
API and Usage of libhio on XC-40 Systems

Nathan T. Hjelm, Howard Pritchard
Los Alamos National Laboratory

Los Alamos, NM
{hjelmn, howardp}@lanl.gov

Abstract—High performance systems are rapidly increasing
in size and complexity. To keep up with the Input/Output (IO)
demands of applications and to provide improved functionality,
performance and cost, IO subsystems are also increasing
in complexity. To help applications to utilize and exploit
increased functionality and improved performance in this more
complex environment, we developed a user-space Hierarchical
Input/Output (HIO) library: libhio. The current version of
libhio (v1.4.1) provides a number of features relevant to XC-40
systems including an HD5 plugin and support for Lustre and
DataWarp filesystems.

In this paper we discuss the libhio Application Programming
Interface (API) and its usage on XC-40 systems with both
DataWarp and Lustre filesystems. In addition, we describe the
HDF5 plugin and report its performance. Planned improve-
ments to the HIO HDF5 VFD will also be discussed.

Keywords-libhio; DataWarp; Cray; Aries; XC40; HDF5;
Parallel IO

I. INTRODUCTION

High performance systems are rapidly increasing in size
and complexity. To keep up with the Input/Output (IO)
demands of applications and to provide improved func-
tionality, performance and cost, IO subsystems are also
increasing in complexity. To help applications to utilize and
exploit increased functionality and improved performance in
this more complex environment, we developed a user-space
Hierarchical Input/Output (HIO) library: libhio. The current
version of libhio (v1.4.1.1) provides the following features
relevant to XC-40 systems:

• Support for automatic or fine-grained staging or data
from the DataWarp filesystem to the parallel file sys-
tem.

• Support for automatic space management on the
DataWarp filesystem.

• Support for setting file striping on both DataWarp and
Lustre.

• Provides a Lustre-optimized data layout for n → 1 IO
workloads.

• Support for both per-job and persistent DataWarp allo-
cations.

In this paper we discuss the libhio Application Program-
ming Intrface (API) and its usage on XC-40 systems with
both DataWarp and Lustre filesystems.

In addition to the libhio API, the libhio package also
provides an HDF5 interface via an HIO HDF5 virtual file

driver (VFD). We describe the minor modifications that need
to be made to use the HIO VFD in applications currently
using HDF5.

The rest of this paper is organized as follows. Section
III provides an overview of the API provided by libhio and
HDF5 support. Section VI details the expected usage and
configuratione of libhio on Cray XC-40 systems. Finally,
section VIII gives related works and concludes with future
work.

II. OVERVIEW AND BACKGROUND

This section provides background and a high-level
overview of libhio. This overview includes some of the
design goals and features relevant to Cray XC 40 systems.

A. About libhio

libhio is a user-space software package developed to
support writing application data to hierarchical data storage
systems. These are systems that may be comprised of one
or more logical layers including parallel file systems, burst
buffers (such as Cray DataWarp), and local memory or Solid
State Disks (SSDs). At the lowest level, libhio provides a
POSIX-like interface for reading and writing application
data. This interface includes blocking and non-blocking
read/write calls with both contiguous as well as strided (read
scatter/write gather) Input/Output (IO) operations. There
is currently no support in libhio to directly provided a
description of stored data. If desired an application can use
libhio as a backend to HDF5. The library also provides
support for automatic space managment on burst buffer
storage systems as well as automated fallback to alternate
write locations if a data store becomes unavailable.

libhio does not support parallel IO but instead supports
parallel-aware IO. This is needed to ensure the dataset
completion semantics guaranteed by libhio. At this time
libhio supports Message Passing Interface (MPI). Other
parallel programming models may be added in a future
version.

B. Motivation

The primary motivation for creating libhio was the deploy-
ment of DataWarp[1] at Los Alamos National Laboratory
(LANL). This new “burst-buffer” storage architecture was
expected to require application modification to handle the

movement of data from the DataWarp filesystem to Lustre.
By developing a new library and modifying applications to
use libhio we can add DataWarp support to applications
and also buffer them from changes as burst-buffer IO stacks
evolve and mature.

