Using CAASCADE and CrayPAT for Analysis of HPC Applications

Reuben D. Budiardja, M. Graham Lopez,

Oscar Hernandez, Jack C. Wells
Oak Ridge National Laboratory,
Oak Ridge, TN 37831, USA

Jisheng Zao, Vivek Sarkar
Georgia Tech, Atlanta, GA, USA

{reubendb, lopezmg, oscar, wellsjc} @ornl.gov

Abstract—In this paper we describe our work
on integrating CAASCADE with CrayPAT to obtain
both static and dynamic information on characteris-
tics of high-performance computing (HPC) applications.
CAASCADE — Compiler-Assisted Application Source
Code Analysis and Database—is a system we are de-
veloping to extract application parallel programming
language features from its source code by utilizing
compiler plugins. CrayPAT enable us to add runtime-
based information to CAASCADE’s feature detection.
We present results from analysis of HPC applications.

I. INTRODUCTION

Understanding characteristics ~ of high-
performance computing (HPC) applications
quantitatively is essential for many reasons,
such as informing the co-design efforts for
hardware and software ecosystem, developing
and implementing future language standards and
directives, prioritizing development of compiler
and library features, and developing algorithms
more amenable to parallelization on future
hardware platforms. These characteristics may
include traits relatively straightforward to gather,
such as the programming languages used by an

Notice of copyright: This manuscript has been authored by
UT-Battelle, LLC under Contract No. DE-AC05-000R22725 with
the U.S. Department of Energy. The United States Government
retains and the publisher, by accepting the article for publication,
acknowledges that the United States Government retains a non-
exclusive, paid-up, irrevocable, worldwide license to publish or
reproduce the published form of this manuscript, or allow others
to do so, for United States Government purposes. The Department
of Energy will provide public access to these results of federally
sponsored research in accordance with the DOE Public Access Plan
(http://energy.gov/downloads/doe-public-access-plan).

application and the external libraries it depends
on, to traits that are more embedded into the
application, and hence harder to characterize
from the onset, such as programming motifs,
memory-access patterns, and whether the code is
amenable to low-level (compiler) optimizations.
However, so far there has not been a compre-
hensive and systematic way to gather these quanti-
tative data on applications even for characteristics
that should be straightforward to capture. The typi-
cal ways of data collection—including written user
surveys and manual data collection—are often
labor intensive, error prone, and easily outdated
as applications develop. On the other hand, new
tools adoption by application programmers is very
hard, if the tool is not production quality or part
of their existing application development process.
To address this issue, we are develop-
ing a system for analyzing HPC applica-
tions called CAASCADE: Compiler-Assisted
Application Source Code Analysis and Database.
CAASCADE is a system that collects infor-
mation about how applications are constructed
directly from the source code and stores this
information in a database for further analysis.
Programming paradigm, language standards and
directives, parallelization method, and external
library dependencies are only a few examples
of application feature detection that we can do
with CAASCADE. Results are stored into a stan-
dardized relational database transparently to users,
enabling future queries and aggregate analysis
across a broad-range of applications. In an earlier
work, we demonstrated CAASCADE’s ability in

extracting features of several HPC applications
[1].

Although static (i.e. compile-time) analysis
such as this by itself is already useful to obtain
quantitative data on applications, a connection to
results obtained via a dynamic, runtime analysis
on typical production jobs for such applications
would even be more valuable. One way to do
this is by integrating information collected by a
runtime-based tool such as CrayPAT.

Within this paper, we show our results in
incorporating CrayPAT information to augment
CAASCADE capability for analyzing source
code of HPC applications. The rest of the paper
will be organized as follows. In §II we give
a brief overview of CAASCADE and describe
how it works. In §III we show how we in-
stalled CAASCADE on a Cray XK7 system, the
OLCEF Titan supercomputer. We present examples
of features and statistics we can extract from
HPC applications using CAASCADE in §IV. Our
concluding remarks and a brief discussion of our
current future plans are in §V.

II. CAASCADE OVERVIEW

CAASCADE consists of a mechanism for
gathering information directly from application
source code and a mechanism for storing this in-
formation into a database. For maximum accuracy
and flexibility, CAASCADE gathers its informa-
tion from the intermediate representations (IR) of
production compilers such as the GNU Compiler
Collection (GCC)! compiler at their highest level
of representation that is close to the source code.
Once collected from the compiler, statistics and
detailed source code characteristics are assembled
at link time and stored in a back-end database in
order to most generally support further analysis.
This approach requires minimal intervention from
the application developers as all they need is to
turn on/off the collection via a module installed
on the system.

