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Abstract—In this paper we present performance results from
Isambard, the first production supercomputer to be based on
Arm CPUs that have been optimised specifically for HPC. Isam-
bard is the first Cray XC50 ‘Scout’ system, combining Cavium
ThunderX2 Arm-based CPUs with Cray’s Aries interconnect.
The full Isambard system will be delivered in the summer of
2018 when it will contain over 10,000 Arm cores. In this work
we present node-level performance results from eight early-
access nodes that were upgraded to B0 beta silicon in March
2018. We present node-level benchmark results comparing
ThunderX2 with mainstream CPUs, including Intel Skylake
and Broadwell, as well as Xeon Phi. We focus on a range
of applications and mini-apps important to the UK national
HPC service, ARCHER, as well as to the Isambard project
partners and the wider HPC community. We also compare
performance across three major software toolchains available
for Arm: Cray’s CCE, Arm’s version of Clang/Flang/LLVM,
and GNU.
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I. INTRODUCTION

The development of Arm processors has been driven by
multiple vendors for the fast-growing mobile space, resulting
in rapid innovation of the architecture, greater choice for
systems companies, and competition between vendors.

The FP7 Mont-Blanc project used Arm processors de-
signed for the mobile space to investigate the feasibility of
using the Arm architecture for workloads relevant to the
HPC community. Mont-Blanc’s early results were encour-
aging, but it was clear that chips designed for the mobile
space could not compete with HPC-optimised CPUs without
further architecture and implementation developments. As
a result, Cavium will release its first generation of HPC-
optimised, Arm-based CPUs in 2018.

In response to these developments, ‘Isambard’ has been
designed to provide the first Arm-based Cray XC50 ‘Scout’
system as part of the UK’s national HPC service1. Cavium
ThunderX2 processors will form the basis of the system;
these processors use the Armv8 instruction set but have
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1http://gw4.ac.uk/isambard/

been designed specifically for HPC workloads. ThunderX2
CPUs are noteworthy in their focus on delivering class-
leading memory bandwidth: each 32-core CPU uses eight
DDR4 memory channels to deliver STREAM triad memory
bandwidth in excess of 250 GB/s. The Isambard system rep-
resents a collaboration between the GW4 Alliance (formed
from the universities of Bristol, Bath, Cardiff and Exeter)
along with the UK’s Met Office, Cray, Arm and Cavium,
and funded by EPSRC. Although Isambard is due to arrive in
July 2018, this paper will present results using the project’s
early-access nodes, delivered in October 2017 and upgraded
to B0 beta silicon in March 2018. These results will be
among the first published for the production silicon of the
Arm-based Cavium ThunderX2 processor, and the first using
Cray’s CCE tools for Arm.

The results we shall present will focus on single node,
dual-socket performance in comparison to other state-of-
the-art processors found in the majority of supercomputers
today. These results will also lay the foundations for a future
study of at-scale, production style workloads running on
Isambard, which will utilise the Cray Aries interconnect.

The top ten most heavily used codes that are run on
the UK’s national supercomputer, ARCHER2 (a Cray XC30
system), along with a selection of mini-apps, proxy applica-
tions, and applications from project partners, provide good
representation of the styles of codes used by today’s HPC
community [1]. As such, they provide an ideal vehicle for
which to benchmark the new Cavium ThunderX2 architec-
ture, and the Isambard system presents a unique opportunity
for such comparative benchmarking. Its heterogeneous de-
sign enables direct comparison between Cavium ThunderX2
CPUs and the best of today’s mainstream HPC hardware,
including x86 Intel Xeon and Xeon Phi processors, and
NVIDIA P100 GPUs.

II. ISAMBARD: SYSTEM OVERVIEW

The most exciting aspect of the Isambard system will be
the full cabinet of XC50 ‘Scout’ with Cavium ThunderX2,
delivering over 10,000 high-performance Armv8 cores. Each

2https://www.archer.ac.uk



node includes two 32-core ThunderX2 processors running at
2.1 GHz. The processors each have eight 2666 MHz DDR4
channels, yielding a STREAM triad result of over 250 GB/s
per node. The XC50 Scout system packs 4 dual-socket nodes
into each blade, and then up to 46 such blades in a single
cabinet. Pictures of a Scout blade and an XC50 cabinet are
shown in Figure 1.

The results presented in this paper are based on work
performed at two hackathons, using the Isambard early-
access nodes. These early-access nodes use the same Cavium
ThunderX2 CPUs as the full Isambard XC50 system, but in a
Foxconn whitebox form-factor. These nodes were upgraded
to B0 beta silicon in March 2018 and were run in dual-
socket, 32-core, 2.2 GHz configuration for the purposes
of gathering the data presented herein. Each node includes
256 GB of DDR4 DRAM and runs SLES 12 SP3, with a
cut-down set of the Cray Programming Environment (CPE).
This subset of CPE includes all the elements we needed
for benchmarking the ThunderX2 CPUs: the Cray Compiler,
CCE, performance libraries and analysis tools. In addition
we used Arm’s LLVM-based compiler, and GNU. It should
be noted that all of these compilers are still relatively early
in their support for HPC-optimised Arm CPUs, given that, at
the time of this work, production hardware has yet to ship.
Details of which versions of these tools were used are given
in Table II.

