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Abstract—Chapel is a programming language whose goal
is to support productive, general-purpose parallel computing
at scale. Chapel’s approach can be thought of as combining
the strengths of Python, Fortran, C/C++, and MPI in a
single language. Five years ago, the DARPA High Productivity
Computing Systems (HPCS) program that launched Chapel
wrapped up, and the team embarked on a five-year effort
to improve Chapel’s appeal to end-users. This paper follows
up on our CUG 2013 paper by summarizing the progress
made by the Chapel project since that time. Specifically,
Chapel’s performance now competes with or beats hand-coded
C+MPI/SHMEM+OpenMP; its suite of standard libraries has
grown to include FFTW, BLAS, LAPACK, MPI, ZMQ, and
other key technologies; its documentation has been modernized
and fleshed out; and the set of tools available to Chapel users
has grown. This paper also characterizes the experiences of
early adopters from communities as diverse as astrophysics
and artificial intelligence.
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I. INTRODUCTION

Chapel is a programming language designed to support
productive, general-purpose parallel computing at scale.
Chapel’s approach can be thought of as striving to create
a language whose code is as attractive to read and write as
Python, yet which supports the performance of Fortran and
the scalability of MPI. Chapel also aims to compete with C
in terms of portability, and with C++ in terms of flexibility
and extensibility. Chapel is designed to be general-purpose
in the sense that when you have a parallel algorithm in mind
and a parallel system on which you wish to run it, Chapel
should be able to handle that scenario.

Chapel’s design and implementation are led by Cray Inc.
with feedback and code contributed by users and the open-
source community. Though developed by Cray, Chapel’s
design and implementation are portable, permitting its pro-
grams to scale up from multicore laptops to commodity
clusters to Cray systems. In addition, Chapel programs can
be run on cloud-computing platforms and HPC systems
from other vendors. Chapel is being developed in an open-
source manner under the Apache 2.0 license and is hosted
at GitHub.!

Uhttps://github.com/chapel-lang/chapel

The development of the Chapel language was undertaken
by Cray Inc. as part of its participation in the DARPA High
Productivity Computing Systems program (HPCS). HPCS
wrapped up in late 2012, at which point Chapel was a com-
pelling prototype, having successfully demonstrated several
key research challenges that the project had undertaken.
Chief among these was supporting data- and task-parallelism
in a unified manner within a single language. This was
accomplished by supporting the creation of high-level data-
parallel abstractions like parallel loops and arrays in terms
of lower-level Chapel features such as classes, iterators, and
tasks.

Under HPCS, Chapel also successfully supported the ex-
pression of parallelism using distinct language features from
those used to control locality and affinity—that is, Chapel
programmers specify which computations should run in
parallel distinctly from specifying where those computations
should be run. This permits Chapel programs to support
multicore, multi-node, and heterogeneous computing within
a single unified language.

Chapel’s implementation under HPCS demonstrated that
the language could be implemented portably while still being
optimized for HPC-specific features such as the RDMA
support available in Cray® Gemini™ and Aries™ net-
works. This allows Chapel to take advantage of native
hardware support for remote puts, gets, and atomic memory
operations.

Despite these successes, at the close of HPCS, Chapel was
not at all ready to support production codes in the field. This
was not surprising given the language’s aggressive design
and modest-sized research team. However, reactions from
potential users were sufficiently positive that, in early 2013,
Cray embarked on a follow-up effort to improve Chapel
and move it towards being a production-ready language.
Colloquially, we refer to this effort as “the five-year push.”

This paper’s contribution is to describe the results of this
five-year effort, providing readers with an understanding of
Chapel’s progress and achievements since the end of the
HPCS program. In doing so, we directly compare the status
of Chapel version 1.17, released last month, with Chapel
version 1.7, which was released five years ago in April 2013.



At the end of the HPCS program, Chapel had a number of
issues that might prevent a potential user from adopting it.
Chief among these was concern about Chapel’s performance
and scalability, which were sorely lacking at the time. For
that reason, users wondered whether Chapel would ever be
able to compete with de facto HPC programming models
like Fortran, C, or C++ with MPI and OpenMP. Over the past
five years, performance improvements have been a major
focus for our team, and we report on this effort in Section V,
showing recent Chapel performance results for well-known
benchmarks.

For other users who were less concerned about perfor-
mance, additional barriers remained. For some, it was the
state of the base language. Although Chapel had demon-
strated its unique features for specifying parallelism and
locality by the end of HPCS, many of its more traditional
language features were still in their infancy, reflecting the
program’s focus on research-oriented features that were
unique to HPC and Chapel. Section III provides an overview
of key improvements to the language’s feature set. Other
users expressed interest in a larger suite of libraries, similar
to what they were accustomed to in C++, Java, or Python. In
Section IV, we describe improvements that have been made
in Chapel’s library support since version 1.7.

Still other users had reservations about Chapel’s overall
maturity and ecosystem, based on the state of its documenta-
tion, tools, memory leaks, user support, and/or community.
These areas have also seen significant improvements over
the past five years, and we review some highlights of these
efforts in Section VI. After summarizing the improvements
made since HPCS, the paper wraps up with perspectives
from current and prospective Chapel users in Section VIIL

In the next section, we provide a high-level comparison
between Chapel and other prominent HPC programming
models. Note that this paper does not seek to present an
introduction to Chapel itself—for that, we refer readers to
the Chapel website’ and online documentation® including
the Chapel language specification [1]. Readers who are
interested in a more detailed history of Chapel’s formative
years under the HPCS program may be interested in our
CUG 2013 paper [2] as well as the Chapel chapter in Pavan
Balaji’s excellent book, Programming Models for Parallel
Computing [3].

II. RELATED WORK

The most obvious and important point of comparison for
Chapel is the message passing interface, MPI [4], since the
vast majority of HPC programs are written using it. MPI
programs are typically coded in a Single Program, Multiple
Data (SPMD) style in which users execute multiple copies
of their program, having written it to cooperate with other
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instances of itself through the passing of messages and
calls to collective routines. Unlike MPI, Chapel supports
a global view of control flow. Each Chapel program starts
as a single (conceptual) task that runs the user’s main ()
procedure. From this original task, additional parallelism
is created using data- and task-parallel constructs. Where
the unit of parallelism in an MPI program is the process,
Chapel’s parallelism is expressed in terms of lighter-weight
tasks that can run within a single shared-memory locale or
distributed across several of them.

Chapel’s global view also extends to its namespace which
permits any task to refer to any variable within its lexical
scope, as in most programming languages. This is true
whether the variable is located within the memory of the
locale on which the task is running or some other remote
locale. There is a performance cost for accessing remote
variables, due to the need to transfer them across the
network, but the details of managing such communications
are handled automatically by the compiler and runtime rather
than by relying on explicit user calls, as in MPI. This makes
Chapel part of the Partitioned Global Address Space (PGAS)
family of languages. As a result of its global views of data
and control, programming large-scale systems in Chapel
tends to be far more similar to traditional desktop program-
ming than it is in MPI, creating the potential for making HPC
computation much more accessible to a broader community
of programmers.

