
Performance Study of Popular Computational Chemistry Software
Packages on Cray HPC Systems

Junjie Li (lijunj@iu.edu)

Shijie Sheng (shengs@iu.edu)
Raymond Sheppard (rsheppar@iu.edu)

Pervasive Technology Institute, Indiana University
535 W Michigan St, Indianapolis, IN, USA

Abstract
Two Cray HPC systems, XE6/XK7 and

XC30, are deployed at Indiana University serving
scientific research across all the eight campuses.
Across over 130 different scientific disciplines
that are using HPC, the major source of workload
comes from chemistry. Here, the performance of
quantum chemistry package NWChem and
molecular dynamic software GROMACS and
LAMMPS are investigated in in terms of parallel
scalability and different parallelization
paradigms. Parallel performance up to 12,288
MPI ranks are studied, and the results from the
two different Cray HPC systems are compared.

I. Introduction

Indiana University currently focuses on the
physical sciences, liberal arts and medical
sciences with very limited engineering. Research
is supported by a long-serving 1,020-node
XE6/XK7 [1] and a recently installed 552-node
XC30 [2]. Chemistry and physics are the two
primary consumers of high performance
computing (HPC). The chemistry department
burns over 40% of the total workload. Chemistry
has long been a scientific field that relies heavily
on simulations. Computational chemistry
software are getting increasingly complicated.
More advanced algorithms are being modelled,
and multiple parallel programming paradigms are
often available for each model. Therefore, as an
HPC service provider, it is crucial to understand
the performance and limitation of these
applications so that we can improve our service
and help scientists generate the best throughput
for their scientific research.

In this work, we evaluate the performance of
three popular computational chemistry packages,
NWChem [3], Gromacs [4] and Lammps [5] and
present the results of multiple configurations on
each of our Cray machines. These software
packages support both quantum chemical
methods and classical molecular dynamics (MD).
Various theories are benchmarked, from the
popular fast methods to the highly expensive
accurate methods.

This paper is organized as follows: Section II
introduces Indiana University’s two Cray HPC
systems, Section III outlines the functionality and
features of the different computational chemistry
software packages, Section IV discusses our
benchmark methods, Section V presents the
results, and the paper is then concluded in
Section VI.

II. Cray HPCs at Indiana University

A. BigRed II (XE6/XK7)
Big Red II is Indiana University's primary

system for high-performance parallel computing.
With a theoretical peak performance (Rpeak) of
one thousand trillion floating-point operations per
second (1 petaFLOP) and a maximal achieved
performance (Rmax) of 596.4 teraFLOPS, Big
Red II is among the world's fastest research
supercomputers. Owned and operated solely by
IU, Big Red II is designed to accelerate discovery
both through computational experimentation and
effective analysis of big data in a wide variety of
fields, including medicine, physics, fine arts, and
global climate research.

Big Red II features a hybrid architecture
based on two Cray’s supercomputer platforms.
As configured upon entering production in
August 2013, Big Red II comprised 344 XE6
(CPU-only) compute nodes and 676 XK7 "GPU-
accelerated" compute nodes, all connected
through Cray's Gemini scalable interconnect,
providing a total of 1,020 compute nodes, 21,824
processor cores, and 43,648 GB of RAM. Each
XE6 node has two AMD Opteron 16-core Abu
Dhabi x86_64 CPUs and 64 GB of RAM; each
XK7 node has one AMD Opteron 16-core
Interlagos x86_64 CPU, 32 GB of RAM, and one
NVIDIA Tesla K20 GPU accelerator.

B. BigRed II+ (XC30)
Big Red II+ is a supercomputer that

complements Indiana University's Big Red II by
providing an environment dedicated to large-
scale, compute-intensive research. Researchers,
scholars, and artists with large-scale research
needs have benefited from Big Red II; these users
can now take advantage of faster processing
capability and networking provided by Big Red
II+. The system will help support programs at the
highest level of the university, such as the Grand
Challenges Program.

Big Red II+ is a Cray XC30 supercomputer
providing 552 compute nodes, each containing
two Intel Xeon E5 12-Core x86_64 CPUs and 64
GB of DDR3 RAM. Big Red II+ has a theoretical
peak performance (Rpeak) of 286 trillion
floating-point operations per second (286
teraFLOPS). All compute nodes are connected
through the Cray Aries interconnect.