III. BENCHMARKS

A. Mini-apps

In this section we give a brief introduction to the mini-
apps used in this study. The mini-apps themselves are all per-
formance proxies for larger production codes, encapsulating
the important performance characteristics such as floating
point intensity, memory access and communication patterns
of their parent application, but without the complexities that
are often associated with ‘real’ codes. As such, they are
useful for performance modelling and algorithm characteri-
sation, and can demonstrate the potential performance of the
latest computer architectures.

STREAM: McCalpin’s STREAM has long been the
gold-standard benchmark for measuring the achievable sus-
tained memory bandwidth of CPU architectures [2]. The
benchmark is formed of simple element-wise arithmetic
operations on long arrays (vectors), and for this study we
consider the Triad kernel of a(i) = b(i) + αc(i). The
achieved memory bandwidth is easily modelled as three
times the length of the arrays divided by the fastest runtime
for this kernel. Arrays of 225 double-precision elements were
used in this study, with the kernels run 200 times.

CloverLeaf: The CloverLeaf hydrodynamics mini-app
solves Euler’s equations of compressible fluid dynamics,
under a Lagrangian-Eulerian scheme, on a two-dimensional
spatial regular structured grid [3]. These equations model the
conservation of mass, energy and momentum. The mini-app

is an example of a stencil code and is classed as memory
bandwidth–bound. CloverLeaf is regularly used to study
performance portability on many different architectures [4].
The bm_16 test case consists of a grid of 3840×3840 cells.

TeaLeaf: The TeaLeaf heat diffusion mini-app solves
the linear heat conduction equation on a spatially decom-
posed regular grid, utilising a five point finite difference
stencil [5]. A range of linear solvers are included in the
mini-app, but the baseline method we use in this paper is
the matrix-free conjugate gradient (CG) solver. TeaLeaf is
memory bandwidth–bound at the node level, but, at scale,
the solver can become bound by communication. For this
study, the focus is on single-node performance, and so we
used the bm_5 input deck, which utilises a 4000 × 4000
spatial grid.

SNAP: SNAP is a proxy application for a modern
deterministic discrete ordinates transport code [6]. As well
as having a large memory footprint, this application has
a simple finite difference kernel which must be processed
according to a wavefront dependency, which introduces as-
sociated communication costs. The kernel itself is limited by
the performance of the memory hierarchy [7]. Benchmarking
SNAP is somewhat challenging, as the spatial problem size
must divide evenly by the number of MPI ranks (often core
count). Therefore, a fixed problem size per core was used
for this study with a spatial grid of 1024 × 2 × 2 per MPI
rank, 136 angles per octant and 32 groups, with one MPI
rank per physical core. The footprint of the angular flux
solution in this case is just over 1 GB, which is roughly in
line with typical ARCHER usage [1]; note that this requires
use of the cache mode on the Knights Landing processor
due to the limited 16 GB capacity of MCDRAM on that
architecture. The figure of merit for this application is the
grind time, which is a normalised value taking into account
differing problem sizes.

Neutral: The Monte Carlo neutral particle transport
mini-app, Netural, was written to explore the challenges
of such algorithms on advanced architectures, disproving
the old adage that Monte Carlo codes are ‘embarrassingly
parallel’ [8]. The mini-app takes a mesh-based approach, and
so there is a tension with regard to memory access of mesh
and particle data, resulting in memory latency becoming the
performance-limiting factor. The csp input included with
the mini-app was used for this study, and the benchmark
was run using OpenMP.

B. Applications

The Isambard system has been designed to explore the
feasibility of an Arm-based system for real HPC workloads.
As such, it is important to ensure that the most heavily
used codes are tested and evaluated. To that end, eight real
applications have been selected for this study taken from
the top ten most used code on ARCHER, the UK National
Supercomputer [1]. These applications represent over 50%
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Figure 1. Isambard hardware. Pictures © Simon McIntosh-Smith, taken at SC’17.

of the usage of the whole supercomputer. Therefore, the
performance of these codes on any architecture captures the
interests of a significant fraction of UK HPC users, and any
changes in the performance of these codes directly from the
use of different architectures is important to quantify.

CP2K: The CP2K code3 simulates the Ab-initio elec-
tronic structure and molecular dynamics of different systems
such as molecular, solids, liquids, and so on. Fast Fourier
Transforms (FFTs) form part of the solution step, but it is
not straightforward to attribute these as the performance-
limiting factor of this code. The memory bandwidth of the
processor and the core count both have an impact. The
code already shows sub-linear scaling up to tens of cores.
Additionally, the performance of the code on a single node
does not necessarily have the same performance-limiting
factors as when running the code at scale. We will need
the full Isambard XC50 system to test these effects, but in
the meantime, we have used the H2O-64 benchmark, which
simulates 64 water molecules (consisting of 192 atoms and
512 electrons) in a 12.4 Å3 cell for 10 time-steps. This is an
often-studied benchmark for CP2K, and therefore provides
sufficient information to explore the performance across the
different architectures in this paper.