A leading alternative to MPI for distributed-memory
programming is the SHMEM interface, governed by the
OpenSHMEM community [5], [6]. SHMEM is similar to
MPI in that it relies upon an SPMD programming model
and user-specified communication between copies of the
program. However, it differs in that its primary routines
for data transfer are one-sided puts and gets that can make
use of RDMA support in cases like the Aries network on
Cray® XC™ series systems. Like SHMEM, Chapel also re-
lies on single-sided RDMA, but implements it automatically
within the compiler and runtime rather than by relying on
the programmer to specify such transfers explicitly. In this
respect, Chapel’s global view has similar advantages over
SHMEM as it does MPL

Unified Parallel C (UPC) [7] and Fortran 2008, formerly
Co-Array Fortran [8], [9], are two prominent examples of
PGAS languages that handle communication automatically
for the programmer, similar to Chapel. UPC supports 1D
arrays that can be distributed across compute nodes in a
block-cyclic manner, as well as wide pointers that support
the creation of distributed data structures. Chapel is similar
to UPC in its support for distributed global arrays, but adds
support for multidimensional, sparse, and associative arrays
to its feature set. Moreover, Chapel supports distributions
other than block-cyclic, not to mention the ability for users
to define new distributions [10]. Like UPC, Chapel sup-
ports unstructured distributed data structures, but follows



the approach of languages like Java by expressing them
using class object references rather than pointers in order
to avoid compilation challenges like understanding aliasing
in the presence of pointer math.

Fortran 2008 takes a different approach to distributed data
structures than UPC and Chapel, permitting variables to be
declared with a co-dimension. Such co-dimensions are sim-
ilar to traditional Fortran array dimensions except that they
refer to copies of the program, or positions within the SPMD
image space. By indexing into the co-dimension, remote
copies of a variable can be accessed, and communication is
induced. This abstraction provides clean language support
for communication, yet it requires the programmer to write
data structures using a local, per-process view as in MPL. In
contrast, Chapel’s global-view data structures, like UPC’s,
make communication syntactically invisible, enabling code
reuse benefits. That said, such communication can still be
reasoned about semantically and programmatically. Despite
being similar to Chapel in terms of supporting global
namespaces, UPC and Fortran both require programs to be
written in the SPMD model, and therefore retain some of the
challenges of managing local-view control flow as in MPI
and SHMEM.

In all of the SPMD models above—MPI, SHMEM, UPC,
and Fortran—finer-grained parallelism may be introduced
into a program’s execution by mixing in additional parallel
programming models such as POSIX threads, OpenMP,
OpenCL, OpenACC, or CUDA [11], [12], [13], [14], [15].
This is often referred to as MPI+X programming, where MPI
is used to create per-node or per-socket SPMD processes
which then use distinct notations to express finer-grained
parallelism to leverage other cores or accelerators. The chief
downside of this approach is that it requires programmers
to understand multiple disparate notations and features in
order to write and understand parallel programs in this
style. In contrast, Chapel’s task-based programming model
is general enough to support SPMD patterns and local-view
programming, yet rich enough to express more general and
dynamic parallel patterns. As a result, Chapel removes the
need to mix multiple programming models to express coarse-
and fine-grain parallelism within a single program.

Chapel’s closest siblings are two other languages that
were developed under the HPCS program, IBM’s X10 [16],
[17] and Sun’s (later Oracle’s) Fortress [18]. X10’s features
were, in many respects, similar to Chapel’s, yet made a
much stronger distinction between operations on local versus
remote data than Chapel does—in a sense making it more
like Fortran 2008 to Chapel’s UPC. Chapel chose not to
expose such differences syntactically in order to promote
code reuse and avoid having to specialize code for the
cross-product of local versus remote variables. Fortress and
Chapel share many high-level themes, such as striving to
create a language in which many of the core features are
defined as library code. However, Fortress was also more

aggressive in many aspects of its design, including support
for mathematical notation and units of measure. Neither
Fortress nor X10 seemed to gain the level of user enthusiasm
that Chapel has, and active development has essentially
wrapped up on both of them.

Among more modern languages, Julia [19] is perhaps
the closest to Chapel, since both strive to support parallel
programming on large-scale systems using a Python-like
language, yet without sacrificing performance. Based on our
experiences, while Julia has a much larger user community,
programmers from an HPC background tend to favor the
way Chapel is engineered close to the iron, as well as its
strong foundation for parallelism and locality upon which
higher-level features of the language are based. In contrast,
Julia seems to take more of a “trust the compiler” approach
which arguably leaves expert programmers with no recourse
when the compiler gets things wrong. That said, Julia also
has tangible advantages over Chapel, such as interoperability
with Python and interactive programming via REPLs and
notebooks. These are areas in which we expect Chapel to
improve in coming years.

III. LANGUAGE IMPROVEMENTS

By the end of the HPCS program, Chapel’s features for
parallelism and locality were in fairly good shape. The core
features for creating tasks, controlling locality and affinity,
and expressing data parallel abstractions were in place
and remain largely unchanged to this day. Sections III-A
and III-B below describe the primary changes that have been
made to these features since version 1.7.

In contrast, Chapel’s base language features left a lot to be
desired at the end of the HPCS program—and this should
not be surprising given the research focus of HPCS and
the modest size of the team. That said, these faults were a
major concern for early users trying to write real programs,
particularly larger ones. As a result, a significant effort was
made during the five-year push to improve the base language
in terms of robustness and feature completeness. This effort
will be summarized in Section III-C.

A. Parallel Language Improvements

1) Task Intents: The primary change to Chapel’s parallel
features since HPCS is the introduction of task intents, also
referred to as forall intents. This change was adopted to re-
duce the chances of unintentionally writing race conditions.
As an illustration, consider the following naive parallel loop
which attempts to sum the squares of an array’s elements
while counting the number of positive values:

1 var A: [1..n] real;

2 var a2, total: real;

3 var pos: atomic int;

4 forall a in A {

5 az = a*x*2;

6 total += a2;

7 if (a > 1) then pos.add(l);
8}



Under Chapel 1.7, all references to outer-scope symbols
from within parallel constructs like this forall-loop simply
referred to the original variables. Thus, the references to A,
a2, total, and pos within the loop above refer to the original
variables declared outside the loop.

For this loop, this results in two races: The first is that
the assignment to a2 on line 5 causes the loop’s tasks to all
refer to the same shared a2 variable, permitting their values
to overwrite one another. The second race is similar, but
slightly subtler, and relates to the updates to total on line 6.
Because these updates are not synchronized, it’s possible that
multiple tasks will simultaneously read the same value from
total, compute their updates, and then write the results back,
effectively overwriting the other tasks’ updates in a classic
read-read-write-write race. Note that the update to pos is
not problematic due to its atomic nature.

