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ABSTRACT
�e scale and complexity of large-scale systems continues to increase, there-
fore optimal performance of commonly used communication primitives
such as MPI point-to-point and collective operations is essential to the
scalability of parallel applications. �is work presents an analysis of the
performance of the Cray MPI point-to-point and collectives operations on
the Argonne �eta Cray XC Xeon Phi system. �e performance of key MPI
routines is benchmarked using the OSU benchmarks and from the collected
data analytical models are �t in order to quantify the performance and
scaling of the point-to-point and collective implementations. In addition,
the impact of congestion on the repeatability and relative performance
consistency of MPI collectives is discussed.

INTRODUCTION
Given the technological trends in the performance of the compute and
network components of HPC systems [6], the performance and scaling of
parallel applications on these systems is highly dependent on their com-
munication performance. Optimal implementation and usage of MPI point-
to-point and collective routines is essential for the performance of MPI
based applications. In this study the performance of MPI point-to-point and
collectives routines on the �eta supercomputer at the Argonne Leadership
Computing Facility (ALCF) is evaluated using the OSU benchmarks. �eta
is a Cray XC40 system equipped with the Cray Aries interconnect in a
Dragon�y topology and a proprietary Cray MPI implementation derived
from the open source MPICH implementation . �e compute nodes on �eta
utilize the Intel Xeon Phi Knights Landing processor.

Numerous models for MPI point-to-point performance exist and in this
work the Hockney [2] or ”postal” model is utilized to represent the latency of
MPI point-to-point operations. In an MPI library the collective routines are
implemented using a sequence of point-to-point message exchanges. Dif-
ferent message pa�erns or algorithms are used for the di�erent collectives,
and within the same MPI collective di�erent pa�erns are used for di�erent
messages sizes and node counts. Well established models for collectives
performance have been de�ned [7] and are used as a basis for ��ing analytic
models to the measured collective latency data. Additionally, the impact
of network congestion on MPI performance is quanti�ed using an MPI
benchmark that has been run repeatedly on �eta on di�erent days under
di�erent load conditions. Finally, MPI performance consistency guidelines
that have been de�ned in the literature [3, 8, 9] were tested on �eta and
the adherence of the Cray MPI implementation on �eta to these guideline
was evaluated.

THETA SYSTEM DESCRIPTION
�e ALCF Cray XC40 system �eta is an 11.7 peta-�op system that utilizes
the second generation Intel Xeon Phi Knights Landing many core processor
and the Cray Aries interconnect. A high level system description is given in
Table 1. �e system consists 4,392 compute nodes with an aggregate 281,088
cores with the nodes housed in 24 racks. �e compute nodes are connected

using a 3-tier dragon�y topology with two racks creating a dragon�y group,
resulting in a total of twelve groups.

Aries Network
�e Cray XC series utilizes the Cray Aries interconnect, a follow on to the
previous generation Gemini interconnect. Aries utilizes a system-on-chip
design that combines four network interface controllers (NIC) and a 48 port
router onto a single device which connects to four XC compute nodes via a
16x PCI-Express Gen3 connection. Each NIC is connected to two injection
ports on the router and 40 ports are available for links between routers. �e
PCIe interface provides for 8 GT/s per direction with 16 bits for a total of
16 GB/s of peak bandwidth. �e network links may be electrical or optical
with the electrical links providing 5.25 GB/s of bandwidth per direction and
the optical links providing 4.7 GB/s.