C. Namespace
libhio was designed to support both current and future data

storage technologies. We expect in the future data storage
systems may not have a POSIX-like “filesystem”. To support
these non-POSIX storage systems we designed libhio around
an abstract namespace. Each level of the abstract namespace
is represented by a libhio object and a set of APIs. The
namespace and associate libhio C-language object types are
as follows:

• Context: hio context t All data managed by an hio
instance.

• Dataset: hio dataset t A complete collection of files
associated with a particular type of data. For example,
all files of an n → n restart file. Each dataset has an
associated identifier that identifies the dataset instance.

• Element: hio element t Named data storage unit with
a dataset.

All libhio object types are derived from the opaque
C-language object hio object t. Any API taking an
hio object t will accept any of the above types.

D. Data Layout
In general libhio provides no guarantees of the phys-

ical structure of a dataset. In the case of POSIX-
like filesystems, however, the current implementation
of libhio will store all data associated with a con-
text, dataset, identifier triple in the sub-directory: con-
text name.hio/dataset name/identifier/. This behavior can be
modified by changing a configuration variable. See sec-
tion VI.

This directory and its sub-directories contain application
data as well as the configuration and performance infor-
mation associated with the dataset. It may also, in some
cases, contain information mapping the dataset data from
the underlying files to the application offset space. Future
releases of libhio may change this behavior but will remain
backward compatible.

E. HDF5 Plugin
An HDF5 plugin was developed to enable applications

using HDF5 to exploit libhio’s capabilities. The plugin
implements a virtual file device[2] to map the HFDF5 file
format to libhio’s namespace and data layout. HDF5 files
written using the plugin can be used with HDF5 utilities
such as hd5dump. The plugin is compatible with both HDF5
1.8 and 1.10 releases, as well as Cray-packaged versions
of HDF5. Minor modifications to HDF5 applications are
required to make use of the plugin. The plugin’s extensions
to the HDF5 api are described in Section III.

III. APPLICATION PROGRAMMING INTERFACE

This section gives a high-level overview of the APIs
provided by libhio for configuration and each level of the
abstract namespace. A subset of libhio APIs can be found
in Table I. A complete description of the libhio API can be
found in the documentation provided with libhio.

The APIs in libhio are defined to be local or collective.
A collective API must be called by all participating MPI
processes. An participating process is defined as an MPI
process that is a member of the MPI Communicator passed
to one of the context initialization functions. Unless specified
libhio API calls are not collective.

IV. CONFIGURATION INTERFACE

libhio provides a flexible configuration interface. The
basic units of configuration in libhio are known as control
variables. These variable are simple ”key = value” pairs that
allow applications to control specific libhio behavior and
fine-tune performance. Variables apply to specific libhio ob-
jects including contexts, datasets, and elements. All control
variables set on the lowest ranked participating MPI processe
are propogated to all other participating MPI processes
during collective libhio object APIs. Some variables, such
as debugging verbosity and tracing, can be set on an object
after one of these collective points to modify behavior of
a specific MPI process. libhio object configuration can be
modified through environment variables, input files (user
specified and global system configuration), and configuration
APIs. If a variable is set via multiple mechanisms the final
value will be set according to the following precedence:

1) System configuration (not yet implemented, highest)
2) libhio APIs
3) Environment variables of the form

HIO variable name
4) User-specified configuration file (lowest)
Variables set using the specific context, dataset, or element

name take precidence over globally-set variables.
1) File Configuration: During context creation a user can

specify a file that contains values for configuration variables.
These values can be specified globally and apply to any lib-
hio object or they can be specified to apply to a named libhio
object. The user-specified configuration file is passed as a
parameter to the context creation APIs; hio_init_mpi
and hio_init_single. The configuration file can be
divided into sections using keywords specified within square
brackets ([and]). The keywords currently recognized by lib-
hio are: global, context:context name, dataset:dataset name,
and element:element name. Variable values not within a sec-
tion, by default, apply globally. Generally, any line beginning
with a # character is considered a comment and ignored by
the configuration parser. For a configuration example see
Figure 1.