Recognizing the frequency with which new Chapel users
were writing races like these, we decided to change Chapel’s
semantics for tasks, considering outer-scope variables to
effectively be “passed into” the tasks, similar to how ar-
guments are passed to procedures. Moreover, we decided to
use the same rules that are employed by Chapel’s procedure
arguments, causing different types to be passed in different
ways by default. As a result of these changes, when the pro-
gram above is compiled with more recent versions of Chapel,
compiler errors are generated for the assignments to a2 and
total. This is because scalar values are passed to tasks by
const in intent (as they are for normal procedures). This
prevents the task-local shadow copies that are created by
the compiler from being modified within the forall-loop and
eliminates the unintentional races.

Upon receiving these compiler errors, a user can choose
to override the default task intents by adding a with-clause to
the parallel construct to specify how outer variables should
be passed to tasks. For instance, to get the behavior for this
example that was originally intended, yet in a parallel-safe
way, the user could write the forall-loop as follows:

forall a in A with (in a2, + reduce total) {

This specifies that each task should get a personal (non-
const) copy-in of a2 that it can modify independently of
other tasks, effectively giving each task the scratch variable
that it desired. It also says that each task should get a private
instance of total whose value will be sum-reduced with
those of other tasks’ copies as they complete.

Meanwhile, the array A and the atomic variable pos are
passed by reference (ref) by default, just as they would
be for a subroutine taking them by default intent. This
permits the forall loop’s tasks to read or write the original
variables without additional code changes. As with normal
arguments, these choices are motivated by the principle of
least surprise, to avoid potentially expensive array copies,
and to support the common case for types designed for inter-
task coordination, like atomic variables.

Note that this change to Chapel does not eliminate races:
a parallel loop may still have a race on a shared variable
like array A above, or the user may explicitly specify that
a2 and total should be passed in by ref, re-enabling the
original races. That said, we have found that this change has
significantly reduced the frequency with which such unin-
tentional races occur, as intended. For further information on
task intents, refer to the Chapel Language Specification [1]
and online documentation.*

2) Standalone Parallel Iterators: The other main change
to Chapel’s parallel features that took place since Chapel 1.7
was to introduce the notion of standalone parallel iterators
which are invoked when using a forall-loop to iterate over
an expression in a non-zippered context, such as the loop
over array A in the previous section. Prior to this fea-
ture, such cases were handled by invoking the expression’s
leader-follower iterators, first described at the PGAS 2011
workshop [20]. As noted in that work, this approach added
unnecessary complexity and bookkeeping overhead for the
degenerate (but common) case of iterating over a single
expression. By introducing standalone parallel iterators, we
reduced the size of the generated code for such cases
while also typically improving performance. For further
information on standalone parallel iterators, refer to the
parallel iterators primer in Chapel’s online documentation.’

B. Locality Improvements

Chapel’s core features for locality have similarly remained
largely unchanged since Chapel 1.7. Locales are still used
to refer to compute nodes, on-clauses are still used to direct
computation to specific locales, and domain maps are still
used to distribute an index set and its arrays across a set of
locales. The major change that has taken place in this area
has been the introduction of user-defined locale models [21]
in response to the evolution of compute node architectures
in HPC systems.

In more detail, in the HPCS timeframe, Chapel’s locales
were a type that was built into the language, where all details
of managing tasks and memory within a locale were left to
the compiler and runtime. This approach made sense in a
world where compute nodes were fairly flat and homoge-
neous. However, as compute nodes with multiple NUMA
domains and accelerators have become more common, this
“flat” notion of locales became increasingly limited. Where
before, one might have been willing to rely on a runtime to
map a task or variable to an appropriate processor or memory
bank within a compute node, as node architectures become
increasingly heterogeneous and hierarchical, that approach
seems increasingly naive.

To this end, we introduced the notion of user-defined
locale models to Chapel, enabling advanced users to create

“https://chapel-lang.org/docs/1.17/technotes/reducelntents.html
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their own locale definitions to describe compute node archi-
tectures that we had not anticipated. Such locale models are
often hierarchical in nature, containing sublocales within the
top-level locales to describe things like NUMA domains, or
specific flavors of processors or memory. In this approach,
the locale model author creates a set of objects to model
the abstract architecture of their compute nodes. In doing
so, the user satisfies interfaces that specify how to allocate
memory and create tasks for each locale type. Ultimately,
we expect that locale models will also specify how remote
puts and gets should be implemented, though today these
interfaces are still hard-coded between the compiler and run-
time. Like Chapel’s other multiresolution features—parallel
iterators [20] and domain maps [10]—these locale models
are written using Chapel code.

While most of Chapel’s five-year push was skewed toward
the “development” side of R&D, the introduction of hier-
archical / user-defined locale models constituted one of our
most significant research efforts during this period. In recent
years, all compilations of Chapel programs have utilized
locale models written in Chapel to map the language’s
requests for memory or tasks to a system’s resources. At
the time of this writing, prototypical locale models exist
for multi-NUMA domain compute nodes and Inte]l® Xeon
Phi™ “Knights Landing” (KNL) processors in addition to
the “flat” locale model that Chapel uses by default. Further
information on user-defined locale models can be found in
Chapel’s online documentation®.

C. Base Language Improvements

As mentioned previously, Chapel’s base language features
lagged significantly behind those for parallelism and locality
and were considered a major impediment to practical use.
During the five-year push, a great deal of effort was spent
improving them to help with the practical use and adoption
of Chapel. This section highlights some of the most notable
changes.

1) Object-Oriented Features: One particular area that
was lacking in Chapel 1.7 was support for Object-Oriented
Programming (OOP). While Chapel’s design included both
records (similar to structs in C/C++) and classes (similar
to classes in Java or C#), in many respects, the original
design was naive. For example, Chapel’s original design for
records turned out to only be sufficient for supporting cases
in which fields were restricted to Plain-Old Data (POD)
types—e.g., scalar values and other records or arrays of POD
type. When records required more sophisticated memory
management, as can happen when they store class fields,
our original design was too simplistic. Similarly, Chapel’s
original implementation of class hierarchies, particularly
those involving generic classes, was not nearly as robust
as an expert programmer would want or need.

Ohttps://chapel-lang.org/docs/1.17/technotes/localeModels.html

Since Chapel 1.7, these features have improved dramati-
cally. The original constructor feature that resulted in many
of these weaknesses has been replaced with a new initializer
feature which supports much richer initialization of objects
and addresses the lacking record semantics. Bugs related
to generics and class hierarchies have been fixed, and our
standard domain map hierarchy now makes greater use of
these features to help lock them in.

In addition, new features have been added to Chapel’s
OOP types, such as the ability to create type methods that
support invoking procedures and iterators directly on a class
or record type rather than on objects of that type (similar to
static methods in C++). Classes and records may now also
declare forwarding fields, to which methods are dispatched
when they cannot be handled by the containing object itself.
This provides a means of reusing object methods using the
“has a” nature of fields rather than the “is a” approach of
inheritance.

One final feature related to OOP, whose development is
still underway, is support for a delete-free style of program-
ming in which the language and a compiler lifetime checking
pass help manage memory allocated for class objects. This
eliminates the need for programmers to explicitly delete
their classes and reduces the chances of errors such as
memory leaks, double-frees, and use-after-free errors.

