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Abstract 
Two Cray HPC systems, XE6/XK7 and 

XC30, are deployed at Indiana University serving 
scientific research across all the eight campuses. 
Across over 130 different scientific disciplines 
that are using HPC, the major source of workload 
comes from chemistry. Here, the performance of 
quantum chemistry package NWChem and 
molecular dynamic software GROMACS and 
LAMMPS are investigated in in terms of parallel 
scalability and different parallelization 
paradigms. Parallel performance up to 12,288 
MPI ranks are studied, and the results from the 
two different Cray HPC systems are compared.    

 
I. Introduction 

Indiana University currently focuses on the 
physical sciences, liberal arts and medical 
sciences with very limited engineering. Research 
is supported by a long-serving 1,020-node 
XE6/XK7 [1] and a recently installed 552-node 
XC30 [2]. Chemistry and physics are the two 
primary consumers of high performance 
computing (HPC).  The chemistry department 
burns over 40% of the total workload.  Chemistry 
has long been a scientific field that relies heavily 
on simulations. Computational chemistry 
software are getting increasingly complicated.  
More advanced algorithms are being modelled, 
and multiple parallel programming paradigms are 
often available for each model. Therefore, as an 
HPC service provider, it is crucial to understand 
the performance and limitation of these 
applications so that we can improve our service 
and help scientists generate the best throughput 
for their scientific research.  

In this work, we evaluate the performance of 
three popular computational chemistry packages, 
NWChem [3], Gromacs [4] and Lammps [5] and 
present the results of multiple configurations on 
each of our Cray machines.  These software 
packages support both quantum chemical 
methods and classical molecular dynamics (MD). 
Various theories are benchmarked, from the 
popular fast methods to the highly expensive 
accurate methods.   

This paper is organized as follows:  Section II 
introduces Indiana University’s two Cray HPC 
systems, Section III outlines the functionality and 
features of the different computational chemistry 
software packages, Section IV discusses our 
benchmark methods, Section V presents the 
results, and the paper is then concluded in 
Section VI.  

 
II. Cray HPCs at Indiana University 

A. BigRed II (XE6/XK7) 
Big Red II is Indiana University's primary 

system for high-performance parallel computing. 
With a theoretical peak performance (Rpeak) of 
one thousand trillion floating-point operations per 
second (1 petaFLOP) and a maximal achieved 
performance (Rmax) of 596.4 teraFLOPS, Big 
Red II is among the world's fastest research 
supercomputers. Owned and operated solely by 
IU, Big Red II is designed to accelerate discovery 
both through computational experimentation and 
effective analysis of big data in a wide variety of 
fields, including medicine, physics, fine arts, and 
global climate research.    



Big Red II features a hybrid architecture 
based on two Cray’s supercomputer platforms. 
As configured upon entering production in 
August 2013, Big Red II comprised 344 XE6 
(CPU-only) compute nodes and 676 XK7 "GPU-
accelerated" compute nodes, all connected 
through Cray's Gemini scalable interconnect, 
providing a total of 1,020 compute nodes, 21,824 
processor cores, and 43,648 GB of RAM. Each 
XE6 node has two AMD Opteron 16-core Abu 
Dhabi x86_64 CPUs and 64 GB of RAM; each 
XK7 node has one AMD Opteron 16-core 
Interlagos x86_64 CPU, 32 GB of RAM, and one 
NVIDIA Tesla K20 GPU accelerator.  

B. BigRed II+ (XC30) 
Big Red II+ is a supercomputer that 

complements Indiana University's Big Red II by 
providing an environment dedicated to large-
scale, compute-intensive research. Researchers, 
scholars, and artists with large-scale research 
needs have benefited from Big Red II; these users 
can now take advantage of faster processing 
capability and networking provided by Big Red 
II+. The system will help support programs at the 
highest level of the university, such as the Grand 
Challenges Program. 

Big Red II+ is a Cray XC30 supercomputer 
providing 552 compute nodes, each containing 
two Intel Xeon E5 12-Core x86_64 CPUs and 64 
GB of DDR3 RAM. Big Red II+ has a theoretical 
peak performance (Rpeak) of 286 trillion 
floating-point operations per second (286 
teraFLOPS). All compute nodes are connected 
through the Cray Aries interconnect. 