A node initiates network operations by writing across the host interface
to the NIC. �e NIC then creates packets containing the request informa-
tion and issues them to the network with packets containing up to 64 bytes
of data. Aries implements two messaging protocols: fast memory access
(FMA) and block transfer engine (BTE). FMA o�ers minimized overhead for
8-64 byte operations resulting in a fast path for single word put, get and
non-fetching atomic operations but requires the CPU be involved in the
message transfer. �is provides low latency and a fast issue rate for small
transfers. Writes to the FMA window produce a stream of put operations
each transferring 64 bytes of data. �e BTE is used for larger messages and
can result in higher achieved bandwidth and provides for asynchronous
transfers independent of the CPU, however higher messages latencies exist.
To utilized the BTE a process writes a block transfer descriptor to a queue
and the Aries hardware performs the operation asynchronously. Up to four
concurrent block transfers are supported allowing maximum bandwidth to
be achieved for smaller concurrent transfers. Block transfers have higher
latency than FMA transfers but can transfer up to 4GB without CPU in-
volvement. Aries supports atomic operations, including put operations such
as atomic add, and get operations such as conditional swaps, and maintains
a 64 entry atomic operation cache to reduce host reads when multiple pro-
cesses access the same variable. �ese network atomics are not coherent
with respect to local memory operations. Additionally, the NIC contains a
collective engine that provides hardware support for reduction and barrier

Processor core KNL (64-bit)
CPUs per node 1
# of cores per CPU 64
Max nodes/rack 192
Racks 24
Nodes 4,392
Interconnect Cray Aries Dragon�y
Dragon�y Groups 12
# of links between groups 12

Table 1: �eta – Cray XC40 system
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Figure 1: Cray MPI

operations which are optimized for latency sensitive single word operations
and supports logical, integer, 32 and 64 bit �oating point operations.

�e Aries router is organized into 48 tiles in a a 6x8 matrix. Eight tiles,
referred to as processor tiles, are associated with the four NICs with four
processor tiles shared between NIC0 and NIC1 and four shared between
NIC2 and NIC3. �e other forty tiles are network tiles which consist of an
input queue, a sub-switch, and a column bu�er. �e input queue receives
packets and sends them across a row bus to the target sub-switch in a
column. �e sub-switches receive packets from the eight input queues in a
row and switches packets to the appropriate output sending them on the
column bus to the column bu�er in the appropriate output row. �e column
bu�er collects packets from the six tiles in each column and multiplexes
them on the output. �e Aries router contains four routing tables, one
each for local minimal, local non-minimal, global minimal and global non-
minimal routes and randomly generates two minimal and non-minimal
routes for every packet. Path load information is used to select the least
loaded path.

�e XC series network is con�gured in Dragon�y topology. A dragon�y
network consists of multiple groups, with �eta having 12 groups. Within
a group, which consists of 96 Aries and up to 384 compute nodes, Aries
routers are connected in a 6x16 two-dimensional grid. In this arrangement
each Aries router is connected to each of the other Aries in the same row
and column using a single link between each router. �is provides all-to-all
connectivity between the Aries routers in the same rows and columns. �e
links within a group are electrical. In addition to the intra-group links
between rows and columns routers may provide optical inter-group links.
Multiple links may be used to connect any two groups and �eta has 12
optical links between each group. �is topology has a maximum of �ve
hops between nodes, and minimum of zero hops for minimal routes. A
zero hop route does not traverse any network links and stays within the
nodes connected directly to the same Aries router. A �ve hop route between
groups performs two hops within a group to reach a router containing a
link to the other group and two hops with the destination group to reach
the destination node. Tra�c may be routed along a minimal route between
nodes, or in the face of congestion along a non-minimal route where packets
are routed through a randomly selected intermediate router.

Cray MPI
Cray MPI is a proprietary implementation of the Message Passing Inter-
face (MPI) speci�cation, optimized for the Cray Aries interconnect. Cray
MPI is based on the open-source MPICH so�ware stack from Argonne
National Laboratory. Cray MPI relies on the Generic Network Interface
(GNI) and Distributed Shared Memory Application DMAPP APIs. �e GNI
and DMAPP APIs provide low-level communication services to user-space

so�ware stacks. �ese APIs allow system so�ware stacks to fully leverage
various hardware capabilities o�ered by the Cray Aries interconnect.