GROMACS: The molecular dynamics package GRO-
MACS4 is used to solve Newton’s equations of motion.
Systems of interest such as proteins, contain up to millions
of particles. It is thought that GROMACS is bound by
the floating-point performance of the processor architecture.
This has motivated the developers to handwrite vectorised
code in order to ensure an optimal sequence of such arith-
metic [9]. The hand-optimised code is written using compiler
intrinsics, which results in GROMACS not supporting some

3https://www.cp2k.org
4http://www.gromacs.org

compilers — such as the Cray Compiler — because they
do not implement all the required intrinsics. For each sup-
ported platform, computation is packed so that it saturates
the native vector length of the platform, e.g. 256 bits for
AVX2, 512 bits for AVX-512, and so on. For this study,
we used the ion_channel_vsites benchmark5. This
consists of the membrane protein GluCl, containing around
150,000 atoms (which for GROMACS is typically small),
and uses ‘vsites’ and a five femtosecond time-step. On
the ThunderX2 processor, we used the ARM_NEON_ASIMD
vector implementation, which is the closest match for the
Armv8.1 architecture. However, this implementation is not
as mature as some of those targeting x86.

NAMD: NAMD is a molecular dynamics simulation
program designed to scale up to millions of atoms [10]. It is
able to achieve scaling to more than half a million processor
cores using the Charm++ parallel programming framework,
a high-level library that abstracts the mapping of processors
to work items — or chares — away from the program-
mer [11]. The test case used is the STMV benchmark, which
simulates one of the smallest viruses in existence, and which
is a common set of inputs for measuring scaling capabilities.
This benchmark includes PME calculations, which use FFTs,
and so its performance is heavily influenced by that of the
FFT library used. Due to the complex structure of atomic
simulation computation and the reliance of distributed FFTs,
it is hard to define a single bounding factor for NAMD’s
performance — compute performance, memory bandwidth,
and communication capabilities all affect the overall perfor-
mance of the application.

NEMO: The Nucleus for European Modelling of the
Ocean6 (NEMO) code is one ocean modelling framework

5https://bitbucket.org/pszilard/isambard-bench-pack.git
6https://www.nemo-ocean.eu



used by the UK’s Met Office, and is often used in conjunc-
tion with the Unified Model atmosphere simulation code.
The code consists of simulations of the ocean, sea-ice and
marine biogeochemistry under an automatic mesh refine-
ment scheme. As a structured grid code, the performance-
limiting factor is highly likely to be memory bandwidth. The
benchmark we used was derived from the GYRE_PISCES
reference configuration, with a 1⁄12

◦ resolution and 31 model
levels, resulting in 2.72M points, running for 720 time-steps.

OpenFOAM: Originally developed as an alternative to
early simulation engines written in Fortran, OpenFOAM
is a modular C++ framework aiming to simplify writing
custom computation fluid dynamics (CFD) solvers. The code
makes heavy use of object-oriented features in C++, such as
class derivation, templating and generic programming, and
operator overloading, which it uses to allow for powerful
extensive design [12]. OpenFOAM’s flexibility comes at the
cost of additional code complexity, of which a good example
is how every component is compiled into a separate dynamic
library, and generic executables load the required modules
at runtime, based on the user’s input. The two features
mentioned above grant OpenFOAM a unique position in our
benchmark suite. In this paper, we use the simpleFoam
solver for incompressible, turbulent flow from version 1712
of OpenFOAM7, the latest released version at the time of
writing. The input case is based on the RANS DrivAer
generic car model, which is a representative case of real
aerodynamics simulation and thus should provide meaning-
ful insight of the benchmarked platforms’ performance [13].
OpenFOAM is almost entirely memory bandwidth–bound.

OpenSBLI: OpenSLBI is a grid-based finite difference
solver8 used to solve compressible Navier-Stokes equations
for shock-boundary layer interactions. The code uses Python
to automatically generate code to solve the equations ex-
pressed in mathematical Einstein notation, and uses the
Oxford Parallel Structured (OPS) software for parallelism.
As a structured grid code, it should be memory bandwidth–
bound under the Roofline model, with low computational
intensity from the finite difference approximation. We used
the ARCHER benchmark for this paper9, which solves a
Taylor-Green vortex on a grid of 1024× 1024× 1024 cells
(around a billion cells).

Unified Model: The UK’s Met Office code, the Unified
Model10 (UM), is an atmosphere simulation code used for
weather and climate applications. It is often coupled with
the NEMO code. The UM is used for weather prediction,
seasonal forecasting, and for climate modelling, with time-
scales ranging from days to hundreds of years. At its core,
the code solves the compressible non-hydrostatic motion

7https://www.openfoam.com/download/install-source.php
8https://opensbli.github.io
9http://www.archer.ac.uk/community/benchmarks/archer/
10https://www.metoffice.gov.uk/research/modelling-systems/

unified-model

equations on the domain of the Earth discretised into a
latitude-longitude grid. As a structured grid code, the per-
formance limiting factor is highly likely to be memory
bandwidth. We used an AMIP benchmark [14] provided by
the UK Met Office for version 10.8 of the UM.

