
PERFORMANCE 
EVALUATION OF MPI ON 
CRAY XC40 XEON PHI 
SYSTEM

SCOTT PARKER, SUDHEER CHUNDURI, KEVIN HARMS – ARGONNE NATIONAL LAB
KRISHNA KANDALLA - CRAY 

May 22, 2018



§ Quantify system MPI performance:
– Baseline performance of MPI on Theta
– Impact of various tunable MPI parameters
– Track MPI performance over time to

• monitor system health
• impact of software updates

§ Develop simplified models of MPI performance to:
– Assist with application performance analysis and tuning
– Provide input for application development and design
– Project application performance on future system

3

MPI PERFORMANCE ANALYSIS AND MODELING FOR THETA



§ System:
– Cray XC40 system
– 24 racks
– 4,392 compute nodes/ 281,088 cores
– 11.7 PetaFlops peak performance
– Accepted Fall 2016

§ Processor:
– Intel Xeon Phi, 2nd Generation (Knights Landing) 7230
– 64 Cores
– 1.3 GHz base / 1.1 GHz AVX / 1.4-1.5 GHz Turbo

§ Memory:
– 16 GB MCDRAM per node
– 192 GB DDR4-2400 per node 
– 913 TB of total system memory

§ Network:
– Cray Aries interconnect
– Dragonfly network topology
– 12 groups

§ Filesystems:
– Project directories: 10 PB Lustre file system
– Home directories: GPFS

THETA



ARIES DRAGONFLY NETWORK

Aries Router:
• 4 Nodes connect to an Aries
• 4 NIC’s connected via PCIe
• 40 Network tiles/links
• 4.7-5.25 GB/s/dir per link

Connections within a group:
• 2 Local all-to-all dimensions

• 16 all-to-all horizontal
• 6 all-to-all vertical

• 384 nodes in local group

Connectivity between groups:
• Each group connected to 

every other group
• Restricted bandwidth between 

groups

Theta has 12 groups with 12 links between each group



Collectives RMA Pt2Pt

Application

MPI Interface

MPICH

CH3 Device

Xpmem

Nemesis NetMod Interface

GNIOFIMXMPortals4TCP

Cray specific 
components

PM
I Nemesis 

Jo
b 

la
un

ch
er

ROMIO

ADIO

Lus. GPFS ...

CH3 Interface

I/O Enhancements

GPUs

DMAPP

6

CRAY MESSAGING SOFTWARE STACK

Cray MPI is derived from MPICH



www.anl.gov

MPI POINT-TO-POINT PERFORMANCE AND MODELS



MPI SEND AND RECEIVE LATENCY 

8

OSU PtoP MPI Latency on Theta

1

2

4

8

16

32

64

128

256

512

1 4 16 64 256 1024 4096 16384 65536 262144 1048576

La
te
nc
y	(
us
)

Bytes

0	Hop
1	Hop
2	Hop
5	Hop

• Latency tested for pairs 
placed different distances 
or hops apart

• 0 – on same Aries
• 1 – same row/col
• 2 – same groups
• 5 – between groups

• Hop count does not 
strongly influence latency



MPI SEND AND RECEIVE MODEL

10

OSU PtoP MPI Latency on Theta

1

2

4

8

16

32

64

128

256

512

1024

1 4 16 64 256 1024 4096 16384 65536 262144 1048576 4194304

La
te
nc
y	
(u
s)

Bytes

Data

Model

PUT	one-sided

𝑇 = 𝛼 + 𝛽 & 𝑛
𝑛 = 𝑏𝑦𝑡𝑒𝑠
∝= 3.3
𝛽 = 0.0013Eager to Rendezvous switch

Simple (Hockney) model:

Eager to rendezvous 
protocol switch believed 
to be producing “bump” 
in latency

One sided PUT latency 
results lack “bump” and 
are close to the model

Model fits well for low 
and high byte counts



11

CRAY MPICH EAGER AND RENDEZVOUS PROTOCOLS

R0 - Rendezvous R1 - Rendezvous

E0 - Eager E1 - Eager



1

10

100

1000

Ti
m

e 
-u

s

Message Size in Bytes

OSU Latency test - Eager versus Rendezvous

System Defaults

VSHORT MAX = 32 EAGER MAX = 131072

EAGER MAX = 32

EAGER MAX = 32 MAX BUFS

EAGER MAX = 131072 MAX Buffers

E0 E1

12

IMPACT OF EAGER AND RENDEZVOUS SETTINGS



www.anl.gov

MPI COLLECTIVES PERFORMANCE AND MODELS



14

MOST FREQUENTLY CALLED COLLECTIVE ROUTINES

Routine Relative Call 
Frequency

Allreduce 5000
Bcast 2500
Barrier 500
Alltoall 500
Alltoallv 250
Reduce 75
Allgatherv 25
Everything else <1