Figure 1 shows an overview of the Cray MPI so�ware stack and also
highlights speci�c components that have been optimized for Cray Intercon-
nects. Cray MPI relies on the CH3/Nemesis infrastructure to implement
MPI communication operations. On-node, inter-process communication is
implemented within the Nemesis layer. In addition to the basic on-node
communication protocols, Cray MPI also includes an Xpmem library based
implementation to optimize performance of large message MPI operations.
O�-node communication operations are implemented within the “GNI Net-
mod” layer, which directly interfaces to the low-level Cray Aries drivers and
hardware components. �is layer is designed to achieve high performance
and extreme scalability on large Cray XC supercomputers. Cray MPICH
also supports NVIDIA GPUs, a broad range of I/O optimizations and a fast
and scalable job launcher via Cray PMI.

Most MPI implementations rely on Eager and Rendezvous protocols
for implementation of small and large message MPI point-to-point opera-
tions. MPI point-to-point implementations in Cray MPI are based on highly
tuned protocols to ensure low latency and high bandwidth for communica-
tion operations on Cray XC series systems. While the Eager threshold is
typically set to 8,192 bytes, users can adjust this se�ing via environment
variables. For messages smaller than 8,192 bytes, Cray MPI dynamically
selects between two protocol implementations to optimize for memory
utilization and communication performance. Similarly, for messages larger
than 8,192 bytes, Cray MPI uses a combination of “Get” or “Put” based
protocols depending on the payload size and the processor architecture.

Cray MPI implements a highly optimized set of collectives and one-sided
Remote Memory Access (RMA) operations for Cray XC systems. RMA
operations in Cray MPI are natively implemented on top of GNI transport
APIs to o�er very low latency, high message rates and high communication
bandwidth. In addition, the RMA implementation in Cray MPI is highly op-
timized for multi-threaded usage scenarios. MPI one-sided communication
and synchronization operations can be called concurrently from multiple
user-level threads and Cray MPI o�ers “thread-hot” communication for the
communication operations [5].

Cray MPI also o�ers a set of hybrid hardware and so�ware based solu-
tions to optimize the performance of MPI collective operations for Cray
XC systems. Cray MPI leverages the Collective Engine (CE) available in
the Aries hardware to optimize small message collectives (such as global
reductions, barrier and broadcasts). In addition, Cray MPI also relies on
a range of on-node and o�-node optimizations implemented in so�ware
to improve the performance of various collectives for a broader range of
message lengths [4].

For Cray XC systems based on the Intel KNL processor, Cray MPI of-
fers a range of optimizations and features to improve the performance of
parallel applications. While the KNL architecture o�ers support for wide
vectors, the processor cores operate at slower clock frequencies and o�er
slower scalar processing capabilities. Since a signi�cant portion of MPI
is largely scalar, Cray MPI has been optimized to reduce the number of
instructions executed in various performance critical paths. While these
optimizations were speci�cally introduced for KNL, they are also helpful
in improving the performance of Cray MPI on Intel Xeon processors. In
addition, Cray MPI o�ers a range of environment variables to allow users
to manage the MCDRAM memory o�ered by the KNL architecture. �ese
features are applicable when the KNL nodes are con�gured in the “�at”
mode. Speci�cally, users can request speci�c memory a�ributes (memory
a�nity, policy and page sizes for example) for memory regions allocated by
the MPI Alloc mem and MPI Win allocate routines. In addition, users can
also manage the a�nity of certain memory regions allocated inside the Cray
MPI library. �is enables users to maximize the utilization of MCDRAM
memory for application-level data by forcing MPI’s internal memory to be
allocated on DDR.
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Figure 2: OSU latency benchmark results for multiple hops

MPI POINT-TO-POINT PERFORMANCE AND
MODEL
Cray MPI MPI Send/Recv point-to-point performance was evaluated on
�eta using the OSU point-to-point latency benchmark (osu latency) which
measures and reports one way latency using a ping point test. On �eta
network nodes may be di�erent distances or hops away from one another.
Two nodes directly connected to the same Aries router are considered to
be zero hops away from one another. Two nodes in the same group that
lie on the same column or row are one hop away from each other since
the message will traverse one network link. For nodes in the same group
that are not on the same row or column two hops, or link traversals, are
required. Finally, nodes that lie in di�erent groups can be a maximum of
�ve hops away from one another, since the message may be required to
transit two links within the group to reach the router containing a link to
the second group and then transit two more links within the destination
group to reach the intended node. Each hop a message takes adds latency.
Cray reports approximately 100 ns of latency per hop for Aries.