VASP: The Vienna Ab initio Simulation Package11

(VASP) is used to model materials at the atomic scale,
in particular performing electronic structure calculations
and quantum-mechanical molecular dynamics. It solves the
N-body Schrödinger equation using a variety of solution
techniques. VASP includes a significant number of settings
which affect performance, from domain decomposition op-
tions to maths library parameters. Previous investigations
have found that VASP is bound by floating-point compute
performance at scales of up to a few hundred cores. For
bigger sizes, its heavy use of MPI collectives begins to
dominate, and the application becomes bound by commu-
nication latency [15]. The benchmark utilised is known as
PdO, because it simulates a slab of palladium oxide. It
consists of 174 atoms, and it was originally designed by one
of VASP’s developers, who also found that (on a single node)
the benchmark is mostly compute-bound; however, there
exist a few methods that benefit from increased memory
bandwidth [16].

IV. RESULTS

A. Platforms

The early-access part of the Isambard system was used
to produce the Arm results presented in this paper. Each
of the Arm nodes houses two 32-core Cavium ThunderX2
processors running at 2.2 GHz alongside 256 GB of DDR4
DRAM clocked at 2500 MHz. Note that this is slightly
below the 2666 MHz memory speed of Isambard’s XC50
nodes. On May 7th 2018, Cavium announced the general
availability of ThunderX2, with an RRP for the 32c 2.2GHz
part of $1,795 each. The ThunderX2 processors support 128-
bit vector Arm Advanced SIMD instructions (sometimes
referred to as ‘NEON’), and each core is capable of 4-
way simultaneous multithreading (SMT), for a total of up
to 256 hardware threads per node. The processor’s on-
chip data cache is organised into three levels: a private
L1 and L2 cache for each core, and a 32 MB L3 cache
shared between all the cores. Finally, each ThunderX2 socket
utilises eight separate DDR4 memory channels running at up
to 2666 MHz.

The Cray XC40 supercomputer ‘Swan’ was used for
access to the Intel Broadwell, Skylake and Knights Landing
processors, with an additional internal Cray system provid-
ing access to a more mainstream SKU of Skylake:

• Intel Xeon Platinum 8176 (Skylake) 28-core @
2.1 GHz, dual-socket, with 192 GB of DDR4-2666
DRAM. RRP $8,719 each.

11http://www.vasp.at



Processor Cores Clock speed FP64 Bandwidth
GHz TFLOP/s GB/s

Broadwell 2× 22 2.2 1.55 154
Skylake (Gold) 2× 20 2.4 3.07 256

Skylake (Platinum) 2× 28 2.1 3.76 256
Knights Landing 64 1.3 2.66 ∼490

ThunderX2 2× 32 2.2 1.13 320

Table I
HARDWARE INFORMATION (PEAK FIGURES)

• Intel Xeon Gold 6148 (Skylake) 20-core @ 2.4 GHz,
dual-socket, with 192 GB of DDR4-2666 DRAM. RRP
$3,078 each.

• Intel Xeon E5-2699 v4 (Broadwell) 22-core @
2.2 GHz, dual-socket, with 128 GB of DDR4-2400
DRAM. RRP $4,115 each.

• Intel Xeon Phi 7210 (Knights Landing) 64-core @
1.3 GHz, with 96 GB of DDR4-2400 DRAM and
16 GB of MCDRAM, configured in quad/flat mode
(or else quad/cache mode where the problem size
exceeded MCDRAM capacity, such as for the SNAP
proxy application). RRP $1,881 each.

The recommended retail prices (RRP) are correct at
the time of writing (May 2018), and taken from Intel’s
website12. Both the Skylake and Knights Landing processors
provide an AVX-512 vector instruction set, meaning that
each FP64 vector operation operates on eight elements; by
comparison, Broadwell utilises AVX2, which is 256-bits
wide, operating on four FP64 elements. The Xeon processors
both have three levels of on-chip (data) cache, with an L1
and L2 cache per core, along with a shared L3. The Xeon
Phi processor, on the other hand, has two levels of on-chip
cache: an L1 cache per core and an L2 cache shared between
pairs of cores (tiles); the MCDRAM can operate as a large,
direct-mapped L3 cache for the off-processor DRAM. This
selection of CPUs provides coverage of both the state-of-the-
art and the status quo of current commonplace HPC system
design. We include high-end models of both Skylake and
Broadwell in order to make the comparison as challenging
as possible for ThunderX2. It is worth noting that in reality,
most Skylake and Broadwell systems will use SKUs from
much further down the range, of which the Xeon Gold part
described above is a good example. This is certainly true
for the current Top500 systems. A summary of the hardware
used, along with peak floating point and memory bandwidth
performance, is shown in Table I.