2) Namespace Improvements: Though Chapel has always
supported namespaces in the form of its modules, these fea-
tures have been improved significantly since Chapel 1.7 by
permitting module use statements to restrict which symbols
are made visible in the current scope. This extension also
provides a means for renaming such symbols as they are
used. In addition, module-level symbols can now be de-
clared public or private as a means of restricting which
symbols are available through a use statement. Finally,
enumerated types can now be accessed in an unqualified
manner by naming the type in a use statement just as a
module would be.

3) Error-Handling: In addition to improving existing
features, a few new base language features have been
added since version 1.7 to improve Chapel’s usability in
production codes. One major example is error-handling, in
which exceptional conditions can be dealt with gracefully as
a program is running. Traditionally, Chapel programs have
either halted when reaching an error condition, or they have
used certain computational patterns to indicate a problem,
such as passing error codes back through out arguments.

In this effort, we added support for error-handling using
an approach inspired in part by Swift’s error-handling fea-
tures. Specifically, Chapel routines can now throw errors
in addition to returning a value. When calling such routines
within production code, the calling routine must wrap the
call in try...catch blocks to handle the error or throw
it further onwards. A try! form can be used to halt the
program in the event that an error is not handled.



As part of the error-handling effort, Chapel also added
support for a defer statement which can be used to specify
cleanup actions to be taken when a given code block is
exited in any way, including throwing an error. For further
information on Chapel’s error-handling features, refer to the
online documentation.’

4) Other Base Language Improvements: Beyond the base
language improvements described above, a few others are
worth noting in this summary:

Strings: In Chapel 1.7, the string type was virtually
unusable due to memory leaks, bugs, and the lack of a so-
phisticated string library. Since then, these issues have been
vastly improved, making string-based computation viable in
Chapel for the first time. In addition, a new uninterpreted
string literal has been added, permitting multi-line strings to
be embedded directly into a user’s source code.

The void type: Chapel has also recently introduced
a void type which is somewhat like C’s void, yet more
versatile and designed to support the folding away of code at
compile-time. For example, the following record declaration
sets the type of its stop field to be either int or void based
on the compile-time param value bounded:

record sequence {

param bounded: bool;

var start: int;

var stop: if bounded then int else void;

}

As a result, the field will be completely optimized away in
cases where bounded is false, saving space. In addition
to eliminating storage, void values can also be stored in
variables of void type, passed to routines, and returned from
functions and iterators. This propagation of void values
through a computation permits users to fold code out of a
program at compile-time, resulting in a powerful optimiza-
tion technique that can be applied in generic programming
scenarios.

And More: Beyond the improvements described in
this paper, many others have been made to Chapel since
version 1.7 in the areas of array support, interoperability
improvements, operator precedence, and several others. For
far more complete coverage of the improvements made in
recent releases, please refer to Chapel’s extensive release
notes.

IV. CHAPEL LIBRARIES

Chapel’s library support also improved significantly dur-
ing the five-year push. Chapel 1.7 shipped with around
two dozen library modules, which were documented using
comments in the source code, if they were documented at all.
By contrast, Chapel 1.17 contains 60 library modules, most
of which are documented online, and many of which were
contributed by developers external to Cray. This increase in
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libraries was aided in part by Chapel’s improved support for
tools and language features that help with C interoperation,
since many Chapel libraries wrap their C counterparts to
avoid reinventing the wheel.

The following list notes some of the more prominent
libraries that have been added since Chapel 1.7:

« Math Libraries: Chapel now supports FFTW, BLAS,
and LAPACK modules which support calls to routines
from the familiar community libraries. In many cases,
the Chapel interfaces to these libraries are simpler than
their C counterparts since Chapel’s arrays carry mul-
tidimensional information in their descriptors and can
therefore pass leading dimension information to the C
routines without user involvement. Recent releases have
also included a new LinearAlgebra module which
supports cleaner interfaces to linear algebra operations
than LAPACK or BLAS.

« Communication Libraries: Chapel now supports MPI
and zMQ (ZeroMQ) modules that provide access to
these standard modes of inter-process communication.
Chapel’s MPI support can either be used to perform
message passing between a number of single-locale
Chapel programs executing cooperatively, or within
a multi-locale Chapel program, as an alternative to
relying on the language’s global namespace and im-
plicit communication. The ZMQ module supports inter-
process message queues and can be used to coordi-
nate between multiple concurrent Chapel programs,
to interoperate between Chapel and other languages
with ZeroMQ support (like Python), and/or to permit
processes running on the login node to coordinate with
those running on compute nodes.

« Parallel / Distributed Patterns: Chapel has a grow-
ing number of library modules that support com-
mon patterns for parallel and distributed computing.
For example, the DistributedIters module sup-
ports dynamic, distributed work-sharing iterators that
can be used to load balance computations across
locales. Distributed collections are supported by the
DistributedBag and DistributedDeque modules.
And Chapel programmers can make use of barrier syn-
chronization and futures via the Barrier and Futures
modules, respectively.

o File System Modules: Users can interact with the
file system using new FileSystem and Path modules
which support core operations like renaming and delet-
ing files along with more interesting cases like iterating
in parallel over the files in a directory hierarchy or
those that match a given glob pattern. Since version 1.7,
Chapel has also introduced an HDF'S module which may
be of interest to users who compute with data stored
using the Hadoop Distributed File System.



Full Reduced 1.7

Compiler Flags for Reference Version

Benchmark Problem Size Problem Size Reference Version Programming Model
-O3 -fast-math
HPCC STREAM 32 GB/node 32 GB/node -funroll-loops MPI+OpenMP
-fprefetch-loop-arrays
HPCC RA 32 GB/node, 32 GB/node ” MPI
N_U =231 N_U = 10,000, 000
PRK Stencil 16 GB/node 2 GB/node -03 MPI+OpenMP
ISx n =227 n = 65536 -O3 -mavx SHMEM

per Bucket Multiply = 1

Table 1
COMPILATION AND EXECUTION DETAILS FOR BENCHMARKS

o Other Notable Modules: Some other notable new
library modules in Chapel include:
provides a nicer interface to
Chapel’s traditional GMP routines for arbitrary
precision integers
— Reflection: permits users to reason about static
aspects of their program code such as whether or
not a given call can be resolved or what fields an
object contains
— Crypto: supports various cryptographic routines
based on OpenSSL
— DateTime: enables computations on dates, times,
and timezones
— Spawn: supports spawning subprocesses and inter-
acting with them
— Curl: provides standard support for data transfers
via URLs
Recent Chapel releases have distinguished between stan-
dard modules—those that are considered to be a core part of
the Chapel distribution—and package modules—those that
are either more tangential to the language, or which are not
yet considered mature enough to be incorporated into the
standard set. Chapel’s online documentation contains pages
describing both standard’ and package'® modules.