�e OSU latency test was performed multiple times for nodes di�erent
hop counts away from one another in order to experimentally assess the
impact of hop distance on point-to-point latency. �e results are shown in
Figure 2. While the overall latency is slightly higher for the �ve hop case it
may be seen that the number of hops a messages takes does not signi�cantly
change the message latency. Message latencies on �eta are approximately
3.3 ns for small message and increases linearly for large messages. A kink
in the latency curve may be noted centered around a message size of 8192
bytes.

Given the shape of the latency curve in Figure 2 it is expected to be well
described by a simple Hockney [2] or ”postal” model of message latency
which takes the form of

l = α + βn (1)
where l is the overall message latency, α is the zero byte message latency
and β is the latency per byte sent. An equation of this form was �t to the
OSU latency data shown in Figure 2 and resulted in the values:

α = 3.3
β = 0.0013

�e resulting curve is shown in Figure 3. �e equation may be seen to be a
good �t to the experimental data for large and small messages but diverges
from the experimental results in the region centered around a message
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size of 8192 bytes. �is is the point where the two-sided MPI messaging
protocol in Cray MPI switches from eager to rendezvous. For comparison
the results of the OSU one sided put latency benchmark (osu put latency)
are also plo�ed. MPI Put calls do not contain a similar protocol transition
and the resulting benchmark results produce a smoother curve without
the kink seen in the two-sided results. �e OSU put results show close
agreement with equation (1) across the full range of message sizes. �is
provides evidence that the kink in the OSU two-sided latency data from
Figure 2 is a result of the underlying eager to rendezvous protocol switch.
While Equation (1) fails to capture the impact of the protocol switch it
does accurately model the capabilities of the underlying network and the
performance of Cray MPI two-sided point-to-point messaging in regions
away from the location of the protocol switch.

�e point-to-point messaging on �eta is optimized to use either the
Eager or Rendezvous protocols depending on the size of the message sent.
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Algorithm Range Cost

Binomial small messages or
small rank count l = (α + βn)loд2(p)

Sca�er with
doubling allgather

medium messages
and power of 2 ranks l = 2αloд2(p) + 2nβ ( p−1

p )

Sca�er with
ring allgather

all other message
or rank counts

l = α (loд2(p) + p − 1)
+2nβ ( p−1

p )
Table 2: MPICHMPI Bcast algorithms and latency estimates

�e Cray MPI implementation supports two Eager protocols, referred
to as E0 and E1, and two Rendezvous protocols, referred to as R0 and
R1. In the E0 protocol, a posted send executes immediately by deposit-
ing the message into a mailbox at the receiver’s end. On �eta, E0 is
used for message sizes of 0 bytes to as high as 8192 bytes. �e default
max value is set at 8144 bytes. �e max size for E0 can be set using
the MPICH GN I MAX VSHORT MSG SIZE environment variable.
�e allowable range for this variable is 32 bytes to 8192 bytes, and it can
be changed in 16 byte increments. Similarly, the environment variable
MPICH GN I MAX EAGER MSG SIZE controls the E1 window. �e
allowable range is 0 to 131072 bytes, and it can be changed in 1024 byte
increments. �e default is set at 8192 bytes. �e R0 channel uses a GET
protocol, and the size window is controlled by the environment variable
MPICH GN I GET MAXSIZE . �e range is 16K to 16M bytes change-
able in 1024 byte increments. �e default is set at 4MB. By default, all
messages greater than 4MB are transferred under the R1, PUT based seman-
tics, protocol.