We evaluated three different compilers for ThunderX2 in
this study: GCC 7, the LLVM-based Arm HPC Compiler
18.2-18.3, and Cray’s CCE 8.6–8.7. We believe this is the
first study to date that has compared all three of these
compilers targeting Arm. The compiler that achieved the

12https://ark.intel.com/

Benchmark ThunderX2 Broadwell Skylake Xeon Phi

STREAM GCC 7 Intel 18 Intel 18 Intel 18
CloverLeaf Arm 18.2 Intel 18 Intel 18 Intel 18

TeaLeaf GCC 7 Intel 18 Intel 18 Intel 18
SNAP CCE 8.6 Intel 18 Intel 18 Intel 18
Neutral GCC 7 Intel 18 Intel 18 Intel 18

CP2K GCC 7 GCC 7 GCC 7 —
GROMACS GCC 7 GCC 7 GCC 7 —

NAMD Arm 18.2 GCC 7 Intel 18 —
NEMO CCE 8.7 CCE 8.7 CCE 8.7 —

OpenFOAM GCC 7 GCC 7 GCC 7 —
OpenSBLI CCE 8.7 Intel 18 Intel 18 —

UM CCE 8.6 CCE 8.5 CCE 8.6 —
VASP CCE 8.7 CCE 8.6 CCE 8.6 —

Table II
COMPILERS USED FOR BENCHMARKING

highest performance in each case was used in the results
graphs displayed below. Likewise for the Intel processors,
we used GCC 7, Intel 2018, and Cray CCE 8.5–8.7. Table II
lists the compiler that achieved the highest performance for
each benchmark in this study.

B. Mini-apps

Figure 2 compares the performance of our target platforms
over a range of representative mini-applications.

STREAM: The STREAM benchmark measures the
sustained memory bandwidth from the main memory. For
processors using traditional DRAM technology, the available
memory bandwidth is essentially determined by the number
of memory controllers. Intel Xeon Broadwell and Skylake
processors have four and six memory controllers per socket,
respectively. The Cavium ThunderX2 processor has eight
memory controllers per socket. The results in Figure 2 show
a clear trend that Skylake achieves a 1.6× improvement
over Broadwell, which is to be expected, given Skylake’s
faster memory speed (2666 MHz DDR4 vs. Broadwell’s
2400 MHz). The eight memory controllers per socket on
the Cavium ThunderX2 achieve a 1.92× speedup over
Broadwell.

Broadwell and Skylake are achieving 84.4% and 80.4%
of theoretical peak memory bandwidth, respectively. At
249 GB/s, ThunderX2 is achieving 77.8% of theoretical peak
memory bandwidth. On ThunderX2, we found that the best
STREAM Triad performance was achieved with running 16
OpenMP threads per socket (32 in total), rather than one
thread per core (64 total). The CrayPAT tool reports rates
of 69.4% D1 hit and 66.9% D2 hit for 32 threads, whereas
for 64 threads rates of 66.6% D1 hit and 38.5% D2 hit are
reported; notice that the D2 hit rate has dropped sharply.
On the 18-core Broadwell CPUs in the Isambard Phase 1
system, using the Cray compiler, CrayPAT reports 66.7%
D1 and 11.3% D2 hit rates with 36 threads; the numbers
are similar with only half the number of threads. The low
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Figure 2. Comparison of Broadwell, Skylake, Knights Landing and ThunderX2 for a range of mini-apps. Results are normalized to Broadwell.

L2 hit rate is showing that there is a strong reliance on the
main memory bandwidth for data traffic, as expected.

The MCDRAM technology used by the Intel Xeon Phi
(Knights Landing) processor offers improved memory band-
widths over traditional DRAM technology and this is clearly
seen in Figure 2, with speedups of 3.5× over the Broadwell
baseline. A percentage of theoretical peak memory band-
width is difficult to calculate as Intel does not publish this
figure, but rather publishes an expected performance from
benchmarks similar to STREAM.

The use of non-temporal store instructions is an important
optimisation for the STREAM benchmark, as Raman et
al showed, where, for the Triad kernel, the use of non-
temporal store instructions resulted in a 37% performance
improvement [17]. On the Intel architecture, using these
instructions for the write operation in the STREAM kernels
ensures that the cache is not polluted with the output values,
which are not re-used; note that it is assumed that the
arrays are larger than last-level cache. As such, if this data
occupied space in the cache, it would reduce the capacity
available for the other arrays which are being prefetched
into cache. The construction of the STREAM benchmark
with arrays allocated on the stack with the problem size
known at compile time allows the Intel compiler to generate
non-temporal store instructions for all the Intel architectures

in this study. Although the GCC compiler does not generate
non-temporal stores for the Cavium ThunderX2 architecture
(in fact it cannot generate non-temporal store instructions for
any architecture), the implementation of these instructions
within the ThunderX2 architecture does not result in a
bypass of cache. Instead, the stores still write to L1 cache,
but in a way that exploits the write-back policy and least
recently used eviction policy to limit the disruption on
cache. As such, this may be limiting the achieved STREAM
performance on ThunderX2, as memory bandwidth is being
wasted evicting the output arrays of the kernels. Despite this
lack of true streaming stores, it is clear that the additional
memory controllers on the ThunderX2 processors provide a
clear external memory bandwidth advantage over Broadwell
and Skylake processors.

CloverLeaf: The normalised results for the CloverLeaf
mini-app in Figure 2 are very consistent with those for
STREAM on the Intel Xeon and Cavium ThunderX2 pro-
cessors. CloverLeaf is a structured grid code and the vast
majority of its kernels are bound by the available memory
bandwidth. It has been shown previously that the memory
bandwidth increases from GPUs result in proportional im-
provements for CloverLeaf [4]. The same is true on the pro-
cessors in this study, with the improvements on ThunderX2
coming from the additional memory controllers. Therefore,



for structured grid codes, we indeed see that the runtime
is proportional to the external memory bandwidth of the
system, and the ThunderX2 provides the highest bandwidth
out of the processors tested which use traditional DRAM
technology. The High Bandwidth Memory technology in
the form of MCDRAM is what gives the Knights Landing
processor its further performance improvement.

