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Compute	(Intel	Haswell)
9436	Nodes		- 1.15	PiB memory

11.1	PF/s	theoretical	peak

Compute	(Intel	Xeon	Phi)
9984	Nodes	– 0.91	PiB DDR	+	0.15	PiB MCDRAM

30.4	PF/s	theoretical	peak	(26.1	PF/s	actual	peak*)

41.5	PF/s	Total	Performance	and	2.07	PiB of	Total	DDR	Memory

Gateway	Nodes Lustre Routers
222	nodes

Burst	Buffer
576	nodes

2x	648	Port	IB	Switches

39	PB	File	System

39	PB	File	System

78	PB	Usable,	1.62	TB/sec	– 2	Filesystems

Cray	Sonexion© Storage	System

Cray	
Development	&	
Login	Nodes

40	GigE	Network

GigE	Network

GigE

40	GigE

FDR	IB

3.7	PB	Raw
3.3	TB/s	BW

*On Intel Xeon Phi, heavy use of 
AVX (vector) instructions will 
reduce operating frequency by 
~15%, thus “actual peak” is lower 
than theoretical peak computed 
using nominal processor 
frequency.
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Metric Trinity
Node Architecture

Complete Trinity 
System

Intel Haswell
Processor Partition

Intel Xeon Phi Processor
Partition

Memory Capacity 2.07 PiB 1.15 PiB 0.91 PiB
Memory BW >6PB/sec >1 PB/s >1PB/s + >4PB/s

Theoretical Peak FLOPS 41.5 PF/s 11.1 PF/s 30.4 PF/s (26.1 PF/s)

Number of Nodes 19,420 9,436 9,984
Number of Cores 980,864 301,952 678,912
Number of Cabs (incl. I/O & BB) 110

PFS Capacity (usable) 78 PB

PFS Bandwidth (sustained) 1.45 TB/s
BB Capacity (usable) 3.7 PB
BB Bandwidth (sustained) 3.3 TB/s
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Haswell Knights Landing
Memory Capacity (DDR) 2x64=128 GiB 96 GiB
Memory Bandwidth (DDR) 136.5 GB/s 115.2 GB/s
# of sockets per node 2 1
# of cores 2x16=32 64 to 72
Core frequency (GHz) 2.3 TBD
# of memory channels 2x4=8 6
Memory Technology 2133 MHz DDR4 2400 MHz DDR4
Threads per core 2 4
Vector units & width (per core) 2x256 AVX2 2x512 AVX-512F
On-chip MCDRAM 16 GB @ > 500 GB/s
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Xeon	Phi Xeon	Phi
Xeon	Phi Xeon	Phi
Xeon	Phi Xeon	Phi

Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi
Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi
Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi

Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi
Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi
Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi

Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi
Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi
Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi

Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi
Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi
Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi

Haswell Haswell Haswell Haswell Haswell Haswell Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi

Haswell Haswell Haswell Haswell Haswell Haswell Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi
Haswell Haswell Haswell Haswell Haswell Haswell Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi Xeon	Phi

Haswell Haswell Haswell Haswell Haswell Haswell Haswell Haswell Haswell Haswell Haswell Haswell
Haswell Haswell Haswell Haswell Haswell Haswell Haswell Haswell Haswell Haswell Haswell Haswell
Haswell Haswell Haswell Haswell Haswell Haswell Haswell Haswell Haswell Haswell Haswell Haswell

Haswell Haswell Haswell Haswell Haswell Haswell Haswell Haswell Haswell Haswell Haswell Haswell
Haswell Haswell Haswell Haswell Haswell Haswell Haswell Haswell Haswell Haswell Haswell Haswell
Haswell Haswell Haswell Haswell Haswell Haswell Haswell Haswell Haswell Haswell Haswell Haswell

Haswell Haswell Haswell Haswell Haswell Haswell Haswell Haswell Haswell Haswell Haswell Haswell
Haswell Haswell Haswell Haswell Haswell Haswell Haswell Haswell Haswell Haswell Haswell Haswell
Haswell Haswell Haswell Haswell Haswell Haswell Haswell Haswell Haswell Haswell Haswell Haswell