In the following subsections we describe in
more details the information gathering and storing
mechanisms in CAASCADE.

"https://gce.gnu.org/

A. Compiler Plugins

The reference version of the data-gathering
component of CAASCADE is implemented using
the plugin facility exposed by recent versions of
the GCC. These plugins are loaded as dynamic
libraries at the time of compiler invocation, and
as they passively gather data from various internal
transformation passes, they do not modify the
resulting executable instructions, do not require
debugging mode support, and work with any level
of optimization enabled. By wrapping the plugin
load at invocation and producing binaries that
are suitable for production runs, CAASCADE
gathers information about production applications
being used on the system in a completely trans-
parent way to the user.

To understand an application’s behaviors and
language usage, it is necessary to represent the
application as a set of features that can serve as
inputs to the analytic tools. The types of pro-
gram features vary, including syntax level features,
control-flow, and data-flow information. From the
static analysis point of view, these features lie
in different levels of the compiler’s intermediate
representations (IR). Thus, building the feature
collection mechanism inside a compiler and in-
tercepting information from the different levels of
IR is a feasible approach.

As stated, we built our feature collector as
GCC compiler plugins, which can intercept the
information from any level of GCC IR we specify.
In this work, we are focusing on the syntax level
features, so our plugins work at abstract syntax
tree (AST) level; the plugins’ feature collector
traverses the AST to gather the information that
we need.

The extracted information should be rich
enough to help post-analysis (e.g. a static ana-
lyzer) build the program structure graph that hier-
archically presents the major program constructs,
including functions, loop nests, and parallel con-
structs. To establish the program structure graph,
the call graph is built and loop nests, parallel con-
structs, and calls are presented as tree structures
in each function or program unit.

The two major programming languages we ini-
tially focus on for our developing system are C++
and Fortran. We therefore have built plugins for
the following compilers.

1) GNU g++: For C/C++ application, we start
at the global namespace level and recursively
collect the following features:

e The class information, which includes
namespace, class fields, functions, and class
hierarchy information; The virtual functions
are identified to help build the call graph
properly;

o The function features, which includes:

— The function signatures: function name,
return type, argument types;

— The number of statements;

— The number of arithmetic expressions;

— A set of loops, each of which includes
the loop type (i.e. do-while, while,
or for loop), loop iterators, level of loop
nest, the connection to the parent node
which can be a loop, a parallel construct
or function body;

— A set of parallel constructs, each of
which includes the OpenMP and Ope-
nACC parallel tasks (e.g. parallel
for loop), each parallel construct should
be connected to its parent node which
can be a loop, a parallel construct, or
function body;

— A set of call sites, each of them includes
the target function if it is available, the
receiver class type, arguments’ types,
and the parent node which can be a loop,
a parallel construct, or function body.

2) GNU gfortran: For the Fortran applications
we collect the following: modules, submodules,
common blocks and procedures symbols, vari-
ables, and constants. Additionally, we collect in-
formation about executable statements (and their
operands and where they belong), directive-based
programming models, and call-sites.

Specifically, for the different components of a
Fortran program we gather the following informa-
tion:

o For the program symbols we collect their
names, their types and attributes.

« For variables, we collect their scope (i.e. the
namespace they belong to) and their type (i.e.
primitives, derived-types, classes, or arrays)
along with the ‘kind’ information. Further-
more, we also collect the following variables’
attributes:

— For arrays, we capture their dimensions
and sizes (if known statically), and if
their types are explicit, deferred, as-
sumed size or rank, or implied shape.
We also capture if the arrays are For-
tran co-arrays and which are their co-
dimensions.

— For characters, we collect the characters
symbols and their lengths

— Symbol attributes for variables such
as: allocatables, artificial, asynchronous,
dummy arguments, contiguous, exter-
nal, optional, pointer, protected, volatile,
threadprivate, target of a pointer, result,
entry, ISO_BINDING, etc.

o For executable statements, we collect the
operand information and classify these
operand into the language standard to which
they belong. These include type statements.
The Table I contains the type of statements
we detect and how we classify them into
the different Fortran standards. We categorize
them by the first time they appeared in the
Fortran standards starting from Fortran 77 to
Fortran 2008. The table reflects the statement
types that gfortran can detect as of GCC
version 7.2.