It has been noted that the time per iteration increases
as the simulation progresses on the ThunderX2 processor.
This phenomenon is not noticeable on the x86 processors.
We believe this is due to the data-dependent need for
floating-point intrinsic functions (such as abs and min
and sqrt); this can be seen in a viscosity kernel, for
instance. As the time iteration progresses, the need for such
functions is higher and, therefore, the kernel increases in
runtime. Although these kernels are memory bandwidth–
bound, the increased number of floating-point operations
increases the computational intensity and is therefore slightly
less bandwidth-bound (under the Roofline model).

TeaLeaf: The TeaLeaf mini-app again tracks the mem-
ory bandwidth performance of the processors. Indeed, this
was shown previously on x86 and GPU architectures [5].
The additional memory bandwidth on the ThunderX2 pro-
cessor clearly improves the performance over those proces-
sors with fewer memory controllers.

SNAP: Understanding the performance of the SNAP
proxy application is difficult [7]. If truly memory
bandwidth–bound, the MCDRAM memory available on the
Knights Landing processor would increase the performance
as with the other memory bandwidth–bound codes discussed
in this study; however, the Knights Landing run results in
an increased runtime over our Broadwell baseline. Similarly,
the ThunderX2 processor does not provide an improvement
over the baseline for the tested problem for this code.
The Skylake processor does give an improvement, however,
and whilst this does have memory bandwidth improvements
over Broadwell, this is not the only significant architectural
change. Skylake has 512-bit vectors, which creates a wide
data path through the cache hierarchy—a whole cache line is
loaded into registers for each load operation. In comparison,
Broadwell has 256-bit vectors and the ThunderX2 has 128-
bit vectors, moving half and a quarter of a 64 byte cache
line per load operation, respectively. The wider vectors of
the x86 processors improve the cache bandwidth, and for
Knights Landing the cache bandwidth is limited by the clock
speed, despite the use of 512-bit vectors [18].

The main sweep kernel in the SNAP code requires that
a cache hierarchy support both reading (and writing) a very
large data set and simultaneously keeping small working set
data in low levels of cache. The CrayPAT profiler reports the
cache hit rates for L1 and L2 caches when using the Cray
compiler. On the ThunderX2, the hit rates for the caches
are both at around 84%, which is much higher than the hit
rate for the STREAM benchmark (where the latter is truly

main memory bandwidth–bound). As such, this shows that
the SNAP proxy application is heavily reusing data in cache,
and so performance of the memory traffic to and from cache
is a key performance factor. On the Broadwell processors in
Isambard Phase 1, CrayPat reports D1 hit rates of 89.4%
and D2 hit rates of 24.8%. Again, the L1 cache hit rate is
much more than in the STREAM benchmark, indicating high
reuse of data in the L1 cache, but that the L2 is not used as
efficiently. It is the subject of future work to understand
how the data access patterns of SNAP interact with the
cache replacement policies in these processors. However,
for this study, it is clear that main memory bandwidth is
not necessarily the performance limiting factor, but rather it
is the access to the cache where the x86 processors have an
advantage.

Neutral: In previous work, it was shown that the
Neutral mini-app has algorithmically little cache reuse, due
to the random access to memory required for accessing the
mesh data structures [8]. Additionally, the access pattern is
data driven and this not predictable, and so any hardware
prefetching of data into cache according to common access
patterns is likely to be ineffective, resulting in high numbers
of cache misses. Indeed, CrayPAT shows a low percentage
(27.3%) of L2 cache hits on the ThunderX2 processor,
and a similar percentage on Broadwell. The L1 cache hit
rate is rather high on both architectures, with over 95%
hits. As such, the extra memory bandwidth available on
the ThunderX2 or the Intel Xeon Phi does not provide
an advantage over the Intel Xeon processors. Note from
Figure 2 that the ThunderX2 processor still achieves around
parity performance with Broadwell, with Skylake 28c only
offering a small performance improvement of about 21%.

Summary: Many of these results highlight the supe-
rior memory bandwidth offered by the ThunderX2’s eight
memory channels, which deliver 249 GB/s for the STREAM
Triad benchmark [2]—twice that of Broadwell and 35%
more than Skylake. This performance increase can be seen in
the memory bandwidth–bound mini-apps such as CloverLeaf
and TeaLeaf, with the ThunderX2 processor showing similar
improvements to STREAM over the x86 processors. The
MCDRAM technology present on the Knights Landing again
shows further improvements, highlighting that the perfor-
mance of these mini-apps is determined by the available
memory bandwidth of the processor.

The SNAP and Neutral mini-apps, however, rely more on
the on-chip memory architecture (the caches), and so they
are unable to leverage the external memory bandwidth on
all processors. As such, the additional memory controllers
on the ThunderX2 processors do not seem to improve the
performance of these mini-apps relative to processors with
less memory bandwidth. Note, too, that although the MC-
DRAM technology provides greater memory bandwidth, it
again does not improve the performance. The exact nature of



Figure 3. Efficiency of different compilers running on Cavium ThunderX2.

the interaction of these algorithms with the cache hierarchy
is the subject of future study.