�e default se�ings for the eager and rendezvous cuto�s were used to
produce the results in Figure 2. It is therefore of interest to examine how the
E0, E1, R0, and R1 protocol cuto�s might impact these measured latencies.
�e results are depicted in Figure 4. As expected, switching from E0 to E1
for message sizes below 8192 bytes leads to signi�cantly increased latencies.
Similarly, replacing R0 in its default range with either E1 or R1 leads to
increased latencies. Overall, R1 is found to have the highest latencies, while
E1 is found to have latencies between the R0 and R1 numbers.

MPI COLLECTIVES PERFORMANCE DATA
AND MODELS
Parallel applications make use of both MPI point-to-point and collective
routines. MPI collective routines are internally implemented using a series
of point-to-point message exchanges based on a variety of collective im-
plementation pa�erns. Di�erent algorithms, or pa�erns of point-to-point
message exchange, are utilized for each MPI collective routine and o�en the
same MPI collective will utilize one of several di�erent algorithms based
on the message size and the number of ranks in the communicator. As
an example, inspection of the open source MPICH v3.2 library shows that
it implements MPI Bcast using three di�erent algorithms depending on
the message size and number of ranks. A brief description of the three
algorithms is given in Table 2 along with the conditions under which a
given algorithm is used. Cost or latency estimates for MPI collective imple-
mentations have been developed [7] using point-to-point message latencies
modeled with the Hockney model. �ese cost estimates for the algorithms
used for MPI Bcast are also shown in Table 2. Cray provides a propriety
MPI library that is based on MPICH but includes optimized MPI collective
routines. �e collectives routines that have been modi�ed and optimized in
the Cray MPI implementation are shown in the list below:

• MPI Allreduce
• MPI Bcast
• MPI Barrier
• MPI Alltoall

Routine Relative Call Frequency
Allreduce 5000
Bcast 2500
Barrier 500
Alltoall 500
Alltoallv 250
Reduce 75
Allgatherv 25
Other collectives <1

Table 3: Relative frequency of MPI collective routine calls
by applications run on ALCF systems

• MPI Alltoallv
• MPI Allgather
• MPI Allgatherv
• MPI Gatherv
• MPI Sca�erv
• MPI Igatherv

For single word messages the routines MPI Allreduce, MPI Barrier, and
MPI Bcast can make use of the hardware collectives engine in the NIC
for further performance improvements when the Cray DMAPP library is
linked with the application. While the Cray collective implementations
are proprietary, and therefore the speci�cs of the algorithms cannot be
examined, the overall performance of the collectives is expected to have
similar characteristics to those in MPICH with loд2(p) dependence on the
number of processors, p , and linear dependence on the message size, n.

While MPI provides over a dozen collective routines some routines are
found be used signi�cantly more frequently in typical HPC workloads. Table
3 shows the relative frequency of collective calls made by a representative
sample of applications running on the Argonne Leadership Computing
Facilities Blue Gene/Q system Mira over a two year period. �e frequency
of the calls in the workload has been normalized relative to that of the less
frequently called routines. �e data shows that the most heavily utilized
routines are called hundreds to thousands of times more frequently by
applications in the workload than are the least commonly used routines.
�e performance on �eta of three of the mostly commonly used routines,
MPI Allreduce, MPI Bcast, and MPI Barrier is evaluated below.
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�e results of running the OSU MPI Barrier benchmark (osu barrier) on
�eta across a node count ranging from 16 to 2048 are shown in Figure 5.
�ese result were obtained using one rank per node and with no other jobs
running on the system. �e horizontal axis is plo�ed using a loд2 scale and
the latency of the barrier operation shows a distinct log dependence on the
number of nodes. An equation of the form

l = α + β · loд2(p) (2)

was �t and the values for α and β were determined to be

α = −13.5
β = 9.87

�e corresponding model line is plo�ed in Figure 5 and shows very good
agreement with the benchmark results.
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�e results of running the OSU MPI Bcast benchmark (osu bcast) on
�eta are shown in Figure 6. �e horizontal axis shows the number of
bytes in the broadcast message and the di�erent lines represent MPI Bcast