If desired an application can also specify a string prefix
that will be used to only match specific lines in the input file.

This allows the application to add hio specific configuration
parameters to an existing file. This string prefix may include
the # character.

2) Environment Configuration: libhio also supports using
environment variables for configuration. These variable are
of the form:

• HIO variable name - For variables that apply globally.
• HIO context context name variable name - For con-

text specific variables.
• HIO dataset dataset name variable name - For

dataset specific variables on all contexts.
• HIO dataset context name dataset name variable name

- For dataset specific variables on a specific context.
3) Configuration APIs: libhio also provides

APIs to get the number of configutation variables
(hio_config_get_count), info about con-
figuration variables (hio_config_get_info),
and get (hio_config_get_value) and set
(hio_config_set_value) the value of a configuration
variable.

A. Context

A context encompasses all of an application’s in-
teraction with libhio. Contexts are created by the
hio_init_single and hio_init_mpi functions and
destroyed by the hio_fini function. These functions are
collective. Each context can be associated with one more
data storage destinations called data roots.

1) Data Roots: libhio data destinations are knows as data
roots. Currently, the only destinations supported by libhio
are POSIX-like filesystems including Lustre, Panasas, and
DataWarp. Support for additional destinations will be added
as they are needed.

The data roots associated with a context can be set by
setting the “data roots” configuration variable on a context
or by setting the HIO data roots environment variable. The
data roots configuration variable is a comma-delimited list
of data roots. It is only valid to set this variable before the
first call to hio dataset open() on a context. After that point
the value is fixed.

If an application specifies more that one data root libhio
will automatically switch between data roots in the event of
a failure. If a data root fails the application is notified by
the error code HIO_ERR_IO_PERMANENT on return from
a libhio API function. The application can choose how to
proceed. This includes delaying writing a dataset to a future
time or reopening the dataset using the next available data
root. The objective of this feature is to allow the application
to make progress when possible in the face of filesystem
failures with minimal logic embedded in the application
itself.

When specifying a data root the user can alternately
specify a module name prepended to the data root path
followed by a ”:”. As of libhio v1.4.1 the available modules

are datawarp and posix. If no module is specified then a
module appropriate for the data root will be chosen auto-
matically if possible. To use the default DataWarp path on a
supported system the application only needs to specify one
of the special strings: datawarp, or dw. Persistent DataWarp
allocations can be specified by appending “-name” where
name is the name of the persistent allocation. For example, if
the persistent allocation is named “foo” the user can use this
allocation by adding “datawarp-foo” to the list of data roots.
Module name specification is case-insensitive so DataWarp
is treated the same as datawarp.

The default data roots are set to all available DataWarp
allocations followed by the current working directory. Per-
job DataWarp allocations take precident over persistent
allocations.

B. Dataset

A dataset is a complete collection of output associated
with a particular type of data (ie. restart). Each dataset
is uniquely identified with a string name and an inte-
ger identifier (>= 0). Dataset objects are created with
the hio_dataset_alloc function. This function takes
a dataset name, dataset identifier, flags and a dataset
mode. The flags are used to specify whether the dataset
should be open for reading (HIO_FLAG_READ) or writing
(HIO_FLAG_WRITE). libhio does not currently support
opening a dataset for both read and write for some configu-
rations. Additional flags that can be specified at dataset allo-
cation time are create (HIO_FLAG_CREATE) and truncate
(HIO_FLAG_TRUNC). The truncate flag is equivalent of
calling hio_dataset_unlink() on the dataset instance
before opening it and implies create.

Two dataset modes are supported:
HIO_SET_ELEMENT_UNIQUE and
HIO_SET_ELEMENT_SHARED. These modes correspond
to N → N and N → 1 IO respectively. A unique element
mode gives a unique offset space for all elements in a
dataset for each participating MPI process. The shared mode
shares the element offset space between all participaring
MPI processes.