Additionally, the plugin is able to detect
OpenMP and OpenACC directives, the different
types of directives in OpenMP 4.5 and OpenACC
2.5, the number of statements inside the lexical
extent of the directive region, and callsites called
inside parallel regions.

Statement Type
Event Post
Event Wait
Nested Block
Critical

Error Stop
Concurrent
Sync All

Sync memory
Sync Images
Lock

Form Team
Change Team
Sync Team
Fail Image
FLush

Wait

Select Type
Assign Call
Exit

Type Bound Procedure Call
Computed Call
Select

Forall

Transfer
Pointer assignment
Init Assignment
Where

Cycle

Allocate
Deallocate
Block
Assignment
Label Assignment
Goto

Call

Return

Entry

Pause

Stop

Continue

If

Arithmetic If
Do

Do While

End Procedure
Open

Close

Read

Write

10 Length
Backspace
End File
Inquire
Rewind

Fortran Standard
Fortran Ext
Fortran Ext
Fortran 2008
Fortran 2008
Fortran 2008
Fortran 2008
Fortran 2008
Fortran 2008
Fortran 2008
Fortran 2008
Fortran 2008
Fortran 2008
Fortran 2008
Fortran 2008
Fortran 2003
Frotran 2003
Fortran 2003
Fortran 2003
Fortran 2003
Fortran 2003
Fortran 2003
Fortran 95
Fortran 95
Fortran 95
Fortran 90
Fortran 90
Fortran 90
Fortran 90
Fortran 90
Fortran 90
Fortran 77
Fortran 77
Fortran 77
Fortran 77
Fortran 77
Fortran 77
Fortran 77
Fortran 77
Fortran 77
Fortran 77
Fortran 77
Fortran 77
Fortran 77
Fortran 77
Fortran 77
Fortran 77
Fortran 77
Fortran 77
Fortran 77
Fortran 77
Fortran 77
Fortran 77
Fortran 77
Fortran 77

GCC opcode
EXEC_EVENT_POST
EXEC_EVENT_WAIT

EXEC_END_NESTED_BLOCK
EXEC_CRITICAL
EXEC_ERROR_STOP
EXEC_DO_CONCURRENT
EXEC_SYNC_ALL
EXEC_SYNC_MEMORY
EXEC_SYNC_IMAGES
EXEC_LOCK_UNLOCK
EXEC_FORM_TEAM
EXEC_CHANGE_TEAM
EXEC_SYNC_TEAM
EXEC_FAIL_IMAGE
EXEC_FLUSH
EXEC_WAIT
EXEC_SELECT_TYPE
EXEC_ASSIGN_CALL
EXEC_EXIT
EXEC_CALL_PPC
EXEC_COMPCALL
EXEC_SELECT
EXEC_FORALL
EXEC_TRANSFER
EXEC_POINTER_ASSIGN
EXEC_INIT_ASSIGN
EXEC_WHERE
EXEC_CYCLE
EXEC_ALLOCATE
EXEC_DEALLOCATE
EXEC_BLOCK
EXEC_ASSIGN
EXEC_LABEL_ASSIGN
EXEC_GOTO
EXEC_CALL
EXEC_RETURN
EXEC_ENTRY
EXEC_PAUSE
EXEC_STOP
EXEC_CONTINUE
EXEC_IF
EXEC_ARITHMETIC_IF
EXEC_DO
EXEC_DO_WHILE
EXEC_END_PROCEDURE
EXEC_OPEN
EXEC_CLOSE
EXEC_READ
EXEC_WRITE
EXEC_IOLENGTH
EXEC_BACKSPACE
EXEC_ENDFILE
EXEC_INQUIRE
EXEC_REWIND

Table I: Types of executable statements captured by CAASCADE and classification by Fotran Standards

B. Database Backend

The information gathered by the compiler plu-
gins is formatted as self-describing JSON?. The
JSON string is then compressed with z1ib?,
encoded with Base64 algorithm4, and embedded
back into the object file resulting from the com-
pilation itself as an ELF section header. To avoid
name collision of the section header when multiple
object files are archived into a .a library file,
the section name is prepended with the object
file name, which should be unique in an archive.
This technique of embedding the CAASCADE
compiler plugin data into the object file ensures
that the information is as ‘portable’ (in the sense
of availability) as the object file itself.