— BiglInteger:

V. PERFORMANCE OPTIMIZATIONS AND IMPROVEMENTS

If you were to ask a random HPC programmer for
their impressions of Chapel, a typical response might be
something like “it’s that elegant language which doesn’t
perform very well.” And for most of Chapel’s history, this
characterization has been accurate. However, as a result
of the five-year push, Chapel’s performance and scalability
have now improved to the point that it is competitive with
hand-coded C+MPI+OpenMP for a variety of computational
styles. In this section, we present recent Chapel benchmark
results, comparing to version 1.7 and reference implementa-
tions, and highlighting a few key optimizations that helped
us narrow the gap.

9https://chapel-lang.org/docs/1.17/modules/standard.html
10https://chapel-lang.org/docs/1.17/modules/packages.html

A. Experimental Methodology

All performance results in this paper were gathered on
Cray XC systems. Scalability results comparing Chapel 1.17
vs. reference versions of benchmarks were gathered on up
to 256 compute nodes with 36 cores per node. Due to lim-
ited machine availability, Chapel 1.7 vs. 1.17 comparisons
and single-node LCALS comparisons were gathered on a
distinct XC system with 28 cores per node. Because of
the poor performance of Chapel 1.7, its comparisons were
not run on more than 32 compute nodes to avoid wasting
system resources. The two systems we used have identical
software stacks, identical memory types, and similar Intel
“Broadwell” processors. The following table provides a
more detailed view of the hardware and software used to
gather our results:

28-core Cray XC with Aries interconnect w/ CLE6

Hardware | 28-core (56T) 2.6 GHz “Broadwell” CPUs
128 GB DDR4 RAM

36-core Cray XC with Aries interconnect w/ CLE6

Hardware | 36-core (72T) 2.1 GHz “Broadwell” CPUs
128 GB DDR4 RAM

Chapel Chapel 1.7.0 and 1.17.1

Software | GCC 6.3 as back-end compiler
16M hugepages

Reference | GCC 6.3

Software | cray-mpich 7.6.2 and cray-shmem 7.6.2

Table I provides experimental details for the scalability
studies in this section. Problem sizes for the Chapel 1.17
versus reference scalability studies are given in the first
data column. Due to the poor performance of Chapel 1.7,
in some cases we had to dial down the problem sizes for
its scalability comparisons so that they would complete in
a reasonable amount of time. These reduced problem sizes
are given in the second data column. In all experiments,
we ran ISx in its weak-ISO scaling mode. The next column
indicates the compiler flags used for the reference versions,
based on the Makefiles that ship with them. AIll Chapel
programs were compiled with the —-fast flag. The final
column indicates whether the reference version uses MPI,
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Figure 1. Timings for LCALS serial pressure calc kernel

SHMEM, or MPI+OpenMP. All runs involving Chapel or
OpenMP were run with a process per node and a task per
core. Non-OpenMP cases were run with a process per core.
Not shown in the table, all LCALS results are for the long
problem size.

B. Arrays

Arrays are a fundamental building block for HPC appli-
cations and a first-class language concept in Chapel. Chapel
arrays have a feature set that is significantly richer than
arrays in C/C++, or even Fortran. Chapel supports arbitrary
indexing (instead of fixed O- or 1-based indexing), true multi-
dimensional arrays, and parallel iteration as well as built-in
support for slicing, rank-change, and many other operations.
A naive implementation of these features can incur a signif-
icant performance penalty, and that was certainly the case in
Chapel version 1.7. Since then, we have implemented several
key optimizations which permit Chapel’s arrays to perform
as well as their C/C++ equivalents. Specifically, we have:

o Implemented a “shifted data” optimization which stores
a shifted reference to the start of an array to eliminate
the overhead of arbitrary indexing

« Implemented a loop-invariant code motion optimization
which hoists array meta-data to avoid dereferences and
extra memory accesses compared to C arrays

o Eliminated a multiply in indexing operations for the
innermost dimension of array accesses (required for
computing offsets into multi-dimensional arrays)

o Improved affinity for parallel operations over arrays

o Made significant improvements to loop code generation

o Eliminated reference counting for arrays

The impact of these optimizations can be seen by examin-
ing Chapel’s performance for the LCALS benchmark suite.
LCALS is a collection of loop kernels that can be used to
assess the performance of array operations. Overhead in-
curred by array features and a general lack of optimizations
in Chapel 1.7 led to performance being significantly behind
the reference version. Figure 1 shows that Chapel is now

~170x faster than version 1.7 for the serial pressure_calc
kernel. Appendix A shows the C code generated for this
kernel by Chapel 1.7 along with the significantly cleaner
code generated by version 1.17. More importantly, Chapel’s
serial performance is now on par with the C version, and for
a majority of the kernels, parallel performance is competitive
with the C+OpenMP version as shown in the LCALS graph
in Figure 4.

C. Runtime

Chapel’s runtime includes support for memory alloca-
tion, task-spawning, topology discovery, and communica-
tion. Over the past five years, these components have re-
ceived significant attention in order to increase their speed
and scalability.

Chapel 1.7 defaulted to portable, but slow, runtime com-
ponents. Memory allocations were satisfied by the system
allocator, which typically has poor performance for parallel
allocations. Chapel tasks were directly mapped to system
pthreads with no regard for task placement. This incurred
high task creation and switching times as well as suboptimal
task affinity. Communication was implemented in a portable
manner using GASNet [22] over an MPI substrate, which
did not make best use of the underlying network.

In contrast, Chapel 1.17 uses a concurrent and highly
scalable memory allocator built on top of jemalloc [23].
Chapel tasks are mapped to user-level qthreads [24] that
have extremely fast task creation and switching times as
well as affinity-awareness via hwloc [25]. Communication
on Cray systems is now mapped directly to a ugni-based
implementation to provide optimized RDMA operations for
gets, puts, active messages, and network atomic operations
with very little software overhead.

These runtime optimizations, combined with array op-
timizations, have led to dramatic improvements for sev-
eral HPCC benchmarks. STREAM Triad is a synthetic
benchmark that measures sustainable memory bandwidth.
RandomAccess (RA) measures the rate of random updates
to a large, distributed array of integers. As seen in Fig-
ure 2, performance for STREAM has improved by over
3%, primarily due to array/task affinity improvements and
faster task spawning times. RA performance has improved
by several orders of magnitude as a result of mapping puts,
gets, and atomics directly to RDMA operations.

Figure 4 shows that STREAM performance is competitive
with the reference MPI+OpenMP version, and that RA out-
scales the reference MPI version at 256 locales. Note that
neither Chapel nor the reference version of STREAM were
compiled with flags to force non-temporal or “streaming”
stores. Switching to Intel or Cray compilers and compiling
with the appropriate flags will result in both Chapel and the
reference version attaining the “true” peak hardware memory
bandwidth, though we tend to run without these flags be-
cause we don’t believe that bypassing the cache is practical
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Figure 2. Performance for STREAM and RA benchmarks

for real applications. In addition, we compare our version of
RA to the standard HPCC RA. The Chapel implementation
does not take advantage of the “lookahead” permitted by
the benchmark and instead updates are performed one at a
time. The bucketing reference implementation takes advan-
tage of the lookahead, while the no bucketing version is a
more direct comparison to the Chapel implementation. The
bucketing version outperforms the Chapel version at lower
locale counts, but due to Chapel’s 1-sided RDMA support,
it outperforms both reference versions at 256 locales.