The dataset identifier is an integer greater than
or equal to zero that identifies the current dataset
instance. libhio provides two special identifiers for
hio_dataset_alloc; HIO DATASET ID HIGHEST
and HIO DATASET ID NEWEST. Using one of these spe-
cial identifiers will cause libhio to open the dataset insance
with the highest identifier or most recent modification time
respectively. These special identifiers are not valid when
creating a new dataset.

Once a dataset object has been allocated it can be
opened with hio_dataset_open. Opened datasets must
be closed with hio_dataset_close. Opening and clos-
ing datasets are collective operations. Dataset objects are
freed with the hio_dataset_free function.

1 # t h e s e a r e g l o b a l
2 c o n t e x t b a s e v e r b o s e = 10
3 [g l o b a l]
4 # t h e s e a r e a l s o g l o b a l
5 d a t a r o o t s = DW, p o s i x : / l s c r a t c h 1 , / l s c r a t c h 2
6 [c o n t e x t : foo]
7 # a p p l y on ly t o c o n t e x t ” foo ”
8 d a t a r o o t s = p o s i x : / l s c r a t c h 1
9 [d a t a s e t : r e s t a r t]

10 # a p p l y t o d a t a s e t ” r e s t a r t ” i n any c o n t e x t
11 s t r i p e w i d t h = 4M

Figure 1: Example libhio configuration script without a prefix

A dataset instance can be destroyed with
hio_dataset_unlink. This function takes the dataset
name, dataset identifier, and an unlink mode. The unlink
mode can be one of: HIO_UNLINK_MODE_CURRENT,
HIO_UNLINK_MODE_FIRST, or
HIO_UNLINK_MODE_ALL. These modes correspond
to removing the dataset instance from to the active data
root, the first data root containing the instance, and all data
roots.

C. Element

Dataset elements are the lowest object in the libhio
hierarchy. They represent named data within a dataset. A
dataset can have zero or more elements. Dataset elements
are opened with hio_element_open and closed with
hio_element_close. libhio provides functions for both
blocking and non-blocking contiguous read and write of
dataset elements. It also provides both strided read (read
scatter) and strided write (write gather). libhio does not
currently support conflicting (overlapping) writes to the
same element when writing an element in a dataset opened
with a shared offset mode. The granularity for writes is on
bytes. It is up to the application to ensure that no conflicting
writes are issued. None of the functions within the set of
element APIs are collective. With the current version of
libhio the flags field to hio_element_open must be 0
as no flags are currently defined for dataset elements.

V. LIBHHIO HDF5 PLUGIN INTERFACE

In order to use libhio’s HDF5 plugin, minor additions
must be made to the application. At a minimum, the fol-
lowing plugin methods must be invoked by the application
prior to opening an HDF5 file:

1) call the plugin initialization method -
H5FD_hio_init,

2) initialize an hio settings t object using
H5FD_hio_settings_init,

3) set an identifier, if desired, and element for
the HDF5 file using H5FD_hio_set_setid and
H5FD_hio_set_elem_name, respectively,

4) Set the MPI Communicator using H5FD_set_comm
if accessing the HDF5 file in shared mode,

5) Create an HDF5 file access property list using
H5Pcreate(H5P_FILE_ACCESS) and associate
the hio settings t object created earlier with this prop-
erty list using H5Pset_fapl_hio,

6) Create the HDF5 file using H5Fcreate using this file
access property list,

7) Access the file using regular HDF5 methods,
8) Closs the file using regular HDF5 methods,
9) call the plugin finalization method -

H5FD_hio_term.
A libhio configuration file may also be associated with

an HDF5 file using the H5FD_hio_set_config and
H5FD_hio_set_config_prefix methods. The plugin
supports libhios’ contiguous and strided file access modes,
as well as the dataset’s dataset mode.

An example code is provided in the libhio distribution.

VI. XC-40 USAGE

This section describes the typical usage of libhio on
Cray XC-40 systems both with and without DataWarp. In
addition, we also describe some of the common config-
uration options for these systems. A more complete list
of configuration options is available in the documentation
provided with libhio.