latencies for di�erent numbers of nodes. �e general shape of the individual
latency curves is similar to that of the ping-pong latency results shown
in Figure 2, including the kink at the switchover point between the eager
and rendezvous protocols. Similar to MPI Barrier the dependence on the
number of nodes has a loд2 relation. An equation of the form

l = (α + β · n)loд2(p) (3)

was �t and the values for α and β were determined to be

α = 4.6
β = 0.0016

Figure 7 shows the model equation compared to the benchmark results.
Only three three node counts are shown for the purposes of clarity but
the results are similar across the full node range. Good agreement may be
observed for lower and higher message sizes with appreciable error in the
middle of the range, which is a�ributable to the protocol switch from eager
to rendezvous. At higher node counts the protocol switch occurs at lower
messages sizes which accounts for the le�ward shi� of the kink for the 4096
node curve.
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Finally the results of running the OSU MPI Allreduce benchmark (osu allreduce)
on �eta are shown in Figure 8. �e horizontal axis shows the number
of bytes in the message and the di�erent lines represent MPI Allreduce
latencies across di�erent numbers of nodes. Again the general shape of the
individual latency curves show a linear dependence on the number of bytes
and includes the kink at the switchover between the eager and rendezvous
protocols. Similar to MPI Bcast the dependence on the number of nodes
has a loд2 relation. An equation of the form

l = γ + δ · n + (α + β · n)loд2(p) (4)

was �t and the equation parameters were determined to be

γ = −24
δ = 0.0012
α = 13.6
β = 0.00012

Figure 9 shows the model equation compared to the benchmark results. Only
�ve node counts are shown for the purposes of clarity but the results are
similar across the full node range. Good agreement may again be observed
for lower and higher message sizes with appreciable error in the middle of
the range a�ributable to the protocol switch.
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IMPACT OF NETWORK CONGESTION
�e MPI point-to-point and collective results shown earlier were obtained
without interference from other jobs running on the system. An earlier study
[1] has shown the impact of network congestion on the latency of collective
operations on �eta. In this work the OSU MPI Allreduce benchmark
(osu allreduce) was run repeatedly on di�erent days in di�erent jobs. For
comparison the same benchmark was run in an isolated environment where
no other job are running on the system. Figure 10 shows the latency for
MPI Allreduce with a message size of 1M doubles on 128 processes (using 1
process per node) on �eta. Within each job, the collective call is repeatedly
run 100 times; each box in the �gure represents the variability across those
100 runs. �e run-to-run variability for di�erent days is shown in the
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duce collectives with di�erent node sizes for the 1MB mes-
sage size

di�erent boxes, with the horizontal axis representing di�erent days. �e
bo�om and top of the box are the 25th and 75th percentile respectively, and
the band near the middle of the box is the 50th percentile, or the median.
�e middle horizontal line shows the median of medians, and the other
four horizontal lines show +/-5% and +/-10% di�erence from the median
of medians. An overall variation in latency of 35% was observed, with
the lowest latency occurring when no other jobs were present. Latencies
variations for smaller message sizes were found to be even higher.

Performance consistency guidelines for MPI collectives have been estab-
lished [3] and these guidelines may be used to evaluate the performance
consistency of MPI collectives in both isolated and congested network envi-
ronments. �ese performance guidelines de�ne a performance expectation
based on semantic functionality of the collectives, for example, one per-
formance guideline states that a call to MPI Allgather on n data elements
should ”not be slower” than a combination of a call to MPI Gather with n
data elements followed by a call to MPI Broadcast with n data elements. An-
other guidelines says that a many-to-one collective should always perform
be�er than a semantically related many-to-many counterpart, for example,
an MPI Gather should have less latency than an MPI Allgather.