III. Computational Chemistry Software 
Packages 

A. NWChem 
NWChem is an ab initio computational 

chemistry software package which also includes 
quantum chemical and molecular dynamics 
functionality. It was designed to run on high-
performance, parallel supercomputers as well as 
conventional workstation clusters. It aims to be 

scalable, both in its ability to treat large problems 
efficiently, and in its usage of available parallel 
computing resources. NWChem has been 
developed by the Molecular Sciences Software 
group of the Theory, Modeling & Simulation 
program in the Environmental Molecular 
Sciences Laboratory (EMSL) at the Pacific 
Northwest National Laboratory (PNNL). It was 
first was funded by the EMSL Construction 
Project. 

B. GROMACS 
GROningen MAchine for Chemical 

Simulations (GROMACS) was initially released 
in 1991 by the University of Groningen, in the 
Netherlands and has been developed at the Royal 
Institute of Technology and Uppsala University 
in Sweden since 2001. It has gained popularity 
not only because it is easy to use and has a rich 
tool set for post-analysis, but also because its 
algorithm has good performance and optimizes 
well to different parallel paradigms.  

C. LAMMPS 
Large-scale Atomic/Molecular Massively 

Parallel Simulator (LAMMPS) was developed at 
Sandia National Laboratory. It utilizes MPI for 
parallel communications and contains extensive 
packages (GPU, USER-OMP) to enable other 
parallel models. Many of its models are 
optimized for CPUs and GPUs. It also contains 
some features that other MD packages do not 
provide, for example, reactive force field 
simulations.   

 
IV. Benchmark Methods 

 
NWChem represents the state-of-the-art 

software for quantum chemistry, its parallel 
performance outperforms other programs like 
GAMMES. Here we choose two representative 
types of calculations for benchmarking. The most 
popular in general use due to its relative speed to 
completion is the Density Functional Theory 
(DFT) energy calculation. It scales as O(N3~N4). 
The other is the so called “golden standard” 
method for quantum chemistry – Coupled Cluster 



using Single, Double and perturbative Triple 
(CCSD(T)). This method has O(N7) scaling.  A 
240-atom Carbon nanotube was used for the DFT 
calculation with a PBE/6-31G* level of theory.  
In total, this creates 3600 basis functions.  A 
smaller system, Pentacene, with 378 basis 
functions, was used for testing CCSD(T) 
calculations.  

For the molecular dynamics simulations using 
LAMMPS and GROMACS, we prepared a box 
of SPC/E water molecules (~100k atoms) in a 10 
nm cubic box at room temperature and 1 
atmosphere pressure. The long-range Coulomb 
forces are treated with the particle mesh Ewald 
(PME) method. The system is pre-equilibrated 
and each performance test takes 5 min with 2 fs 
time step in the simulation.  

All programs are compiled using the GNU 
4.9.3 compiler and its corresponding math 
library.  Math library computations are proven to 
the main factor for performance [6]. While the 
XE6/XK7 uses AMD processors, the XC30 uses 
Intel, processors.  For each machine, we chose 
the most recent Cray libsci math library available 
(17.09.1 on XC30 and 16.03.1 on XE6/XK7). 
Cray MPI was used for all applications and all 
tests.  The XE6/XK7 was run exclusively in 

Extreme Scalability Mode (ESM).  This 
distinction is not applicable on the XC30.  

 
V. Benchmark Results 

A. NWChem  

1. DFT calculations 
Using 3600 localized basis functions is about 

the upper limit that can be routinely used to 
perform energy minimization or ab initio 
dynamics using DFT.  Thus, our test system well 
represents actual research usage.   Using only 
half of the cores on each node for large MPI jobs 
may improve performance by distributing the 
MPI communication across a larger section of the 
network and reducing the communication 
pressure from each individual node.  In the case 
of the XE6, this also allows tying each core to a 
single floating-point unit.  Both full node (using 
all cores on each node) and half node jobs were 
tested. The results are summarized in Figure 1). 