D. Communication

We have also implemented several communication opti-
mizations in the compiler and standard library. Array assign-
ments, including slices and strided arrays, are now trans-
formed into large bulk communication operations instead
of a communication operation per element. Loop invariant
code motion is able to hoist many communication operations
out of loop bodies. A remote-value-forwarding optimization
bundles remote data with active messages in order to reduce
communication. Existing distributions have been improved
to reduce communication, and a new stencil distribution has
been developed for optimized stencil computations.

As discussed in section II, the Chapel compiler and
runtime are responsible for managing communication for
remote data. The compiler must detect potentially remote
data and insert appropriate runtime calls. We have signifi-
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Figure 3. Performance for PRK Stencil and time for ISx benchmarks

cantly revamped the analysis to determine which accesses
are provably local, dramatically reducing the number of
locality checks that Chapel requires at runtime.

These communication optimizations have significantly
improved the performance of benchmarks with structured
communication patterns such as PRK Stencil and ISx.
PRK Stencil is a Parallel Research Kernel that tests the
performance of stencil computations, while ISx is a scal-
able integer sort application punctuated by an all-to-all
bucket exchange. Figure 3 shows the dramatic performance
improvements that have taken place since Chapel 1.7 for
both of these benchmarks. PRK Stencil benefited primarily
from array optimizations, use of the stencil distribution,
communication optimizations, and array affinity improve-
ments. [Sx performance and scalability improved due to bulk
array assignment, array optimizations, communication layer
improvements, the addition of a scalable barrier implementa-
tion, and a wide variety of other improvements. Compared to
reference versions in Figure 4, we can see that PRK Stencil
performance is on par with the reference MPI+OpenMP
version. ISx scales nearly as well as the reference SHMEM
version, though raw performance is still behind.

E. Performance Summary and Next Steps

These array, runtime, and communication optimizations,
as well as various other performance improvements, have
dramatically boosted the performance of Chapel codes. Five
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Figure 4. Chapel vs Reference performance for several benchmarks

years ago, it was nearly impossible to write Chapel code that
could compete with a reference version. Generally speaking,
today it is possible to write elegant Chapel codes that can
perform and scale as well as hand-coded C+MPI+OpenMP.

While Chapel performance has improved significantly,
it is still possible to write Chapel programs that perform
poorly. In some cases, this reflects a problem on the user’s
part, just as naive programmers might write MPI programs
that perform or scale poorly due to not fully understanding
the ramifications of their choices. Yet in other cases, addi-
tional optimizations are required in our implementation to
make reasonable Chapel code compete with hand-coded ap-
proaches. We believe our recent performance improvements
demonstrate that there is nothing inherent in Chapel’s design
that inhibits performance; rather it’s just a matter of fleshing

out performance optimizations in the compiler, runtime, and
library implementation. As such, we encourage Chapel users
who are seeing poor performance to contact us so that we
can help them work through issues in their code or prioritize
additional optimization opportunities in ours.

Currently, we are pursuing optimizations that close the
remaining performance gap between ISx implementations
in Chapel and SHMEM. Additionally, now that we have
demonstrated the ability to compete at modest locale counts,
we are starting to study performance at much larger scales.
At present, we have performed preliminary performance
studies on Edison at NERSC for up to 1,024 locales.
Generally speaking, Chapel’s performance and scalability
trends at these scales are promising. For benchmarks like
PRK Stencil, scalability starts to suffer at higher locale



counts, lagging behind the reference version by roughly
10% at 1,024 locales. This is because Chapel’s global-view
approach involves remote task-spawning in timed sections,
yet our remote task-spawning implementation has not yet
received significant attention. Currently, remote tasks are
spawned one at a time, which has a non-trivial overhead at
high locale counts. To address this, we plan on implementing
a parallel tree-based spawning mechanism.

VI. OTHER IMPROVEMENTS

In addition to the major improvements to language fea-
tures, libraries, and performance described so far, Chapel
has seen improvements in a number of other areas over the
past five years. This section briefly summarizes a few of the
most notable cases.

A. Documentation

At the end of the HPCS program, Chapel had a fairly
minimal set of documentation: the language specification,
a quick-reference sheet summarizing major features, a set
of 22 primer examples explaining various aspects of the
language, a command-line man page for the compiler, and a
large number of text README-style files scattered through-
out the release. Today, as a result of a concerted effort,
Chapel’s documentation consists of over 200 searchable, hy-
perlinked webpages generated from ReStructured Text files
and Chapel source code using the Sphinx documentation
tool''. All Chapel documentation can be found online at
https://chapel-lang.org/docs/.

B. Tools

Chapel’s tool support was in a similarly primitive state at
the end of HPCS, where the primary tools available were
(a) highlighting modes for vim and emacs and (b) an early
draft of chpldoc—a tool for generating HTML documen-
tation from source comments. While tools remain an area
where Chapel would benefit from additional effort, the five-
year push produced a number of new tools that benefit
Chapel users today:

o chpldoc: responsible for producing a significant frac-
tion of the online documentation mentioned in the
previous section

« chplvis: a GUI-based tool for visualizing the commu-
nication and tasking in a Chapel program to help debug
performance issues [26]

o c2chapel: a script for generating Chapel extern decla-
rations from C header files in order to simplify the task
of interoperating with C and wrapping existing libraries

e mason: a package manager for Chapel inspired by
Rust’s package manager, Cargo!?

o chpltags: supports indexing of Chapel modules to
enable quick code searches within vim and emacs

http://sphinx-doc.org/
2https://doc.rust-lang.org/cargo/index.html

o bash tab completion: provides command-line help
when invoking the Chapel compiler, chpl

C. Memory Leaks

Although performance has historically been the primary
factor preventing programmers from using Chapel, other
users have encountered the fact that Chapel has historically
leaked memory, potentially causing long-running programs
to fail. There were many sources of these leaks, though the
vast majority were caused by core data types like distributed
arrays and strings. The root cause of many of these leaks
can be blamed on our poor memory management discipline
around Chapel’s records, as described in Section III-C1. As
these features have improved, many of the most significant
sources of leaks have been resolved. In other cases, we have
put a concerted effort into tracking down and closing sources
of leaks.

To understand the magnitude of this effort, consider the
following table which summarizes memory leaks in our
nightly testing for version 1.7 vs. 1.17. The columns indicate
the number of nightly correctness tests we ran on the release
date, the fraction of them that leaked memory, and the total
amount of memory leaked across all tests:

Chapel || total | leaking | % tests | total memory
version || tests tests that leak leaked

1.7 4410 3128 70.9% | 2137.0 MiB
1.17 8478 302 3.6% 0.237 MiB

As this table shows, the total amount of memory leaked in
our nightly testing has decreased by several orders of magni-
tude over the past five years. But perhaps more importantly,
where previously most tests had leaked memory, now just a
small fraction of them do, reflecting the effort that has been
made to plug leaks. In addition, many past leaks have been
due to user-level leaks in the tests themselves, most of which
have now been resolved. As mentioned in Section III-C1,
we are exploring the development of delete-free features in
order to reduce the chances of such user-level leaks in the
future.