An executable is built by linking multiple object
files together by the linker. It is in this linking
phase that we have the opportunity to collect
all the data from the compiler plugins that are
already embedded into the object files making
up the executable. To do this, we leverage the
mechanism employed by XALT [2]. XALT col-
lects software and library usage by intercepting the
linker and transmitting the information through a
choice of transmission mechanism to be stored in
a database. We extend X ALT’s linker-wrapper and
transmission method to additionally go through all
object files involved in the linking step, extract the
previously embedded CAASCADE plugin data,
and transmit the data for eventual database storage.

Figure 1 shows the database schema of the
relevant XALT tables with a new table con-
taining source code information gathered by
CAASCADE compiler plugins. When a new ex-
ecutable is produced by a linker, a new entry
is added to the table xalt_link with a new
link_id, which contains information about the
executable such as the builder, the system on
which it was built, and the absolute path of the
executable. The table xalt_object stores in-
formation about an object file as uniquely identi-

Zhttps://www.json.org/
3http://zlib.net/
*https://tools.ietf.org/html/rfc3548 html

fied by the object path and its SHA-1 hashes’. If
an object file does not exist in this table during
linking, a new entry is created. Since many object
files are needed to build an executable, the one-
to-many relationship between the executable in
xalt_link table and xalt_obJject table is
represented by the table join_link_object.
As a new entry is created in xalt_object ta-
ble, if that object file contains CAASCADE plu-
gin information, a new entry is also created in ta-
ble caascade_source. In particular, the JSON
string containing the information from the com-
piler plugin is stored in the column source_-
proginfo, while other meta-data information
about the source code are stored in other columns.

C. Web-based Query Interface

A prototype web-based query interface has been
developed within the CAASCADE system to eas-
ily extract information from our database. Within
the interface, one can search for a particular
application and generate prepared plots on-the-
fly for the selected application. All plots used in
§IV were generated from this web-based interface.
Additionally, one can drill down to the individual
source file from which the executable was gen-
erated to look at the JSON output generated by
CAASCADE compiler plugins. Figure 2 shows a
screenshot of our web-based query interface.

III. INSTALLATION

We aim to make CAASCADE work as trans-
parently as possible to the users. Users should be
able to just load the appropriate modulefile for
CAASCADE to collect data seamlessly without
further changes to the application’s build system
or workflow. Although CAASCADE is not cur-
rently deployed in production yet on our systems,
this "just-works’ principle guides our development
practice.

The GCC compilers require that the command-
line parameter ~fplugin=file to be specified
to load a compiler plugin. To avoid exposing users
to this requirement, we provide scripts to wrap

>http://www.fags.org/rfcs/rfc3174.html

| xalt_function v
func_id INT{11)

| join_link_function ¥ 4
function_name VARCHAR{255)

|
jain_id INT(11) |
|

@ func_id INT(11) _ L
@ link_d INT{11)
- _| caascade_source v
\-\F source_id INT{11)
+ > source_path VARCHAR(1024)
"] xalt_link : v > hash_id CHAR{40)
link _id INT(11) » language VARCHAR(54)

» uuid CHAR(36) » compiler YARCHAR(1024)
> hash_id CHAR(40)

* date DATETIME

#link _program ¥ ARCHAR(G4)

> link_path VARCHAR{1024)

#link _module_name VARCHAR(E4)
#link_line BLOB

> cwd VARCHAR(1024)

build_user VARCHAR(64)

build_syshost VARCHAR(64)

2 compile_cmd TEXT

» compile_dir VARCHAR{1024)

2+ object_path VARCHAR(1024)
2+ object_hash CHAR(40)

» directives ¥ ARCHAR(1024)

@ obj_id INT{11)

source_proginfo MEDIUMTEXT
build_epoch DOUBLE

timestamp TIMESTAMP

» build_epoch DOUBLE »
» exit_code TINYINT(4) N4
» exec_path VARCHAR(1024) :li:
> —| xalt_object v
* obj_id INT{11)
! » object_path VARCHAR(1024)
* » gyshost VARCHAR(B4)