Figure 3 compares the latest versions of the three available
compilers on the ThunderX2 platform, normalised to the
best performance observed for each mini-app. The benefits
of having multiple compilers for Arm processors is clear,
as none of the compilers dominate performance. The Arm
HPC compiler uses the LLVM-based Flang, a relatively
new Fortran frontend, which produces a miscompilation
for TeaLeaf. SNAP and Neutral have more complex com-
putational kernels than the other mini-apps that draw out
differences in the optimisations applied by the compilers.

C. Applications

Figure 4 compares the performance of dual-socket Broad-
well, Skylake and ThunderX2 systems for the real applica-
tion workloads described in Section III-B13.

CP2K: CP2K comprises many different kernels that
have varying performance characteristics, including floating-
point-intensive routines and those that are affected by ex-
ternal memory bandwidth. While the floating-point routines
run up to 3× faster on Broadwell compared to ThunderX2,
the improved memory bandwidth and higher core counts
provided by ThunderX2 allow it to reach a ∼15% speed-
up over Broadwell for this benchmark. The 28c Skylake
processor provides even higher floating point throughout
and closes the gap in terms of memory bandwidth, yielding
a further 20% improvement over ThunderX2. The H2O-
64 benchmark has been shown to scale sublinearly when
running on tens of cores [19], which impacts on the im-
provements that ThunderX2 can offer for its 64 cores.

GROMACS: The GROMACS performance results are
influenced by two main factors. First, the application is

13Due to system stability issues on our prototype ThunderX2 Foxconn
systems, we were unable to run the memory clock at the 2500 MHz speed
for CP2K, Unified Model and VASP, instead running at 2200 MHz.

heavily compute-bound, and the x86 platforms are able to
exploit their wider vector units and wider datapaths to cache.
Performance does not scale perfectly with vector width due
to the influence of other parts of the simulation, in particular
the distributed FFTs. Secondly, because GROMACS uses
hand-optimised vector code for each platform, x86 benefits
from having the more mature implementation, one that has
evolved over many years. Since Arm HPC platforms are
new, it is likely that the NEON implementation is not yet at
peak efficiency for ThunderX2.

NAMD: As discussed in Section III-B, NAMD is not
clearly bound by a single factor, and thus it is hard to
underline a specific reason why one platform is slower (or
faster) than another. It is likely that results are influenced by
a combination of memory bandwidth, compute performance
and other latency-bound operations. The results observed
do correlate with memory bandwidth, making Broadwell
the slowest platform of the three for this application. Run-
ning more than one thread per core in SMT increased
NAMD performance, and this is the most pronounced on
the ThunderX2, which can run 4 hardware threads on each
physical core. Furthermore, due to NAMD’s internal load
balancing mechanism, the application is able to efficiently
exploit a large number of threads, which confers yet another
advantage to ThunderX2 for being able to run more threads
(256) than the x86 platforms.

NEMO: For the NEMO benchmark, ThunderX2 is
1.4× faster than Broadwell 22c, but 11% slower than Sky-
lake 28c. While the benchmark should be mostly memory
bandwidth bound, leading to significant improvements over
Broadwell, the greater on-chip cache bandwidth of Skylake
gives it a slight performance advantage over ThunderX2.
Running with multiple threads per core to ensure that the
memory controllers are saturated provides a small improve-
ment for ThunderX2.

OpenFOAM: The OpenFOAM results follow the
STREAM behaviour of the three platforms closely, confirm-
ing that memory bandwidth is the main factor that influ-
ences performance here. With its eight memory channels,
ThunderX2 yields the fastest result, at 1.9× the Broad-
well performance. Skylake is able run 1.67× faster than
Broadwell, i.e. a bigger difference than in plain STREAM,
because it is likely able to get additional benefit from
its improved caching, which is not a factor in STREAM.
This benchmark strongly highlights ThunderX2’s strength
in how performance can be improved significantly by higher
memory bandwidth.

OpenSBLI: The OpenSBLI benchmark exhibits a sim-
ilar performance profile to OpenFOAM, providing another
workload that directly benefits from increases in external
memory bandwidth. The ThunderX2 system produces speed-
ups of 1.73× and 1.13× over Broadwell 22c and Skylake
28c, respectively.
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Figure 4. Comparison of Broadwell, Skylake and ThunderX2 for a set of real application codes. Results are normalised to Broadwell.

Unified Model: Comprising two million lines of For-
tran, the Unified Model is arguably the most punishing of
the benchmarks used in this study, stressing the maturity of
the compilers as well as the processors themselves. Skylake
28c only yields a 20% improvement over Broadwell 22c,
indicating that performance of this test case is not entirely
correlated to memory and cache bandwidth or floating-point
compute, and that the relatively low-resolution benchmark
may struggle to scale efficiently to higher core counts. The
ThunderX2 result is around 10% slower than Broadwell, but
demonstrates the robustness of the Cray software stack on
Arm systems by successfully building and running without
requiring any modifications. Interestingly, when running on
just a single socket, ThunderX2 provides a ∼15% im-
provement over Broadwell. We also observed performance
regressions in the more recent versions of CCE on all three
platforms; the Broadwell result was fastest using CCE 8.5,
which could not be used for either Skylake or ThunderX2.