III. Computational Chemistry Software
Packages

A. NWChem
NWChem is an ab initio computational

chemistry software package which also includes
quantum chemical and molecular dynamics
functionality. It was designed to run on high-
performance, parallel supercomputers as well as
conventional workstation clusters. It aims to be

scalable, both in its ability to treat large problems
efficiently, and in its usage of available parallel
computing resources. NWChem has been
developed by the Molecular Sciences Software
group of the Theory, Modeling & Simulation
program in the Environmental Molecular
Sciences Laboratory (EMSL) at the Pacific
Northwest National Laboratory (PNNL). It was
first was funded by the EMSL Construction
Project.

B. GROMACS
GROningen MAchine for Chemical

Simulations (GROMACS) was initially released
in 1991 by the University of Groningen, in the
Netherlands and has been developed at the Royal
Institute of Technology and Uppsala University
in Sweden since 2001. It has gained popularity
not only because it is easy to use and has a rich
tool set for post-analysis, but also because its
algorithm has good performance and optimizes
well to different parallel paradigms.

C. LAMMPS
Large-scale Atomic/Molecular Massively

Parallel Simulator (LAMMPS) was developed at
Sandia National Laboratory. It utilizes MPI for
parallel communications and contains extensive
packages (GPU, USER-OMP) to enable other
parallel models. Many of its models are
optimized for CPUs and GPUs. It also contains
some features that other MD packages do not
provide, for example, reactive force field
simulations.

IV. Benchmark Methods

NWChem represents the state-of-the-art

software for quantum chemistry, its parallel
performance outperforms other programs like
GAMMES. Here we choose two representative
types of calculations for benchmarking. The most
popular in general use due to its relative speed to
completion is the Density Functional Theory
(DFT) energy calculation. It scales as O(N3~N4).
The other is the so called “golden standard”
method for quantum chemistry – Coupled Cluster

using Single, Double and perturbative Triple
(CCSD(T)). This method has O(N7) scaling. A
240-atom Carbon nanotube was used for the DFT
calculation with a PBE/6-31G* level of theory.
In total, this creates 3600 basis functions. A
smaller system, Pentacene, with 378 basis
functions, was used for testing CCSD(T)
calculations.

For the molecular dynamics simulations using
LAMMPS and GROMACS, we prepared a box
of SPC/E water molecules (~100k atoms) in a 10
nm cubic box at room temperature and 1
atmosphere pressure. The long-range Coulomb
forces are treated with the particle mesh Ewald
(PME) method. The system is pre-equilibrated
and each performance test takes 5 min with 2 fs
time step in the simulation.

All programs are compiled using the GNU
4.9.3 compiler and its corresponding math
library. Math library computations are proven to
the main factor for performance [6]. While the
XE6/XK7 uses AMD processors, the XC30 uses
Intel, processors. For each machine, we chose
the most recent Cray libsci math library available
(17.09.1 on XC30 and 16.03.1 on XE6/XK7).
Cray MPI was used for all applications and all
tests. The XE6/XK7 was run exclusively in

Extreme Scalability Mode (ESM). This
distinction is not applicable on the XC30.

V. Benchmark Results

A. NWChem

1. DFT calculations
Using 3600 localized basis functions is about

the upper limit that can be routinely used to
perform energy minimization or ab initio
dynamics using DFT. Thus, our test system well
represents actual research usage. Using only
half of the cores on each node for large MPI jobs
may improve performance by distributing the
MPI communication across a larger section of the
network and reducing the communication
pressure from each individual node. In the case
of the XE6, this also allows tying each core to a
single floating-point unit. Both full node (using
all cores on each node) and half node jobs were
tested. The results are summarized in Figure 1).

When comparing each test relative to others
within the same machine, the calculation’s timing
continues to improve up to 64 nodes on both
machines. The speedup for both machines in the
1 to 16 node range is about 80~90% every time
the node count is doubled, and about 60% in the
range from 16 to 32 nodes. At 64 nodes, XE6

0

2000

4000

6000

8000

10000

12000

2 4 8 16 32 64

Ti
m
e	
(s
)

Node	Count

XE6	(32ppn)

XE6	(16ppn)

XC30	(24ppn)

XC30	(12ppn)

Figure 1. Performance of DFT calculations in NWChem on Cray XE6/XK7 and XC30

only gained ~4% extra speed with respect to the
32-node test. The XC30’s improvement at this
range was still measured at 25%. The MPI
libraries on both machines errored at 128 nodes.
When comparing the machines against each other
with the same node counts, the XC30 was a clear
winner over the XE6. For node counts less than
32, the new XC30 outperforms the old XE6 by
about 40%. By the time the node count reaches
64, this disparity has increased to 59%. The
timing results indicate both machines are well
suited for DFT calculations. Lastly, using half
of each node doesn’t improve performance in this
case.