_1 join_link_object ¥ { — #| hash_id CHAR(40)

join_id INT(11) |
@ obj_id INT{11) —
@link_id INT(11)

smodule_name ¥ ARCHAR(B4)
timestamp TIMESTAMP

> lib_type CHAR(Z)

»> »>

Figure 1: Database schema of a subset of XALT
tables with CAASCADE source table.

the calls to the real compiler commands (e.g.
gfortran, g++). The wrapper scripts add the
required command-line option. Listing 1 shows
our wrapper script for the gfortran compiler.
The compiler plugins have to be built for each
GCC versions we want to use. The wrappers
provide the facility to select the correct plugin
version.

On OLCF Titan, we provide modulefile that
prepend environmental variable SPATH with the
location of the wrapper script. The modulefile also

gloran reubendt 20180400 22:28:45 than
gorran reupenan 20170810 181317 tran
glorran reupend 2017-08-10 14:11:42 tan

Figure 2: Screenshot of CAASCADE web-based
query interface.

Listing 1: CAASCADE compiler wrapper for
gfortran

my_path=$0
my_name=$ (basename Smy_path)
for exe in $(type —p —a Smy_name); do
if [Sexe == Smy_path]; then
continue
else
realcomp=S$exe
break
fi
done

#-— Get compiler version
version=$ ($Srealcomp ——version \
| head -n 1 | awk {’print $4’'})
case "$version" in
"6.3.0")
plugin=caascade_6.3.0_f.so
r7.2.0")
plugin=caascade 7.2.0_f.so
78.0.1")
plugin=caascade_8.0.1 f.so
*)
Srealcomp "s$@"
exit $?
esac
Srealcomp \
—fplugin=${CAASCADE, DIR}/libexec/Splugin "S@"

@ Fortran 95
@ Fortran 90
Fortran 2003

32.8%

Figure 3: Distribution of Fortran language stan-
dard in GENASIS code from the static (left) and
dynamic (right) analysis.

sets the environmental variable SCAASCADE_ -
DIR. This setup works well even with Cray’s
provided compiler wrappers (e.g. CC for C++ and
ftn for Fortran); a Cray’s compiler wrapper calls
CAASCADE’s compiler wrapper which in turns
calls the real compiler driver (e.g. gfortran or

g++).

IV. RESULTS

In this section we show results from analyzing
applications with CAASCADE as augmented by
performance information from CrayPAT.

A. GENASIS

The first application we look at is GENASIS,
an astrophysics simulation framework targeted at
large-scale computing [3] written in Fortran.

A feature of the CAASCADE compiler plugin
for gfortran is in identifying the minimum
Fortran language standard needed to compile a
program unit. Summing this up across all of the
source files of an application, we can then get a
distribution of the Fortran language standard used
by that application. This tells us, for example,
how much of the application only requires Fortran
90 standard, and how much of the application
requires Fortran 2003 standard statement wise.
Figure 3 shows the Fortran standard distribution
for the code GENASIS.

The left plot of Figure 3 is simply the aggregate
of the number of program units required the spec-
ified Fortran standard. This result comes directly
from our compiler plugin which we label as static
result.

The right plot of Figure 3 is the same ag-
gregation except in this case we weighted the
count with sampling results from CrayPAT profile.
To obtain this result, we built GENASIS with
perftools-1lite and ran a test job represen-
tative of a production job. A profile output from
this job can then be obtained using pat_report,
which gives us the number of sampling for each
subroutine, typically ordered by sample count. The
number of sampling becomes the weight factor
for that program unit. The dynamic result simply
comes from multiplying the weight by the static
value. To avoid completely masking program units
that do not show up in CrayPAT profile, we set a
floor value for the weight to 0.01.

Figure 3 shows complementary data answering
slightly different facets of the question “what
(Fortran) language standard gets used the most?”
In this case, Fortran 2003 is required the most
by the application developers and gets written
into the code the most frequently. However, the
most time consuming program units (i.e. what gets
executed the most) are subroutines only requiring
Fortran 90 standard. This is perhaps not surprising,
since the major addition of Fortran 2003 standard
concerns with data structure and object orientation
features. These features likely increase developer’s
productivity in building a complex application,
yet they are less useful to write computational
intensive kernels.