Approximate relative call frequency from ALCF applications workload

Collectives
Studied



§ MPI collective routines are implemented using a series of point-to-point messages
§ A variety of different algorithms are used for different collectives and within collectives for 

different messages sizes and rank counts
§ There all well established time estimates for collective algorithms based on point-to-point 

models
§ MPICH MP_Bcast example uses:

– Binomial tree for small messages or small processor counts
• 𝑇 = (∝& +𝛽 & 𝑛)𝑙𝑜𝑔7 𝑝

– Scatter followed by recursive doubling allgather for messages sizes below set threshold and power 
of two ranks
• 𝑇 = 2 &∝& 𝑙𝑜𝑔7 𝑝 + 2 & 𝑛 & 𝛽 & :;<

:
– Scatter followed by a ring allgather for everything else

• 𝑇 =	∝& (𝑙𝑜𝑔7 𝑝 + 𝑝 − 1) + 2 & 𝑛 & 𝛽 & :;<
:

15

MPICH COLLECTIVES IMPLEMENTATION



Software Optimizations: 
• MPI_Allreduce
• MPI_Bcast
• MPI_Barrier
• MPI_Alltoall, MPI_Alltoallv
• MPI_Allgather, MPI_Allgatherv
• MPI_Gatherv
• MPI_Scatterv
• MPI_Igatherv

Hardware Collective Engine Optimization: 
• Applicable for small message MPI_Bcast, MPI_Allreduce, MPI_allreduce, and MPI_Barrier
• Requires using DMAPP to enable the Aries HW Collective Engine
• MPI using just the standard uGNI library does not provide hardware acceleration

16

CRAY OPTIMIZED COLLECTIVES



MPI BARRIER PERFORMANCE

17

OSU MPI Barrier Benchmarks

0

10

20

30

40

50

60

70

80

90

100

16 32 64 128 256 512 1024 2048

La
te
nc
y	(
us
)

Nodes



18

MPI BARRIER MODEL

𝑇 = 𝛼 + 𝛽 & 𝑙𝑜𝑔7(𝑝)

𝑝 = 𝑛𝑜𝑑𝑒𝑠
∝= −13.5
𝛽 = 9.87

0

10

20

30

40

50

60

70

80

90

100

16 32 64 128 256 512 1024 2048

La
tc
ny

	(u
s)

Nodes

Data

Model



MPI BROADCAST PERFORMANCE

19

OSU MPI Bcast Benchmarks

8

16

32

64

128

256

512

1024

2048

4096

1 4 16 64 256 1024 4096 16384 65536 262144 1048576

La
te
nc
y	(
us
)

Bytes

16	nodes 32	Nodes 64	Nodes

128	Nodes 256	Nodes 512	Nodes

1024	Nodes 2048	Nodes 4096	Nodes



20

MPI BROADCAST MODEL

𝑇 = (𝛼 + 𝛽 & 𝑛)𝐿𝑜𝑔7(𝑝)

𝑛 = 𝑏𝑦𝑡𝑒𝑠
𝑝 = 𝑛𝑜𝑑𝑒𝑠
∝= 4.6
𝛽 = 0.0016

1

2

4

8

16

32

64

128

256

512

1024

2048

4096

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576

La
te
nc
y	
(u
s)

Bytes

Data	- 16	Nodes

Model	- 16	nodes

Data	- 256	Nodes

Model	- 256	Nodes

Data	- 4096	nodes

Model	- 4096	Nodes

Good fit at low and high
byte ranges.

Errors centered around 
point of protocol switch



MPI ALLREDUCE PERFORMANCE

21

OSU MPI Allreduce Benchmark

16

32

64

128

256

512

1024

2048

4096

4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576

La
te
nc
y	(
us
)

Bytes

16	Nodes 32	Nodes 64	Nodes

128	Nodes 256	Nodes 512	Nodes

1024	Nodes 2048	Nodes 4096	Nodes



MPI ALLREDUCE MODEL

22

OSU MPI Allreduce Benchmark

16

32

64

128

256

512

1024

2048

4096

4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576

La
te
nc
u	
(u
s)

Bytes

Data	16	Nodes

Model	16	Node

Data	64	Node

Model	64	Nodes

Data	256	Nodes

Model	256	Nodes

Data	1024	Nodes

Model	1024	Nodes

Data	4096	Nodes

Model	4096	Nodes

𝑇 = 𝛾 + 𝛿𝑛+ 𝛼 + 𝛽𝑛 𝑙𝑜𝑔7 𝑝
𝑛 = 𝑏𝑦𝑡𝑒𝑠
𝑝 = 𝑛𝑜𝑑𝑒𝑠

∝= 13.6
𝛽 = 0.00012

𝛾 = −24
𝛿 = 0.0012

Good fit at low and high
byte ranges.