VASP: The calculations performed by the VASP bench-
mark are dominated by floating-point-intensive routines,
which naturally favour the x86 processors with their wider
vector units. While the higher core counts provided by
ThunderX2 make up for some of the difference, the VASP
benchmark exhibits a similar profile to GROMACS, with

ThunderX2 around ∼20% slower than Broadwell 22c, and
sitting around half the speed of Skylake 28c.

Performance per Dollar: So far we have focused purely
on performance, but one of the main advantages of the Arm
ecosystem for HPC should be the increased competition it
brings. While performance per Dollar is hard to quantify
rigorously, and price is always subject to negotiation, we
can still reveal some illuminating information by using the
published list prices of the CPUs to compare the respective
performance per Dollar of the processors. In the results to
follow, we only take the CPU list prices into account. This
deliberately leaves every other factor out of the comparison;
instead, factoring our results into a subjective whole system
cost is left as an exercise for the expert reader. Figures 5
and 6 show the Performance per Dollar of our platforms
of interest, normalised to Broadwell 22c. The numbers are
calculated by taking the applications performance numbers
shown in Figures 2 and 4 and simply dividing them by
the published list prices described in Section IV-A, before
renormalising against Broadwell 22c.

There are a number of interesting points to highlight.
First considering the mini-apps in Figure 5, we see that
ThunderX2’s RRP of just $1,795 gives it a compelling
advantage compared to all the other platforms. ThunderX2
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Figure 5. Performance Per Dollar Comparison of Broadwell, Skylake and ThunderX2 for a range of mini-apps. Results are normalised to Broadwell.

consistently comes ahead of not just the top-bin and there-
fore expensive Skylake 28c, but also the much more cost
conscious, mainstream Skylake 20c SKU. The picture for
real applications in Figure 6 is similar, where even in cases
when ThunderX2 had a performance disadvantage, such as
in the compute bound codes GROMACS and VASP, Thun-
derX2 becomes competitive once cost is considered. Where
ThunderX2 was already competitive on performance, adding
in cost makes ThunderX2 look even more competitive, often
achieving a performance/price advantage over even the more
cost oriented Skylake 20c SKUs of 2x or more.

Summary: Overall, the results presented in this section
demonstrate that the Arm-based Cavium ThunderX2 proces-
sors are able to execute a wide range of important scientific
computing workloads with performance that is competitive
with state-of-the-art x86 offerings. The ThunderX2 pro-
cessors can provide significant performance improvements
when an application’s performance is limited by external
memory bandwidth, but are slower in cases where codes are
compute-bound. When processor cost is taken into account,
ThunderX2’s proposition is even more compelling. With
multiple production quality compilers now available for 64-
bit Arm processors, the software ecosystem has reached
a point where developers can have confidence that real

applications will build and run correctly, in the vast majority
of cases with no modifications.

Some of the applications tested highlight the lower
floating-point throughput and L1/L2 cache bandwidth of
ThunderX2. Both of these characteristics stem from the
narrower vector units relative to AVX-capable x86 proces-
sors. In 2016, Arm unveiled the Scalable Vector Extension
ISA [20], which will enable hardware vendors to design
processors with much wider vectors of up to 2,048-bits,
compared to the 128-bits ot today’s NEON. We therefore
anticipate that the arrival of SVE-enabled Arm-based pro-
cessors in the next couple of years will likely address most of
the issues observed in this study, enabling Arm processors
to deliver even greater performance for a wider range of
workloads.

V. CONCLUSIONS

The results presented in this paper demonstrate that Arm-
based processors are now capable of providing levels of
performance competitive with state-of-the-art offerings from
the incumbent vendors, while significantly improving perfor-
mance per Dollar. The majority of our benchmarks compiled
and ran successfully out-of-the-box, and no architecture-
specific code tuning was necessary to achieve high per-
formance. This represents an important milestone in the
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Figure 6. Performance Per Dollar Price Comparison of Broadwell, Skylake and ThunderX2 for our application codes. Results are normalised to Broadwell.

maturity of the Arm ecosystem for HPC, where these
processors can now be considered as viable contenders for
future procurements. Future work will use the full Isambard
system to evaluate production applications running at scale
on ThunderX2 processors.

We did not address energy efficiency in this paper. Our
early observations suggest that the energy efficiency of
ThunderX2 is in the same ballpark as the x86 CPUs we
tested. This is not a surprise — for a given manufacturing
technology, a FLOP will take a certain number of Joules,
and moving a byte so many millimeters across a chip will
also take a certain amount of energy. There is no magic, and
the instruction set architecture has very little impact on the
energy efficiency when most of the energy is being spent
moving data and performing numerical operations.

Overall, these results suggest that Arm-based server CPUs
that have been optimised for HPC are now genuine options
for production systems, offering performance competitive
with best-in-class CPUs, while potentially offering attractive
price/performance benefits.
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