Information on the different data types used by
an application is also collected by our Fortran
compiler plugin. Figure 4 shows the distribution of
data types—scalars, arrays, allocatables, pointers,
and derived types—in GENASIS. The contrast of
data type usage for the static code (left) and at
runtime (right) is apparent. Derived types gets
written the most in the code yet scalars and
arrays contribute the most during execution. This
is in line with GENASIS development consensus
that compute intensive kernels operate on mostly
arrays. Derived types are also very useful for
managing data structure in a complex application,
however arrays and scalars are better in providing
compiler the most optimization opportunity for
compute intensive kernels.

@ arrays

@ pointers
allocatables

@ derived types

@ scalars

41.8%

Figure 4: Distribution of data types in GENASIS
code from the static (left) and dynamic (right)
analysis. Derived types are used the most in the
code, yet contribute the least during code execu-
tion.

ASSIGN
CALL
1

DO —
END_PROCEDURE I
DEALLOCATE |
BLOCK [——
POINTER_ASSIGN I
ALLOCATE | —
RETURN —
SELECT TYPE |E—
SELECT I—
INIT_ASSIGN I—
‘OMP_PARALLEL DO IE——
WRITE I—
IOLENGTH
EXIT I——
READ
DO WHILE [
PPC W

-
-]
3

1,000
ASSIGN

DO
OMP_PARALLEL DO
END_PROCEDURE
IF

WHERE

BLOCK

CALL

SELECT TYPE
CYCLE
POINTER_ASSIGN
SELECT
ALLOCATE
DEALLOCATE
RETURN
IOLENGTH
INIT_ASSIGN
WRITE

EXIT

DO_WHILE

10 100 1,000 10,000

Figure 5: Frequency of classified executable state-
ments in GENASIS code from the static (top) and
dynamic (bottom) results.

In Figure 5 we compare the executable state-
ments from static and dynamic results. Although
the distribution of statements is mostly similar,
dynamic result shows that loop-related operations
dominates.

One way to quantify the parallelization meth-
ods employed by an application is by counting
the number of calls to MPI subroutines and the

@ OpenMP
® vPI

90.6%

Figure 6: MPI and OpenMP parallelization method
in GENASIS as written in the code (left) and as
executed during runtime (right).

computecenterstatesk... I
computedensityveloci... I
setmetriccartesian [IINNINEGEGEEEEEEEEES
computeeigenspeedsf... INII—————
computefluence_Im_s... NG
applycurvilinear f d_... I
applycurvilinear_f_p_... I
computefluxes_hlic_k... I
computeeigenspeeds... INIIIEGGGGG_—_———
apply_eos_p_kerne! I
apply_eos_nr_e_kerne! NG
apply_eos_nr_t_kerne! I
setmetricspherical GGG
computedensity_Im_s... NG *
computearea_cs! [INIIIEG__—

60.0 67.5 75.0 825

Figure 7: OpenMP coverage for subroutines in
GENASIS. Only the top fifteen subroutines with
the most OpenMP coverage are shown for read-
ability.

number of executable statements inside OpenMP
directives. Figure 6 shows the results from our
plugin for GENASIS code. On the left plot we
see that OpenMP makes up about 90 percent of the
parallelization paradigm of the static code. During
execution most of the time is spent on code path
with on-node parallelization with OpenMP (right).
Figure 7 shows the percentage of OpenMP cov-
erage in each subroutine, although here we only
show the top fifteen subroutines with most cov-
erage. A hundred-percent coverage would mean
that every statement in that program unit is within
OpenMP pragma.

B. QMCPACK

QMCPACK is a many-body quantum Quantum
Monte Carlo code for high-performance com-
puting, written primarily in C++. Building this
application with CAASCADE allows us to ex-

@ arrays

@ pointers
allocatables

@ derived types

@ scalars

11.9%
/

7
i
S 113%
y

Figure 8: Distribution of data types in QMCPACK
from the static (left) and dynamic (right) analysis.

@® OpenMP
® mPI

87.7%

99.9%

Figure 9: MPI and OpenMP parallelization method
in QMCPACK as written in the code (left) and as
executed during runtime (right).

ercise our C++ plugin implementation. For the
runtime dynamic results, we ran the Nickel-Oxide
performance test from QMCPACK with CrayPAT,
which represent typical production jobs for this
application.