2. CCSD(T)
CCSD(T) is a computationally intensive

calculation. This method is difficult to implement
well and very computationally expensive. The
368-basis function calculation we do here is a
large calculation and is a good representation of
how this “golden standard” method is most
commonly used in reality which is a theoretical
best value to compare against less expensive
methods during method benchmarks.

Do to the limitation of the BigRed2’s
configuration, our largest test used 128 nodes.
As shown in Figure 2, the calculation again

scales relatively well on both machines even up
to 512 nodes. On 32 nodes, XC30 outperforms
XE6 by 32%. Using 64 nodes, the XC30 ran 60%
faster. This trend continued, but was attenuated at
128 nodes where the XC30 was 65% faster than
the XE6. These timings are a result of not only
the stronger processing power of the newer CPU
but also the faster interconnect. This was proven
by rerunning the jobs using only half of the cores
on each node (every two cores on the XE6 share
a single floating-point unit). The relative
performance was not changed much at larger
number of nodes.

0

5000

10000

15000

20000

25000

32 64 128 256 512

Ti
m
e	
(s
)

Node	Count

XE6	(32ppn)

XE6	(16ppn)

XC30	(24ppn)

XC30	(12ppn)

Figure 2. Performance of CCSD(T) calculations in NWChem on Cray XE6/XK7 and XC30

B. GROMACS

1. BigRed2+ (XC30)
In Figure 3(A), tests of pure MPI jobs are

presented. In all cases, performance scales well
with the increase of processes per node (ppn).
The implementation of hyper-threading helps
boost the performance under 16 nodes. When the
number of nodes increases beyond 16, it starts to
hamper the performance. The same conclusion
can be drawn from the pure OpenMP model in
Figure 3(B). The scalability of pure OpenMP is
worse than the pure MPI model. In fact, it
reaches a bottleneck for nodes larger than 32. For
hybrid MPI-OpenMP situation from Figure 3(C),
the performance is much better than pure
OpenMP model and is almost comparable to pure
MPI model. However, for node numbers larger
than 32, pure MPI is faster. For example, a 128-
node job using pure MPI (ppn=24) is 82% faster
than best-performed pure OpenMP job and 97%
faster than hybrid MPI+OpenMP tasks.

Part of the profiling results from the above
tests are presented in Figure 4. As the number of
nodes increases, MPI communication takes more
time and ultimately occupies the majority of the
run time. In fact, for 128-node jobs, MPI takes
~92% of the run time for all parallel models. In
that case, hyper-threading, significantly hinders
the performance, resulting in a 64% reduction in
performance when ppn=24.

As shown in Figure 4(C), even though hybrid
MPI+OpenMP scheme reduces the total number
of MPI ranks, it does not help boost the
performance. The reason is two fold. First, the
implementation of OpenMP results in run-time
overhead. Second, atomic operations in the
algorithm can pause other running threads. For
the 128-node case, ETC (all the other
contributions except for MPI communications
and user programs) takes 11% of the run time,
much higher than the 1% cost in a pure MPI
(ppn=24) job. On the other hand, the reduction of
the number of MPI ranks does not actually reduce
the communication cost. Using ppn=6 and omp
thread=4 only reduces the MPI task cost from
92% to 81%.

Figure 3. GROMACS Performance (Cray XC30)

(A)

(B)

(C)

Figure 4. GROMACS Profiling (Cray XC30)

2. BigRed2 (Cray XE6/XK7)
Similar to BigRed2+, pure OpenMP jobs

perform much worse than pure MPI jobs (Figure
5). Even when using 1 node, it is recommended
to run GROMACS in pure MPI ranks. The inner

bandwidth speed in BigRed2 is slower than
BigRed2+. As a result, it is observed that when

using a large number of nodes, the hybrid
MPI+OpenMP model is slightly faster than the
pure MPI model (~3% increase in 128 nodes).

Figure 5. GROMACS Performance (Cray XE6)

On BigRed2 XK7 nodes, the compute mode
of the Tesla K20 GPUs is set as Exclusive
Processing, so multiple MPI accesses to single
GPU context are not allowed. Shown in Figure
6(A), when running on a small number of nodes
(less than 16), jobs have better performance with
more OpenMP threads. However, when the node
number is large, too many threads slow down the
performance.

On XK7 nodes, CUDA acceleration greatly
boosts performance. Figure 4(B) shows a 4x
speed up when CUDA is enabled in 1 node. This
gain is reduced as more nodes are used. However,
on 128 nodes, CUDA still performs 31% better
than the same run with the GPU not utilized.