Haswell Haswell Haswell Haswell Haswell Haswell Haswell Haswell Haswell Haswell Haswell Haswell
Haswell Haswell Haswell Haswell Haswell Haswell Haswell Haswell Haswell Haswell Haswell Haswell
Haswell Haswell Haswell Haswell Haswell Haswell Haswell Haswell Haswell Haswell Haswell Haswell

Haswell Partition:

Classified Network

Haswell Cabinets Accepted Dec 2015
KNL Cabinets Accepted Dec 2016

KNL Partition:

Acceptance Network

Accepted Dec 2016
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• Two Partitions
– Haswell (In Classified Production Environment)
– KNL (Open Acceptance Network)
– Separate Aries networks

• Merger Preparation
– ACES Systems Integration/Production and Cray Team

§ Meetings to discuss every detail of the merger
§ Risk mitigation and fallback plans

- Run as two separate platforms
- Revert to Moab
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• System Changes During the Merge
– Convert scheduler from Moab to Slurm
– Enable cray hugepages as the default
– Increasing the number of DataWarp and LNET Routers
– Reconfiguring repurposed nodes in the KNL partition
– Almost all changes were staged in version control before the merger to reduce downtime
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• Slurm Testing
– Trinity Phase 2 was configured to reboot between schedulers for testing within an 8 hour schedule 

maintenance window
§ Allowed for scale testing of slurm
§ Test, modify, retest of configuration changes
§ Saved approximately a week of downtime

• Slurm Challenges
– Loss of transparent process placement that ALPS provided

§ Required testing and documentation to find equivalent functionality
– PMI_TIMEOUT issues due to loss of transparent ALPS functionality

§ Mitigated by sbcast and increasing the default PMI_TIMEOUT
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• Cray, the linux kernel, and Slurm issues
– Hugepages

§ Enabled by default for users during the merger
§ Cray’s hugepage memory usage was not accounted for by the kernel

- Caused out of memory issues that killed nodes
- OOM messages were not being passed back to the user
- Further complicated by ACES use of vm.overcommit to limit memory usage which triggered 

this failure

• Scale issues with rebooting KNLs for mode changes
– Over 2K nodes caused large perturbances in Slurm’s ability to schedule jobs
– Disruptive to the entire network
– ACES decided to disable user definable KNL modes for all but 100 nodes
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Read, N-1 
4 PPN, 8 GiB/node, 1 MiB xfer

Write, N-1 
4 PPN, 128 GiB/node, 1MiB xfer
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• DataWarp functionality is tightly coupled to the Work Load Manager (WLM),
– Changed from Moab to Slurm during the merge.  
– Most functionality has been re-established after the merge to stage-in and stage-out data
– Support for several complex workflows involving chained jobs are still unavailable under 

Slurm and are actively being developed.

• DataWarp is great for performance, but we need it to function as originally 
designed with ALPS
– Need better support for ensuring stage out of files prior to execution of a dependent job 
– Need a more flexible method to stage in data  generated from a “parent job” prior to 

invocation of the associated “child job” 
– Current workarounds - either don’t stage in files or use a persistent burst buffer allocation
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• 2-region feature designed and implemented in reference version 2 
by Mike Heroux in September 2016
– Allows for running on both Haswell and KNL nodes of Trinity

• 2-region feature integrated into Intel-optimized version by 
Alexander Kalinkin in Sept 2016
– “Engineering” release, with licensing restrictions

• Advice on KNL thread/core assignment provided by Alexander 
Kalinkin
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• Run on 9372 Haswell and 9906 KNL nodes
– 9372 * 2 ranks/node = 18744 ranks * 16 threads/rank
– 267 KNL * 2 ranks/node = 534 ranks * 34 threads/rank
– 9639 * 4 ranks/node = 38556 ranks * 34 threads/rank
– 57834 ranks total
– Process grid (nx,ny,nz) = (27,42,51)
– pz=13, so 27x42x17 processes in region 1, 27x42x34 in 2
– Local grid 160x160x112 in region 1, 160x160x152 in 2
– QuickPath option used (single iteration through timed region)
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Pink = HSW ZL
Green = KNL ZL
Blue = KNL ZU