As of the 1.17 release, a third of the remaining leaked
memory is due to a single test, though it is not yet clear
whether the blame lies with Chapel or the test itself. Mean-
while, 2/3 of the leaking tests leak less than 256 bytes each
while 1/3 leak less than 64. As a result, we believe that
Chapel is quickly approaching a leak-free state, and in the
meantime, we no longer expect leaks to be a serious problem
for production codes.

D. Configuration and Installation

Though Chapel has traditionally been considered to be
relatively easy to install compared to many open-source
packages, several additional steps were taken during the five-
year push to make things even simpler and more robust.



One such step was to create two variants of each of our
longstanding setchplenv shell scripts. The first supports a
quickstart mode in which many features that rely on third-
party packages are disabled, to simplify and accelerate the
build. The second variant is designed for production mode
where these third-party packages are built and used in order
to provide better performance and a richer set of libraries.

For most of its history, Chapel has supported the ability
to select between various configurations, such as tasking im-
plementations or memory allocators, using CHPL_-prefixed
environment variables. While Chapel continues to support
these variables, it now also permits them to be specified via
per-installation or per-user configuration files. These support
the creation of default configurations without having to set
variables in each shell. New compiler flags also permit these
defaults to be overridden on a per-compile basis, as desired.

We also made our build process a bit more uniform with
other projects, by adding a configure script along with
make install and make check rules to support common
steps that many developers expect from open-source builds.
Notably, we have continued to avoid using autotools as part
of our build process, which many users consider a positive
attribute of the Chapel project.

Finally, we have added support for even simpler ways of
installing Chapel, including a homebrew package for Mac
OS X users and a Docker image for users of Docker.

E. Project Improvements

While most of this paper has focused on technical im-
provements to the Chapel language and compiler, the five-
year push also included many improvements to the process
of developing Chapel and interacting within the community.
In this section, we mention some of the more notable
improvements.

At the end of HPCS, Chapel’s development was hosted
at SourceForge using a Subversion repository. It was re-
leased under the BSD license and a Cray-specific contributor
agreement. This made Chapel simple to use, but challenging
for many developers to contribute to. User support and
community interactions were primarily done through mailing
lists. Nightly testing was managed via a number of crontab-
driven scripts and email reports.

Since that time, this process has been significantly re-
vamped and modernized. The project switched to the
Apache 2.0 license and contributor agreement to reduce
barriers for external contributors. Chapel development is
now done in a git repository hosted at GitHub. Simple
sanity checks are run on each pull request using Travis
before they are flagged as being OK for merging. Additional
longer-running smoke tests are run after merging to avoid
major surprises for users or developers working from the
master branch. Nightly testing is now coordinated through
Jenkins, which also provides web interfaces for browsing the
historical testing logs. The results of nightly performance

tests are available online as interactive graphs, permitting
developers and users to track improvements and backslides
in performance as the project proceeds.'3

GitHub has also helped organize Chapel’s user support,
as the team now manages public bug reports and feature
requests through GitHub’s issue tracker. We also started
monitoring StackOverflow questions tagged with “chapel”,
providing a means for users to get help with questions
whose answers may also be of interest to future users. For
much of the five-year push, the team has maintained IRC
channels for asking questions in real-time, but just this year
has modernized that support by upgrading it to a Gitter
channel.'*

Beyond user support, the Chapel project has also im-
proved its online presence through social media. During the
five-year push, we established feeds on both Twitter and
Facebook where we post regularly to note milestones, events,
improvements, and deadlines that may be of interest to the
broad Chapel community. We also established a YouTube
channel as a hub for collecting videos related to Chapel,
primarily in the form of footage from technical talks.

The Chapel community has also grown through the es-
tablishment of an annual workshop. In May 2014, the first
Chapel Implementers and Users Workshop (CHIUW) was
held in conjunction with IPDPS in Phoenix, AZ. Since
then, the workshop has been held annually, providing an
opportunity for researchers and developers to gather and
discuss work they’ve been doing in, or on, Chapel. Over
the course of those five years, dozens of speakers and
institutions have been represented, and the number and
quality of submissions has grown over time. At the time of
this writing, we are just a week away from CHIUW 2018,
which will be held at IPDPS 2018 in Vancouver, BC.

For those interested in more information on any of the
above, the best place to start is on the Chapel project’s
webpage which has recently moved from its traditional home
at http://chapel.cray.com to https://chapel-lang.org.

VII. USER PERSPECTIVES

Throughout Chapel’s development, we have worked
closely with users and prospective users to get their feed-
back, and to improve Chapel’s utility for their computations.
In preparing this paper, we sent a short survey to a number
of current and prospective Chapel users so that we could
convey their perspectives on Chapel in their own words. This
section summarizes a few of the responses that we received.
We start with two current users of Chapel from the fields of
Astrophysics and Artificial Intelligence (AI).

Nikhil Padmanabhan is an Associate Professor of Physics
and Astronomy at Yale University, and a self-described

Bhttps://chapel-lang.org/perf-nightly.html
4nttps://gitter.im/chapel-lang/chapel



Chapel enthusiast. Nikhil’s research is in cosmology, specif-
ically related to using surveys of galaxies to constrain cos-
mological models. In his response, Nikhil explains that his
interest in Chapel developed from a desire to have a lower
barrier to writing parallel codes. He explains, “I often find
myself writing prototype codes (often serial), but then need
to scale these codes to run on large numbers of simulations /
datasets. Chapel allows me to smoothly transition from serial
to parallel codes with a minimal number of changes.” He
goes on to say, “Other important issues for me are my ‘time
to solution’ (some measure of productivity vs. performance).
Raw performance is rarely the only consideration.”

Another notable Chapel user is Brian Dolan, who is
the co-founder and chief scientist of Deep 6 Al, a startup
focused on accelerating the process of matching patients
to clinical trials. Brian and Deep 6 use methods from
dozens of fields in pursuit of their product needs, including
Natural Language Processing, Al, and Machine Learning. As
specific examples, they do network analysis and community
detection on graphs as well as reinforcement learning in the
form of Deep-Q networks. Brian explains that his team uses
Chapel for rapid prototyping of compute-intensive methods
that require huge amounts of data and rapid computations,
often done on the fly. He explains that he’s used Fortran,
R, Java, and Python extensively, but that he strongly prefers
Chapel “due to the extreme legibility and performance.”

Brian goes on to say, “We’ve now developed thousands
of lines of Chapel code and half a dozen open-source
repositories for database connectivity, numerical libraries,
graph processing, and even a REST framework."> We’ve
done this because Al is about to face an HPC crisis, and
the folks at Chapel understand the intersection of usability
and scalability. It’s unrealistic to integrate languages like
Fortran into a commercial environment. It’s also unrealistic
to rely on Python to do HPC.” In his responses, Brian also
states that this quarter they expect to push their first Chapel
application into production.