3. Comparison
Compared with XC30 nodes on BigRed2+,

BigRed2 is slower in the benchmarking test even
though it has GPU nodes and more CPU cores.
On 128 nodes, the best performance of XC30
reaches 276 ns/day. Meanwhile, the XE6/XK7’s
best results are 214 ns/day and 176 ns/day,
respectively.

C. LAMMPS

1. BigRed2+(XC30)
Generally speaking, LAMMPS runs slower

than GROMACS for pure water simulations due
to the fast SETTLE algorithm used in
GROMACS which are specifically targeted at 3-
site water molecules. As shown in Figure 7(A),
when ppn increases to 24 for 128 node jobs, it
starts to lower overall speed. It seems that MPI

(A)	
PPN24:OMP1

(B)	PPN48:OMP1

(C)	
PPN6:OMP4

communication has become the major issue. It is
also validated in Figure 7(C) that hybrid
MPI+OpenMP runs faster that pure MPI jobs.

Similar in GROMACS, hyper-threading is
useful to slightly increase the speed (5%-10%)
only when a small number of nodes are used (less
than 16). When the number of nodes is large, it is
unfavorable and should be avoided.

Figure 6. GROMACS Performance (Cray XK7)

2. BigRed2 (XE6/XK7)
Figure 8 shows the performance on the XE6

(BigRed2’s pure CPU nodes) using different
parallel models. Pure OpenMP jobs are the
slowest. Pure MPI jobs are only fast on small
numbers of nodes. Hybrid MPI+OpenMP jobs
run the fastest for large numbers of nodes since it
reduces the MPI communication time. It has a
43% performance boost on 128 nodes compared
with a pure MPI job.

To utilize CUDA on the XK7 BigRed2’s
GPU enabled nodes), only a single MPI process

is allowed to access one GPU. However,
LAMMPS does not support CUDA+OpenMP
model simultaneously with GPU and USER-
OMP packages. So only 1 MPI x 1 OpenMP
thread is used on each XK7 node for the
benchmark test. The results are shown in Figure
9. Enabling CUDA will result in 2x ~ 3x increase
in speed. On 128 nodes, the performance reaches
42 ns/day, which is comparable with the peak
value of 51 ns/day on XE6 nodes.

Figure 7. LAMMPS Performance (Cray XC30)

(A)

(B)
31%

(A)

(B)

(C)

Figure 8. LAMMPS Performance (Cray XE6)

Figure 9. LAMMPS Performance (Cray XK7)

3. Comparison
In the benchmarking test of LAMMPS, the

peak performance (87ns/day) on BigRed2+ is
about 70% faster than BigRed2’s best (51ns/day
on the XE6). When the MPI communications task
is heavier, BigRed2+ has better performance.

VI. Conclusion

Over the intensive tests of different
computational chemistry methods, we conclude
these state-of-the-art applications can perform
very well using massive parallelism on Cray’s
HPC systems. The newer XC30 pure CPU
machine outperforms the old XE6 by a large
margin and even beats GPU equipped XK7 at
large node counts. For the molecular dynamics
programs where hybrid MPI+OpenMP is
available, the hybrid scheme provided slightly
better performance.

Acknowledgement

This research was supported in part by Lilly
Endowment, Inc., through its support for the
Indiana University Pervasive Technology
Institute, and in part by the Indiana METACyt
Initiative. The Indiana METACyt Initiative at IU
was also supported in part by Lilly Endowment,
Inc.

References

[1] https://kb.iu.edu/d/bcqt
[2] https://kb.iu.edu/d/aoku
[3] M. Valiev, E.J. Bylaska, N. Govind, K.

Kowalski, T. P. Straatsma, H. J. J. van Dam, D.
Wang, J. Nieplocha, E. Apra, T. L. Windus, W.
A. de Jong, “NWChem: a comprehensive and
scalable open-source solution for large scale
molecular simulations”. Comput. Phys.
Commun. 181, 1477 (2010)

https://www.nwchem-sw.org
[4] Hess, B., Kutzner, C., van der Spoel, D.

and Lindahl, E. “GROMACS 4: Algorithms for
Highly Efficient, Load-Balanced, and Scalable
Molecular Simulation”.

J. Chem. Theory Comput., 4, 435-447 (2008)
https://www.gromacs.org
[5] S. Plimpton, Fast Parallel. Algorithms for

Short-Range Molecular Dynamics. J. Comp.
Phys., 117, 1-19 (1995)

https://lammps.sandia.gov
[6] J. Deslippe and Z. Zhao. “Comparing

Compiler and Library Performance in Material
Science Applications on Edison.” Cray User
Group 2013

https://cug.org/proceedings/cug2013_proceed
ings/includes/files/pap135.pdf

116%