Errors centered around 
point of protocol switch



www.anl.gov

CONTENTION, CONSISTENCY, AND VARIABILITY



§ Jobs on Theta typically consist of nodes distributed randomly across the network
§ The Dragonfly topology on the XC40 does not provide traffic isolation between jobs
§ Previously shown results were produced with no other network activity present and therefore 

represent a ”best case” result
§ When multiple jobs are run concurrently there may be contention for network resources that 

reduces the network performance obtained by an individual job
§ Theta has 12 optical network links between groups or ~56 GB/s of bi-directional bandwidth 

between any two groups
§ The nodes in a group have a total network injection capacity of ~4 TB/s
§ Traffic from multiple jobs between any two groups can lead to congestion due to limited inter-

group bandwidth
§ Indirect routing can alleviate some congestion impact

24

NETWORK CONTENTION



VARIABILITY ON THETA
§ Identified four causes of variability (Chunduri, et al. “Run-to-run Variability on Xeon Phi Based Cray XC Systems”. SC17, 2017)

o Core level variability due to OS noise
o Tile level variability due to shared resource contention on tile (L2)
o Memory mode variability due to cache mode page conflicts
o Network variability due to shared network resources

§ Variability between runs on Theta:
– frequently 15% or greater
– can be up to 100%

25



NETWORK-LEVEL VARIABILITY
• MPI_Allreduce with	8	MB	message	on	128	nodes
• Repeated	100	times	within	a	job
• Measured	on	several	days
- Changes	in	node	placement	and	Job	mix

• Isolated	system	run:	
- <	1% variability	(best	observed)

• Variability	is	around	35%
- Much	higher	variability	with	smaller	message	sizes	

(not	shown	here)
• Each	box	shows	the	median,	IQR	(Inter-Quartile	Range)	
and	the	outliers

26

128	nodes	Allreduce 8MB	64	PPN

●

●●●

●

●

●

●●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●●

●●

●

●
●

●
●
●

●●

●

0.32

0.36

0.40

Defa
ult

Date

La
te

nc
y 

(s
)

variable
Ideal

02−01−13

02−03−20

02−05−00

02−05−17

02−07−01

02−07−15

02−08−21

02−09−21

02−10−13

02−11−13

02−12−13

02−13−16

02−14−22

02−15−20

02−16−17

02−17−04

02−17−13

02−17−17

02−18−15

02−20−03

02−21−02

02−21−17

02−22−15

02−23−17

02−24−21

02−25−17

02−26−17

03−02−04

name
−10%

−5%

+%5

+10%

MoM

128−Allreduce−64−1048576

La
te
nc
y(
s)

Different	jobs



MPI PERFORMANCE CONSISTENCY

§ Performance guidelines for the expected behavior of MPI collectives 
have been defined 
§ Jesper Larsson Träff, William D Gropp, and Rajeev Thakur. 2010. Self-consistent MPI performance guidelines. IEEE 

Transactions on Parallel and Distributed Systems 21, 5 (2010), 698–709.

§ A performance guideline usually defines a common-sense performance 
expectation based on sematic functionality of the collectives,
§ MPI_Allgather on n data elements should "not be slower" than a 

combination of a call to MPI_Gather with n data elements followed by 
a call to MPI_Broadcast with n data elements.

27



MPI PERFORMANCE CONSISTENCY

28

(I) Subdividing 
messages into 
multiple smaller 
messages 

(II) Replacing an MPI 
function with a similar 
function that provides 
additional semantic 
guarantees 

(III) Replacing a specific 
MPI operation with a 
more general operation 
by which the same 
functionality can be 
expressed 

(IV) Replacing a 
collective by a sequence 
of other collectives 
implementing the same 
functionality 

Should not reduce 
the communication 
time

Performance 
Consistency 
Guidelines



MPI PERFORMANCE CONSISTENCY RESULT ON THETA

29

• Collectives performance is generally found to be consistent when consistency tests 
are run with no other jobs on the machine

• Persistent inconsistencies arise when multiple jobs are running concurrently 
• Example performance consistency violations found for Allgather:

On 256 Nodes



SUMMARY
§ Simple model for point-to-point communication provides good accuracy except 

where protocol shifts occur in the underlying implementation (1-256k bytes)
§ Some collectives (Allreduce, Bcast, Barrier, Alltoall) used significantly more 

frequently than other on ALCF systems
§ Collective models capture overall collective performance trends well but errors 

are present in region where point-to-point protocols change
§ Collective performance can vary be more than 35% due to congestion
§ Some collectives performance consistency violations observed in the presence 

of congestion

30



www.anl.gov

QUESTIONS?