MPI Halo
Exchange

3D process grid
Exploded in Z

Legend
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• What SLURM can do (--multi-prog)
– Separate executables for separate nodes
– Order ranks by role (HSW_ZL, KNL_ZL, KNL_ZU)
– Separate OMP_NUM_THREADS for separate nodes
– Separate –nz arguments for separate regions

• What SLURM cannot do
– Separate –ntasks-per-node for separate nodes
– Separate –cpus-per-task for separate nodes
– Separate –cpu_map for separate nodes

• Trinity support code developed to handle this
• Dual-partition sbatch option (-p any) provided by Paul Peltz
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• Multiprog_driver
– Launched by srun
– Detects node type (/proc/cpuinfo)
– Launches xhpcg_avx2 or xhpcg_knl, as appropriate
– For xhpcg_knl, uses numactl –membind=1

• Post-MPI_Init setup
– Determine role of rank (HSW_ZL, KNL_ZL, KNL_ZU)
– Reorder ranks (HSW_ZL first, then KNL_ZL, KNL_ZU last)
– Pin ranks and threads to cores
– “Bench” superfluous ranks on lower-region nodes
– Adjust NZ parameter to match ZL or ZU, as appropriate
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• Direct-Simulation Monte-Carlo (DSMC) code
• DSMC accurately models high-altitude hypersonic re-entry flow, 

resolves length scales at the particle level
• Non-equilibrium, non-continuum conditions cannot be simulated 

with traditional CFD or reproduced experimentally
• Can be used for:

23

SpacecraftRe-entry Porous MediaTurbulence Instabilities
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• A heterogeneous run on full Trinity was performed using SPARTA, March 9-
12

• Over 19,000 nodes (9200+ Haswell and 9900+ KNL) and 1.2 million MPI 
processes were used

• The run was successful, with SPARTA running for several hours with good 
performance

• Several challenges encountered, and some unresolved issues remain

24
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• DSMC applied to simulate nearly incompressible turbulent energy 
evolution for Reynolds numbers 450-500

• In the incompressible limit, the DSMC simulations agree with 
corresponding Navier-Stokes Direct Numerical Simulation (DNS) 
results 

• Offers the possibility of gaining new insights into turbulence by 
directly linking molecular relaxation processes to macroscopic 
transport processes

• Studied by Michael Gallis (Sandia) using Sequoia. For this DAT, 
used same parameters as Sequoia to verify correctness and 
compare performance

• 3D grid with 8 billion grid cells (2000 x 2000 x 2000), ~45 
particles/cell = 360 billion particles. Using 1.2 million MPI ranks = 
~300,000 particles/MPI rank

25

Turbulence
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• Haswell = 32 physical cores x 2 hardware threads, AVX2 vector extensions
– Configuration:  64 MPI ranks, 1 thread / rank (using hyperthreads for MPI ranks)

• KNL = 68 physical cores x 4 hardware threads, AVX-512 vector extensions
– Configuration: 64 MPI ranks, 4 threads per rank (using hyperthreads for Open MP)

• Currently can’t launch more than one srun command. Must use same sbatch and srun
options for each node type. I.e. must use the same --cpu_bind” and “-c” values. Must either 
use same number of MPI on each node, or use a wrapper to “bench” (i.e. send to MPI 
finalize) extra MPI ranks and create a sub communicator that excludes benched ranks
– Build one executable for Haswell: use Kokkos Serial backend (no OpenMP), AVX2
– Build one executable for KNL: use Kokkos OpenMP backend, AVX-512

• Use a driver program written by Mike Davis (Cray) to stitch the two executables together: 
the driver program determines the node type and then launches either the HSW or KNL 
executable, based on node type

26
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• 6 hardware failures during the full Trinity run: 3 SIGBUS errors and 3 node failures
– Node failures, such as a kernel panic, cause an entire node to go down until it is rebooted by admins
– SIGBUS errors do not cause the node to go down, but will kill the srun command