Figure 8 shows the data types in QMCPACK
as captured by CAASCADE C++ plugin. On the
left we see the data types distribution as they are
written in the code. On the right we see how the
distribution changes as weighted by the number of
sampling from CrayPAT profile data.

On Figure 9 we see the distribution of usage
frequency from static and dynamic results for
OpenMP and MPI. Figure 10 shows the OpenMP
coverage for subroutines in QMCPACK. Note that
from Figure 9 and 10 only we cannot infer the time
spent in either parallelization method. Rather, they
are indicators of how much of each parallelization
method are used by the developer to write the
application.

Figure 11 shows the different MPI calls and
their usage frequency in the application.

resetPsi

Gvectors

run
fix_phase_rotate_...
copyWalkers|
benchMark|
fix_phase_rotate_...
LMYEngineCost _...
resetRun
compute_phase
resetUpdateEngines
create_atomic_ce...
DoBreakup
filloverlapHamilto...
ReadOrbitalinfo_E...

o

5 10 15 20

Figure 10: OpenMP coverage for subroutines in
QMCPACK. Only the top fifteen subroutines with
the most OpenMP coverage are shown for read-
ability.

MPI_Bcast
MPI_Allreduce
MPI_Reduce
MPI_Gatherv
MPI_Gather
MPI_Scatter
MPI_Send
MPI_Recv
MPI_Scatterv
MPI_Allgather
MP1_Irecv
MPI_Isend
MPI_Constructor
MPI_Error_string
MPI_Recv_init

500 1,000 5,000

Figure 11: MPI subroutines and their usage fre-
quency in QMCPACK.

V. CONCLUSION

In this paper we present a new method for
analyzing characteristics of HPC application using
CAASCADE, a new system we are developing.
We have also shown how we use CrayPAT to
augment results from CAASCADE.

The CAASCADE system allows us to store
the information collected by its compiler plugins
transparently to users. Storing these information
into the database enables us to do further analysis
as needed, including, for example, performing
inter-procedural / inter-source-files analysis of an
executable, aggregating data from multiple exe-
cutables on a system, and searching for common
programming patterns across different executa-
bles. Although we have not done all of these

analyses, we plan to do so in the near future.

Our reference implementation of the data-
gathering component of CAASCADE is imple-
mented using the GCC plugin facility. However
other compilers, including the Cray Compiling
Environment (CCE), are widely used by the user
community. By way of this presentation, we hope
to engage both vendors and the community in
collaborative work such that compiler-based data-
gathering capability may be available in other
compilers as well.

ACKNOWLEDGMENT

This material is based upon work supported
by the U.S. Department of Energy, Office of
Science, Office of Advanced Scientific Comput-
ing Research, under contract number DE-ACO5-
000OR22725. This research used resources of the
Oak Ridge Leadership Computing Facility at the
Oak Ridge National Laboratory, which is sup-
ported by the Office of Science of the U.S. De-
partment of Energy under Contract No. DE-ACO5-
000R22725. This project is sponsored by the
Laboratory Directed Research and Development
(LDRD) Program of Oak Ridge National Labora-
tory, managed by UT-Battelle, LLC, for the U. S.
Department of Energy via the LDRD project 8277:
”Understanding HPC Applications for Evidence-
based Co-design”.

REFERENCES

[1] M. Graham Lopez, Oscar Hernandez, Reuben D. Bu-
diardja, and Jack Wells. Caascade: A system for static
analysis of hpc software portfolios. fo be published,
Proceedings of 6TH Workshop on Extreme-Scale Pro-
gramming Tools, 2018.

[2] Reuben Budiardja, Mark Fahey, Robert McLay,
Prasad Maddumage Don, Bilel Hadri, and Doug James.
Community use of xalt in its first year in production. In
Proceedings of the Second International Workshop on
HPC User Support Tools, HUST ’15, pages 4:1-4:10,
New York, NY, USA, 2015. ACM.

[3] Christian Y. Cardall and Reuben D. Budiardja. Genasis
mathematics : Object-oriented manifolds, operations,
and solvers for large-scale physics simulations. Com-
puter Physics Communications, 222:384 — 412, 2018.

10