Turning from current Chapel users to prospective ones,
Jonathan Dursi is a Senior Research Associate at the Hos-
pital for Sick Children in Toronto Canada, as well as a
Technical Lead for the Canadian Distributed Infrastruc-
ture for Genomics. His current computational needs cover
a broad range of human genomics, bioinformatics, and
medical informatics, such as nanopore sequencing, genome
assembly, large-scale biostatistics, and text mining. Jonathan
has tracked the Chapel project over a number of years and
has blogged about it along with other HPC programming
models aimed at improving productivity. He explains, “My
interest in Chapel lies in its potential for bioinformatics
tools that are currently either written in elaborately crafted,
threaded, but single-node C++ code, or in Python. Either
has advantages and disadvantages (performance vs. rapid

Shttps://github.com/Deep6Al

development cycles), but neither has a clear path to cross-
node computation, for performance as well as larger memory
and memory bandwidth. Chapel has the potential to have
some of the best of both worlds in terms of C++ and Python,
as well as having a path to distributed memory.”

Anshu Dubey, a Computer Scientist at Argonne National
Laboratory is another prospective user who has shown
interest in Chapel over the past year or so for the purpose
of designing and developing Multiphysics software that
can serve multiple science domains. She explains that “In
Multiphysics applications, separation of concerns and use
of high level abstractions is critical for sustainable soft-
ware. Chapel combines language features that would enable
this for clean implementation.” She goes on to say, “HPC
scientific software is made more complex than it needs to
be because the only language designed for scientific work,
Fortran, is losing ground for various reasons. Its object-
oriented features are clunky and make it nearly as unsuitable
as other languages for scientific work. Chapel appears to be
parallel and modern Fortran done better, and therefore has
the potential to become a more suitable language.”

In these surveys, we also asked each person which areas
of Chapel they think need the most attention in the years
to come, and their responses included faster compilation
times, better interoperability with Python, better support for
operations on sparse arrays and matrices, and support for
irregular distributed data structures like associative arrays
and DataFrames.

VIII. SUMMARY AND NEXT STEPS

Over the past five years, the Chapel community has imple-
mented a vast number of improvements targeting traditional
pain points that have thwarted Chapel’s adoption, including:
performance, language features, library support, memory
leaks, tools, documentation, and community. While Chapel
is by no means complete, it has now reached a stable point
where it can be used in production by certain programmer
profiles, as the responses from our users indicate.

All programming languages that are in use evolve, and
our plan is to continue to improve and support Chapel in
response to feedback and requests from users. As we look to
the future, we expect to continue strengthening the language,
seeking specifically to stabilize its core features with the
goal of avoiding backward-breaking changes. Specific areas
of focus for the near-term will be the delete-free features
of the language, improved sparse array support, and support
for partial reductions. We also plan to maintain and improve
upon Chapel’s portability by targeting the OFI libfabric
interface, improving support for GPUs, and increasing our
reliance on Chapel’s LLVM back-end.

As the world of Al continues to grow, we anticipate
putting additional emphasis on features and technologies that
will address the pain points of data scientists. As part of
this focus, we anticipate making improvements to Chapel’s



interoperability features, focusing particularly on calls to
and from Python and C++. We will also be investigating
support for Chapel programs within Jupyter notebooks in
order to meet data scientists where they’re working rather
than forcing them to resort to the command-line. In addition,
we plan to improve our support for data ingestion from
common file formats, and to support richer data structures
for storing and manipulating that data, such as DataFrames,
to complement Chapel’s existing support for distributed
arrays.

We encourage users who are intrigued by Chapel’s fea-
tures and progress to give the language a try, and to share
their feedback about ways in which it could better serve
their workloads and address their productivity challenges.
We also encourage developers to partner with us in making
Chapel even more productive than it is today. Looking back
on what the Chapel community has accomplished over the
past five years, it is exciting to speculate about what the next
five will hold!
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APPENDIX A.
GENERATED CODE IMPROVEMENTS

As mentioned in Section V-B, Chapel’s generated code

has improved significantly since version 1.7, which has been
one contributing factor to the performance improvements
reported in this paper. In this appendix, we provide an
example of how Chapel’s generated code has improved by
examining one of the serial loop kernels in LCALS.

Consider the following Chapel loop which implements the

pressure_calc kernel:

for i in 0..#len {
bvc[i] = cls x (compression[i]

}

+ 1.0);

Using the Chapel 1.7 compiler, the generated code for this
loop was as follows, requiring ~170 seconds to execute:

end3 = T22;

call _tmp94 = (retb4 != T22);

T23 = call_tmp94;

while (T23) {
// get (bvc + 1)
ret58 = bvc;
ret59 = (retb58)->origin;
ret_11 = & ((ret58)->blk);
ret_x111 = x(x(ret_11) + 0);
call_tmp95 = (i3 » ret_x111);
call_tmp96 = (retb59 + call_tmp95);
ret60 = (ret58)->factoredOffs;
call_tmp97 = (call_tmp96 - ret60);
call_tmp98 = (ret58)->data;
call_tmp99 = (call_tmp98 + call_tmp97);

// get (compression + 1)

ret6l = compression;

ret62 = (ret6l)->origin;
ret_12 = &((ret6l)->blk);
ret_x112 = *(x(ret_12) + 0);

call_tmpl00 = (i3 » ret_x112);

call_tmplO0l = (ret62 + call_tmpl00);

ret63 = (ret6l)->factoredOffs;

call_tmpl02 = (call_tmplOl - ret63);
call_tmpl03 = (ret6l)->data;

call_tmpl04 = (call_tmplO3 + call_tmpl02);

// compute cls #* (*(compression + 1) + 1.0)
ret64 = x(call_tmpl04);

call_tmpl05 = (ret64 + 1.0);

call_tmpl06 = (cls * call_tmpl05);

// store computation
*(call_tmp99) = call _tmpl06;

// advance index/induction variable
call_tmpl07 = (i3 + 1);

i3 = call_tmpl07;
call_tmpl08 = (call_tmplO07
T23 = call_tmpl08;

!'= end3);

In contrast, using version 1.17, the generated code is
follows and runs in ~1 second:
_ic__ F1_high =
i = INT64(0);

coerce_tmp =
coerce_tmp2 =

((int64_t) ((len - INT64(1))));

(&bvc) ->_instance;
(coerce_tmp) ->shiftedData;
coerce_tmp3 = (&compression)->_instance;
coerce_tmp4 = (coerce_tmp3)->shiftedData;
for (i = INT64(0); ((i <= _ic__F1_high));
i += INT64 (1)) {
call_tmp2 = (coerce_tmp2 + 1i);
call_tmp3 = (coerce_tmpd + 1i);
*(call_tmp2) = ((_real6d) ((cls =*
((_real6d) ((*(call_tmp3) + 1.0))))))

}

as

’

Applying some manual edits to omit hoisted meta-data and
clean up variable names, the relation to the original loop is

made even clearer:

for (i = 0;
bvc_p_i =
compression_p_1i =
*(bve_p_i) = cls =

i <= len-1;
(bve_p + 1i);

(compression_p + 1i);
( (xcompression_p_1i)

i+=1) {

}

+ 1.0);