When run on an unloaded system no signi�cant MPI performance con-
sistency violations were observed for the Cray MPI on �eta. However
with other jobs present regular performance violations occurred. While the
precise details of the violations vary from run to run, on a loaded system the
same violations appear regularly, possibly indicating that some collective
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MPI Allgather ≤ Alltoall 7 7 7 7 7 7 7 7

MPI Allgather ≤ Allreduce 7 7

MPI Allgather ≤ Gather + Bcast 7 7 7 7 7 7 7 7 7 7

Table 4: Performance guideline violations for Allgather in Cray MPI using 256 processes (1 process per node)

implementations are more susceptible to the impact of network conges-
tion than others. As an example of the types of violations observed on a
loaded system, the performance of two many-to-one collectives and their
related many-to-many counterparts on 256 processes is shown in Figure
11. �e benchmarks were run on 256 nodes with 1 process per node. A
few performance guideline violations may be observed; MPI Gather has
more latency than MPI Allgather for certain message sizes, and the scaling
of MPI Allgather with increasing message size is inconsistent. �e perfor-
mance guideline violations for the Allgather across di�erent message sizes
on 256 nodes are presented in Table 4. �e performance of the Allgather is
compared with the di�erent collective combinations that essentially achieve
the same functionality. Allgather has higher latency than Alltoall. �is is
true across all the node sizes tested for messages sizes between 4KB and
512KB. Figure 12 shows the scaling of few of the MPI collectives (Gather,
Allgather, Reduce, Allreduce) for a speci�c message size (1MB) with increas-
ing node size. While the scaling curve for Allgather has a consistent slope,
the scaling curve for Gather is inconsistent with a spike at 64 nodes.

CONCLUSION
MPI point-to-point latency on the Cray XC40 system �eta may be well
represented by a simple Hockney ”postal” model. �e minimum message
latency for one or two sided point-to-point messages was found to be
approximately 3.3 ns and the latency was linearly dependent on the message
size for larger messages. �e model represents the MPI latency accurately
for most message sizes, except in the region close to the switch from an
eager to a rendezvous protocol which occurs near 8K bytes. �e Hockney
models was found to be highly accurate for MPI Put latencies which do not
undergo a protocol switch. �e protocol transition points may be altered
through environment variable se�ings, but no improvements in latency
were found for di�erent se�ings. �e Cray XC Aries Dragon�y topology
has a distance between nodes of zero to �ve network hops, however the
impact of the number of hops on the measured latency was found to be
minimal.

MPI libraries implement collective calls using a variety of underlying
point-to-point message pa�erns. Di�erent collectives utilize di�erent pat-
terns and individual collective calls may utilize several di�erent pa�erns for
di�erent rank and byte counts. �e collective implementations in the open
source MPICH library were examined and found to have well established
latency models which generally exhibit a loд2 dependence on the number
of ranks and a linear dependence on message size. Cray MPI provides opti-
mized collectives implementations for a number of collective routines. �e
latency models for these routines could not be a priori determined due to
the proprietary nature of the implementation. While MPI de�nes over a
dozen distinct collective calls, analysis of a representative workload shows
that MPI Allreduce, MPI Bcast, MPI Barrier, and MPI Alltoall are the most
frequently used, and are called hundreds to thousands of times more o�en
than other collective routines. �e OSU MPI benchmarks were used to
determine the latency of MPI Allreduce, MPI Bcast, and MPI Barrier on
�eta and models were ��ed that accurately represent the latencies of these
routines for message sizes away from the eager to rendezvous transition
point. Much like the MPICH collectives, the latencies of the Cray MPI

collectives that were studied were found to have a loд2 dependence on the
number of ranks and a linear dependence on the messages size.

�e results of previous studies on �eta that evaluated the impact of
network congestion on collectives performance were discussed, with rele-
vant results highlighted showing that collective latencies can vary by 35%
or more due to congestion. Additionally, earlier evaluations of the relative
performance consistency of MPI collectives were updated with results from
runs performed without network contention from other jobs. �ese results
showed that most of the performance inconsistencies previously observed
were not present without network contention. However inconsistencies
have been found to persistently occur when network contention is present,
indicating that some collective algorithm implementation pa�erns may be
more susceptible to the impact of congestion than others.
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