
ORNL is managed by
UT-Battelle for the US
Department of Energy

Using CAASCADE and
CrayPAT for Analysis of HPC

Applications

This research used resources of the Oak Ridge Leadership Computing Facility at the Oak
Ridge National Laboratory, which is supported by the Office of Science of the U.S.
Department of Energy under Contract No. DE-AC05-00OR22725.

Reuben D. Budiardja, M. Graham Lopez, Oscar
Hernandez, Jack Wells
Oak Ridge National Laboratory

Jisheng Zao, Vivek Sarkar
Georgia Tech

Motivation
How to answer these questions:

• What (combinations of) numerical libraries, compilers, parallelization methods
are used by applications and need to be supported (by vendors, center, …) ?

• What are relative priorities of Fortran, C, C++, and which features of the
language standard (e.g. F2003, F2008, C++03, C++11) need better support?

• Which applications use OpenMP and/or OpenACC?

• Which OpenMP and OpenACC features are used most, and are most urgent
for implementers to verify and optimize?

• Which applications use mixed language programming (e.g Fortran and C++)?
which language “drives” the other?

Motivation
Slightly harder questions:

• How should OpenMP or OpenACC address “deep copy”?

• How are application using communication libraries (1-sided, bulk transfers,
asynchronous task-based, …) ? What communication libraries are used and
need better hardware support?

Perfectly reasonable questions,
insufficient ways to get quantitative information

Motivation
Answers may direct:
• Standardization efforts

• Compiler and library implementation and optimization efforts

• System and architecture design

Where We Are Now

Source
code

?

surveys, interviews,
“institutional knowledge”

→ staff-time intensive!

Runtime
performance

System
monitoring

• automated
• transparent

to the user
• automated
• on-demand

XALT
CrayPAT RUR

STAT

Where We Need To Be

Source
code

Runtime
performance

System
monitoring

• automated
• transparent

to the user
• automated
• on-demand

XAL
T

CrayPAT RUR
STAT

Goals:
● Gather data in a

reproducible, automated
(non-human), and
transparent way

● Make it useful to humans

Compilers and linkers
know everything

“knowable’ about the
source code

CAASCADE: Compiler-Assisted Application
Source Code Analysis and Database

Compiler (GCC) Intermediate Representation

source
code

GCC front ends:
language-specific code

(follow language
specifications)

parser

genericizer gimplifier

optimizer 1 optimizer 2 optimizer N

RTL
generator

code
generator

...

executable
binary

GCC middle end:
language and machine

independent code

GCC back ends:
machine-dependent
(from architecture

descriptions)

plugin callback

application data
path

GCC components

`

 app
metadata
database

gcc
plugins

C
A

A
SC

A
D

E

Extracted Program Information

compiler version
programming language/model (string)
module/class/typedef
main program name
line numbers

subroutine name
number of exec statements
loops
max loop nest
call statements (int)
call chain (list)
total use modules (int)
module variables (int)
module variables (list)
module subroutines (list)
symbols (int)
symbols in other namespaces (int)
subroutines (int)
namelists (int)
statements (int)
statement types
module usage
standard usage
call site arguments (string)

Compile Event
and code metadata

Application structure

Extracted Program Information

OpenMP directives (int)
statements inside OpenMP (int)
OpenMP threadprivate variables (int)
OpenMP UDR variables (int)
OpenMP declare target variables (int)
OpenACC directives (int)
statements inside OpenACC (int)
contains subroutines (bool)
OpenACC subroutine (bool)
OpenACC declare create variables (int)
OpenACC declare copyin variables (int)
OpenACC declare deviceptr variables (int)
OpenACC declare
 device_resident variables (int)
OpenACC declare link variables (int)

variables (int)
array variables (int)
co-array variables (int)
pointer variables (int)
contiguous variables (int)
target variables (int)
allocatable variables (int)
artificial variables (int)
asynchronous variables (int)
optional variables (int)
dummy variables (int)
protected variables (int)
volatile variables (int)
abstract variables (int)
implicit type variables (int)
in namelist variables (int)
external variables (int)
parameters (int)

Application data structures Parallelization

Extracted Program Information – continued

common block variables (int)
derived types symbols (int)
derived types with components (int)
derived types with direct components (int)
derived types with indirect components (int)
derived types with array components (int)
derived types with allocatable components (int)
derived types with pointer components (int)
derived types recursive (int)

CAASCADE: High Level View

Parse

Source

Gimplify

CFG

RTL

ASM

code
metadata

Data synthesis
(compiler plugins)

Representation
(database)

HPC
co-design
database

CAASCADE on Titan

• “module load caascade” with PrgEnv-gnu

• Wrapped “g++” → “g++ -fplugin=caascade_c.so …”,
“gfortran” → “gfortran -fplugin caascade_f.so …”

• Wrapped linker (ld) to collect CAASCADE generated
JSON-formatted data for every object file

• Leverage XALT transmission mechanism to store data (e.g.
directly to DB, via syslog, HTTP broker, or file)

• Works transparently (no changes in application build process)

Results: GenASiS
An astrophysics simulation framework

written in Fortran

Distribution of Fortran Language Standard

Static Dynamic
• Considers runtime information

• Runs production job with
perftools-lite,
generate profile with pat_report

• Uses profile to re-weight compiler
plugin output → get a new
distributionProgram units (modules, subroutines)

requiring the specified minimum
language standard to compile

Distribution of Fortran Language Standard
what (Fortran) language standard gets used the most?

Static Dynamic
•

Program units (modules, subroutines)
requiring the specified minimum
language standard to compile

Distribution of Fortran Language Standard
what (Fortran) language standard gets used the most?

Static Dynamic
•

Program units (modules, subroutines)
requiring the specified minimum
language standard to compile

Required for application
developer’s productivity

Distribution of Data Types

Static Dynamic
•

Derived types gets written the most into the code, yet scalars
and arrays contribute the most during execution

Classification of Executable Statements

Static Dynamic

QMCPACK: Data Types Distribution
Many-body Quantum Monte Carlo code (C++)

Static Dynamic

E3SM: OpenMP Statements

Work in Progress

• Systematically answering driving questions (see “Motivation”
slides)

• Support for CUDA code
– Using LLVM (and also for for C, C++, Fortran)

• Tackling the “a.out problem”
– Information from IR can be used as code signatures

• Integrate more runtime information
– supporting other runtime-based tools / profilers in agnostic way

• Support from and integration with other compilers
– PGI started with -Msummary
– would love similar feature from Cray (CCE)

• Motifs detection (dense LA, sparse LA, spectral, structure or
unstructured grids, …)

