32768 6552 285046 13327
6 0 0 11617 274456 14572
6 1024 1024 10597 61514 14180
6 4096 4096 6531 267940 14421
6 32768 32768 6804 265482 14398
8 0 0 10749 237668 16069
8 1024 1024 10338 55703 15703
8 4096 4096 6015 144336 15633
8 32768 32768 6198 225810 16044

Table VII

Tasks Write Data Read Data Creates Stat Removals

1 0 0 228868 52781 45725
1 1024 1024 58098 84120 43698
1 4096 4096 32064 53672 43178
1 32768 32768 32379 56032 46770
2 0 0 417835 90642 85032
2 1024 1024 74883 113421 86150
2 4096 4096 42558 100563 89861
2 32768 32768 42682 105663 90761
4 0 0 433489 100419 83624
4 1024 1024 117758 110989 84836
4 4096 4096 47252 103272 88121
4 32768 32768 50155 107880 89048
6 0 0 327876 102583 89003
6 1024 1024 146164 111844 90773
6 4096 4096 53678 104975 90644
6 32768 32768 53676 107105 91578
8 0 0 357877 105872 94807
8 1024 1024 162445 110641 92390
8 4096 4096 51000 111943 95742
8 32768 32768 50279 106426 90773

V. Tradeoffs

Due to the increase in GPFS cluster size when using the
Native GPFS method, more settings can affect performance.
Now that the remote GPFS cluster is running on the
compute and login nodes, the GPFS client cache consumes
memory on all of these nodes. Because the login nodes
have less RAM than the compute nodes, this cache must
remain small across all nodes. Cumulus does not typically
see large amounts of concurrent users on its 32 GB login
nodes, therefore their cache set to 8 GB.

Using the native GPFS method introduces the potential
for jitter on file system access. This jitter can have multiple
causes such as coalesced I/O, as the cluster tries to send
larger messages to the file system, and communication
among other nodes for cache coherency.

VI. Future work

The work presented here will continue to evolve. Over the
next year, we plan to upgrade to Spectrum Scale version
5 on both the Cumulus cluster and the Wolf cluster. We
also plan to devote more resources into pinpointing and,
if possible, eliminating the bottleneck or overhead that is
reducing the maximum throughput of streaming I/O while
using the native client.

Resources

[1] R. Rosen, Linux kernel networking: Implementation and
theory. Apress, 2014.

[2] B. Hubert, Linux advanced routing & traffic control
howto. s.n., 2010.

[3] S. Lowe, “A quick introduction to linux policy routing
- scott’s weblog - the weblog of an it pro specializ-
ing in cloud computing, open source, networking, and
virtualization,” Scott’s Weblog. Scott Lowe, May-2013
[Online]. Available: https://blog.scottlowe.org/2013/05/29/
a-quick-introduction-to-linux-policy-routing/

[4] S. Sugiyama and D. Wallace, “Cray dvs:
Data virtualization service,” Cray DVS: Data
Virtualization Service, 2008 [Online]. Available:
https://cug.org/5-publications/proceedings_
attendee_lists/2008CD/S08_Proceedings/pages/
Authors/16-19Thursday/Wallace-Thursday16B/
Sugiyama-Wallace-Thursday16B-paper.pdf

[5] IBM Systems; Technology Group, Aug-2012.

[6] “4.2. Routing for multiple uplinks/providers,” Rout-
ing for multiple uplinks/providers. [Online]. Avail-
able: http://tldp.org/HOWTO/Adv-Routing-HOWTO/
lartc.rpdb.multiple-links.html

[7] S. Oral et al., “OLCF’s 1 tb/s, next-generation lustre
file system.”.

[8] “Why use lustre - hpdd community space,”
HPDD Community Wiki. Intel [Online]. Available:
https://wiki.hpdd.intel.com/display/PUB/Why Use
Lustre

[9] “Product overview,” IBM Knowledge Center.
[Online]. Available: https://www.ibm.com/support/
knowledgecenter/en/STXKQY_5.0.0/com.ibm.spectrum.
scale.v5r00.doc/bl1in_IntroducingIBMSpectrumScale.
htm

[10] Y. Cotronis and J. J. Dongarra, Recent advances in
parallel virtual machine and message passing interface: 8th
european pvm/mpi users group meeting, santorini/thera,
greece, september 23-26, 2001: Proceedings. Springer, 2001.