When comparing each test relative to others 
within the same machine, the calculation’s timing 
continues to improve up to 64 nodes on both 
machines.  The speedup for both machines in the 
1 to 16 node range is about 80~90% every time 
the node count is doubled, and about 60% in the 
range from 16 to 32 nodes.  At 64 nodes, XE6 
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Figure 1. Performance of DFT calculations in NWChem on Cray XE6/XK7 and XC30 



only gained ~4% extra speed with respect to the 
32-node test. The XC30’s improvement at this 
range was still measured at 25%. The MPI 
libraries on both machines errored at 128 nodes. 
When comparing the machines against each other 
with the same node counts, the XC30 was a clear 
winner over the XE6. For node counts less than 
32, the new XC30 outperforms the old XE6 by 
about 40%.  By the time the node count reaches 
64, this disparity has increased to 59%. The 
timing results indicate both machines are well 
suited for DFT calculations.   Lastly, using half 
of each node doesn’t improve performance in this 
case.  

2. CCSD(T)  
CCSD(T) is a computationally intensive 

calculation. This method is difficult to implement 
well and very computationally expensive. The 
368-basis function calculation we do here is a 
large calculation and is a good representation of 
how this “golden standard” method is most 
commonly used in reality which is a theoretical 
best value to compare against less expensive 
methods during method benchmarks. 

Do to the limitation of the BigRed2’s 
configuration, our largest test used 128 nodes.  
As shown in Figure 2, the calculation again 

scales relatively well on both machines even up 
to 512 nodes.  On 32 nodes, XC30 outperforms 
XE6 by 32%. Using 64 nodes, the XC30 ran 60% 
faster. This trend continued, but was attenuated at 
128 nodes where the XC30 was 65% faster than 
the XE6. These timings are a result of not only 
the stronger processing power of the newer CPU 
but also the faster interconnect. This was proven 
by rerunning the jobs using only half of the cores 
on each node (every two cores on the XE6 share 
a single floating-point unit). The relative 
performance was not changed much at larger 
number of nodes.  
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Figure 2. Performance of CCSD(T) calculations in NWChem on Cray XE6/XK7 and XC30 



B. GROMACS 

1. BigRed2+ (XC30) 
In Figure 3(A), tests of pure MPI jobs are 

presented. In all cases, performance scales well 
with the increase of processes per node (ppn). 
The implementation of hyper-threading helps 
boost the performance under 16 nodes. When the 
number of nodes increases beyond 16, it starts to 
hamper the performance. The same conclusion 
can be drawn from the pure OpenMP model in 
Figure 3(B). The scalability of pure OpenMP is 
worse than the pure MPI model. In fact, it 
reaches a bottleneck for nodes larger than 32. For 
hybrid MPI-OpenMP situation from Figure 3(C), 
the performance is much better than pure 
OpenMP model and is almost comparable to pure 
MPI model. However, for node numbers larger 
than 32, pure MPI is faster. For example, a 128-
node job using pure MPI (ppn=24) is 82% faster 
than best-performed pure OpenMP job and 97% 
faster than hybrid MPI+OpenMP tasks.  

Part of the profiling results from the above 
tests are presented in Figure 4. As the number of 
nodes increases, MPI communication takes more 
time and ultimately occupies the majority of the 
run time. In fact, for 128-node jobs, MPI takes 
~92% of the run time for all parallel models. In 
that case, hyper-threading, significantly hinders 
the performance, resulting in a 64% reduction in 
performance when ppn=24.  

As shown in Figure 4(C), even though hybrid 
MPI+OpenMP scheme reduces the total number 
of MPI ranks, it does not help boost the 
performance. The reason is two fold. First, the 
implementation of OpenMP results in run-time 
overhead.  Second, atomic operations in the 
algorithm can pause other running threads. For 
the 128-node case, ETC (all the other 
contributions except for MPI communications 
and user programs) takes 11% of the run time, 
much higher than the 1% cost in a pure MPI 
(ppn=24) job. On the other hand, the reduction of 
the number of MPI ranks does not actually reduce 
the communication cost. Using ppn=6 and omp 
thread=4 only reduces the MPI task cost from 
92% to 81%. 

Figure 3. GROMACS Performance (Cray XC30) 
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Figure 4. GROMACS Profiling (Cray XC30) 
 

 

 

 

2. BigRed2 (Cray XE6/XK7) 
Similar to BigRed2+, pure OpenMP jobs 

perform much worse than pure MPI jobs (Figure 
5). Even when using 1 node, it is recommended 
to run GROMACS in pure MPI ranks. The inner 

bandwidth speed in BigRed2 is slower than 
BigRed2+.  As a result, it is observed that when 

using a large number of nodes, the hybrid 
MPI+OpenMP model is slightly faster than the 
pure MPI model (~3% increase in 128 nodes).