§ Workaround for SIGBUS: sbcast to /tmp and statically link executable

• Addressing Hardware Failures:
– Put srun command in a loop. Write out checkpoint files frequently, and automatically restart using the latest 

checkpoint file. Request extra nodes in case of node failure.
§ Worked perfectly for SIGBUS errors, job automatically restarted
§ Didn’t work for node failures, may work in future Slurm version

– Submit multiple jobs to queue instead of just 1 robust job. Leave out a few nodes in case of node failure.
§ Worked for node failures (but job has to wait through queue if not in DAT)

– Use DataWarp burst buffers to reduce file I/O time (each checkpoint file was 20+ TB)

27
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• Initially, performance was much slower than expected (but the code was running 
correctly and making forward progress)
– Built-in timers showed most of the time was spent outside of normal computation (particle move, sort, collide) 

and in the “other” category à suggests severe load imbalance
– If even only one node is running slow, the performance of the entire simulation will be bad due to MPI barriers 

or other synchronization points in the program

• Addressing Slow Nodes (simulation ran over 20x faster after mitigations):
– Add timers to compare performance of slowest KNL MPI rank vs slowest Haswell MPI rank. 

§ Slowest Haswell is many times slower

• Find hostname of slow Haswell node using a script and exclude slow node from allocation 
• Repeat to find and exclude a second bad Haswell node

28
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xRAGE can model a variety of multi-physics problems

Provided by:  Galen Shipman, LANL

• Asteroid impact simulations 
• Shape charge experiments 
• Inertial Confinement Fusion  

simulations 

Morrison, David, e al. "Asteroid Generated Tsunami: Summary of 
NASA/NOAA Workshop." (2017).

Masser, Thomas, et al. Shaped Charge Comparisons. Pagosa and xRage
Code Study. No. LA-UR-17-27355. Los Alamos National Laboratory 
(LANL), 2017.

Haines, Brian M., et al. "The effects of convergence ratio on the implosion 
behavior of DT layered inertial confinement fusion capsules." Physics of 
Plasmas 24.7 (2017): 072709.
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Recent work in optimization of communication
• xRAGE makes extensive use of alltoall and 

allreduce communication 
• Alltoall used to build communication pairs during 

mesh reconfiguration (your neighbors can change 
every cycle) 

• Identified this scalability bottleneck with the COE 
using CrayPAT

• Implemented an RMA based alltoall solution that 
takes advantage of sparsity 

• Incorporated a asynchronous barrier optimization 
allowing overlap of synchronization and use of the 
RMA window 

• Cray delivered an optimized Cray MPICH for our 
RMA use-case à DEC PE
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Significant Scalability Improvements in AMR via RMA 
Alltoall and Comm Caching 

• The results are outstanding! 
• ~3x performance improvement at 

scale 
– Total application runtime!

• RMA based Alltoall
• Caching and reuse of AMR 

communication pattern
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Improvement in building AMR to structured mesh map 
• xRAGE can generate mappings between the AMR mesh and a 

structured mesh 
• At each cycle the AMR mesh changes and the mapping must be rebuilt
• In some problems this was taking up to 60% of runtime (1200 Nodes on 

KNL) 
• Reduced this time to 8% of runtime 
• Identifying the performance issue was challenging
• Working with the COE we identified a load imbalance in the calculation of 

the topology intersections using CrayPAT, a handful of ranks were taking 
a degenerate code path

• LANL staff then implemented a in-place heap sort of the mesh topology 
and a binary search significantly reducing the load imbalance

• Improved memory usage reporting (hugepages not included in RSS)
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• The complete heterogeneous Trinity supercomputer, with both Haswell and 
KNL nodes, is delivering valuable production computing time to the NNSA to 
solve significant problems and provide new opportunities for scientific 
investigation.  

• The journey of deploying Trinity and the challenges presented by the scale 
and complexity of the system are becoming the norm as each generation of 
supercomputer pushes the limits.  
– Beyond the initial deployment, each software upgrade to Trinity requires dedicated efforts 

to ensure performance expectations persist through its lifetime. 
– It is only through close collaborations with our vendor partners that we are able to stand 

up these systems that are essential to pushing the limits of our scientific knowledge.
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Questions?