[11] 4.8. Routing Tables. [Online]. Available: http://linux-ip.
net/html/routing-tables.html

[12] V. Bernat, “IPv4 route lookup on linux,”
IPv4 route lookup on Linux | Vincent Bernat.
Jun-2017 [Online]. Available: https://vincent.
bernat.im/en/blog/2017-ipv4-route-lookup-linux#
lookup-with-a-level-compressed-trie

[13] M. G. Marsh, IPROUTE2 Utility Suite Documentation.
[Online]. Available: http://www.policyrouting.org/iproute2.
doc.html

[14] N. Hanford et al., “Impact of the end-system and
affinities on the throughput of high-speed flows,” in Proceed-
ings of the tenth acm/ieee symposium on architectures for
networking and communications systems, 2014, pp. 259–260
[Online]. Available: http://doi.acm.org/10.1145/2658260.
2661772

[15] “40G/100G tuning,” 40G/100G Tuning. ESnet
[Online]. Available: https://fasterdata.es.net/host-tuning/
100g-tuning/

[16] O. Maor, “Company,” Performance Tuning for Mel-
lanox Adapters Version History. Mellanox, Jun-2016 [On-
line]. Available: https://community.mellanox.com/docs/
DOC-2489

https://blog.scottlowe.org/2013/05/29/a-quick-introduction-to-linux-policy-routing/
https://blog.scottlowe.org/2013/05/29/a-quick-introduction-to-linux-policy-routing/
https://cug.org/5-publications/proceedings_attendee_lists/2008CD/S08_Proceedings/pages/Authors/16-19Thursday/Wallace-Thursday16B/Sugiyama-Wallace-Thursday16B-paper.pdf
https://cug.org/5-publications/proceedings_attendee_lists/2008CD/S08_Proceedings/pages/Authors/16-19Thursday/Wallace-Thursday16B/Sugiyama-Wallace-Thursday16B-paper.pdf
https://cug.org/5-publications/proceedings_attendee_lists/2008CD/S08_Proceedings/pages/Authors/16-19Thursday/Wallace-Thursday16B/Sugiyama-Wallace-Thursday16B-paper.pdf
https://cug.org/5-publications/proceedings_attendee_lists/2008CD/S08_Proceedings/pages/Authors/16-19Thursday/Wallace-Thursday16B/Sugiyama-Wallace-Thursday16B-paper.pdf
http://tldp.org/HOWTO/Adv-Routing-HOWTO/lartc.rpdb.multiple-links.html
http://tldp.org/HOWTO/Adv-Routing-HOWTO/lartc.rpdb.multiple-links.html
https://wiki.hpdd.intel.com/display/PUB/Why%20Use%20Lustre
https://wiki.hpdd.intel.com/display/PUB/Why%20Use%20Lustre
https://www.ibm.com/support/knowledgecenter/en/STXKQY_5.0.0/com.ibm.spectrum.scale.v5r00.doc/bl1in_IntroducingIBMSpectrumScale.htm
https://www.ibm.com/support/knowledgecenter/en/STXKQY_5.0.0/com.ibm.spectrum.scale.v5r00.doc/bl1in_IntroducingIBMSpectrumScale.htm
https://www.ibm.com/support/knowledgecenter/en/STXKQY_5.0.0/com.ibm.spectrum.scale.v5r00.doc/bl1in_IntroducingIBMSpectrumScale.htm
https://www.ibm.com/support/knowledgecenter/en/STXKQY_5.0.0/com.ibm.spectrum.scale.v5r00.doc/bl1in_IntroducingIBMSpectrumScale.htm
http://linux-ip.net/html/routing-tables.html
http://linux-ip.net/html/routing-tables.html
https://vincent.bernat.im/en/blog/2017-ipv4-route-lookup-linux#lookup-with-a-level-compressed-trie
https://vincent.bernat.im/en/blog/2017-ipv4-route-lookup-linux#lookup-with-a-level-compressed-trie
https://vincent.bernat.im/en/blog/2017-ipv4-route-lookup-linux#lookup-with-a-level-compressed-trie
http://www.policyrouting.org/iproute2.doc.html
http://www.policyrouting.org/iproute2.doc.html
http://doi.acm.org/10.1145/2658260.2661772
http://doi.acm.org/10.1145/2658260.2661772
https://fasterdata.es.net/host-tuning/100g-tuning/
https://fasterdata.es.net/host-tuning/100g-tuning/
https://community.mellanox.com/docs/DOC-2489
https://community.mellanox.com/docs/DOC-2489

	Abstract
	Introduction
	The Problem
	Challenges of Existing Solution
	Benchmarking
	mdtest
	IOR

	Linux kernel routing
	Implementation
	Kernel Features
	Networking setup
	Storage servers
	Compute

	Tuning
	Storage servers
	Compute Cluster GPFS

	Performance Changes
	Single client performance
	Multi-client performance

	Tradeoffs
	Future work
	Resources