Figure 5. GROMACS Performance (Cray XE6) 
 

 
 

On BigRed2 XK7 nodes, the compute mode 
of the Tesla K20 GPUs is set as Exclusive 
Processing, so multiple MPI accesses to single 
GPU context are not allowed. Shown in Figure 
6(A), when running on a small number of nodes 
(less than 16), jobs have better performance with 
more OpenMP threads. However, when the node 
number is large, too many threads slow down the 
performance.  

On XK7 nodes, CUDA acceleration greatly 
boosts performance. Figure 4(B) shows a 4x 
speed up when CUDA is enabled in 1 node. This 
gain is reduced as more nodes are used. However, 
on 128 nodes, CUDA still performs 31% better 
than the same run with the GPU not utilized.  

3. Comparison 
Compared with XC30 nodes on BigRed2+, 

BigRed2 is slower in the benchmarking test even 
though it has GPU nodes and more CPU cores. 
On 128 nodes, the best performance of XC30 
reaches 276 ns/day.  Meanwhile, the XE6/XK7’s 
best results are 214 ns/day and 176 ns/day, 
respectively.  

C. LAMMPS  

1. BigRed2+(XC30) 
Generally speaking, LAMMPS runs slower 

than GROMACS for pure water simulations due 
to the fast SETTLE algorithm used in 
GROMACS which are specifically targeted at 3-
site water molecules. As shown in Figure 7(A), 
when ppn increases to 24 for 128 node jobs, it 
starts to lower overall speed. It seems that MPI 
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communication has become the major issue. It is 
also validated in Figure 7(C) that hybrid 
MPI+OpenMP runs faster that pure MPI jobs.  

Similar in GROMACS, hyper-threading is 
useful to slightly increase the speed (5%-10%) 
only when a small number of nodes are used (less 
than 16). When the number of nodes is large, it is 
unfavorable and should be avoided.  

 
Figure 6. GROMACS Performance (Cray XK7) 

 

 

2. BigRed2 (XE6/XK7) 
Figure 8 shows the performance on the XE6 

(BigRed2’s pure CPU nodes) using different 
parallel models. Pure OpenMP jobs are the 
slowest. Pure MPI jobs are only fast on small 
numbers of nodes. Hybrid MPI+OpenMP jobs 
run the fastest for large numbers of nodes since it 
reduces the MPI communication time. It has a 
43% performance boost on 128 nodes compared 
with a pure MPI job. 

To utilize CUDA on the XK7 BigRed2’s 
GPU enabled nodes), only a single MPI process 

is allowed to access one GPU. However, 
LAMMPS does not support CUDA+OpenMP 
model simultaneously with GPU and USER-
OMP packages. So only 1 MPI x 1 OpenMP 
thread is used on each XK7 node for the 
benchmark test. The results are shown in Figure 
9. Enabling CUDA will result in 2x ~ 3x increase 
in speed. On 128 nodes, the performance reaches 
42 ns/day, which is comparable with the peak 
value of 51 ns/day on XE6 nodes. 

 
Figure 7. LAMMPS Performance (Cray XC30) 
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Figure 8. LAMMPS Performance (Cray XE6) 

 
Figure 9. LAMMPS Performance (Cray XK7) 

 

3.  Comparison 
In the benchmarking test of LAMMPS, the 

peak performance (87ns/day) on BigRed2+ is 
about 70% faster than BigRed2’s best (51ns/day 
on the XE6). When the MPI communications task 
is heavier, BigRed2+ has better performance.  

 
VI. Conclusion 

Over the intensive tests of different 
computational chemistry methods, we conclude 
these state-of-the-art applications can perform 
very well using massive parallelism on Cray’s 
HPC systems. The newer XC30 pure CPU 
machine outperforms the old XE6 by a large 
margin and even beats GPU equipped XK7 at 
large node counts.  For the molecular dynamics 
programs where hybrid MPI+OpenMP is 
available, the hybrid scheme provided slightly 
better performance.  
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