A. DataWarp Support

The DataWarp support in libhio provides a portable way
to use the features of the DataWarp file system. When a
DataWarp data root is used libhio will, by default, mark any
successfully written dataset as eligible for stage out at the
end of the job. Additionally, to increase robustness in face of
potential datawarp filesystem failure libhio will periodically
mark a completed dataset to be immediately staged out to the
parallel filesystem. This behavior can be modified by setting
the datawarp_stage_mode configuration variable on
the dataset object. Valid values for this variable are auto
(default), end of job, disable, and immediate. The target
of any stage out operation is taken from the next avail-
able data root. Ex. data roots=datawarp,/lscratch2/foo/data
will stage complete datasets to the /lscratch2/foo/data di-
rectory. The stage out target can be modified by setting

Return Type API Arguments

CONFIGURATION API
hio return t hio_config_set_value hio object t object, const char *variable, const char *value
hio return t hio_config_get_value hio object t object, char *variable, char **value
hio return t hio_config_get_count hio object t object, int *count
hio return t hio_config_get_info hio object t object, int index, char **name, hio config type t *type, bool *read only

CONTEXT API
hio return t hio_init_single hio context t *new context, const char *config file, const char *config file prefix, const char

*context name
hio return t hio_init_mpi hio context t *new context, void *comm, const char *config file, const char *config file prefix,

const char *name
hio return t hio_fini hio context t *context

DATASET API
hio return t hio_dataset_alloc hio context t context, hio dataset t *set out, const char *name, int64 t set id, int flags,

hio dataset mode t mode
hio return t hio_dataset_free hio dataset t *dataset
hio return t hio_dataset_open hio dataset t dataset
hio return t hio_dataset_close hio dataset t dataset
hio return t hio_dataset_unlink hio context t context, const char *name, int64 t set id, hio unlink mode t mode

ELEMENT API
hio return t hio_element_open hio dataset t dataset, hio element t *element out, const char *name, int flags
hio return t hio_element_close hio element t *element
ssize t hio_element_write hio element t element, off t offset, unsigned long reserved0, const void *ptr, size t count, size t

size
ssize t hio_element_read hio element t element, off t offset, unsigned long reserved0, void *ptr, size t count, size t size
hio return t hio_element_flush hio element t element, hio flush mode t mode

Table I: Subset of libhio API as of version v1.4.1 broken down by the libhio object type.

the datawarp_stage_out_destination configura-
tion variable on the dataset.

B. Data Layout

When writing datasets to Lustre, DataWarp, or other
POSIX-like file systems libhio provides multiple output
options to optimize write IO performance. In the current
libhio release (v1.4.1.1) three layouts are supported; basic,
strided, and file per node. The basic layout writes a file
per element (in shared element mode) or a file per element
per MPI rank (in unique element mode). The file per node
layout appends all application data to single file for each
compute node and writes a layout file is in json format
describing the location of the application data. A more
detailed description of the layouts can be found in [3].
We recommend using basic mode for DataWarp filestems,
and file per node mode for Lustre filesystems. The layout
can be configured by setting the dataset_file_mode
configuration variable.

C. POSIX Dataset

On POSIX filesystems a dataset is stored in hierarchial
directory structure made up of the context name, dataset
name, and dataset identifier. The default sub-directory has
the form context name.hio/dataset name/identifier/.
This behavior can be modified by setting the
dataset_posix_directory_mode configuration
variable on the dataset. The accepted values are hierarchial

(default) and single. When set to single the sub-directory
has the form context name.dataset name.identifier.hiod.
When using DataWarp it is recommended that
dataset_posix_directory_mode be set to single.

D. Striping

The striping parameters used when creating data files
within a dataset can be set on supported filesystems by
setting the stripe_count and stripe_size config-
uration variables on the dataset. This feature is currently
only supported on Lustre filesystems and DataWarp support
is awaiting software support from DataWarp software stack.

For datasets using the shared offset mode and basic layout
the default striping parameters are set to use 90% of the
available Lustre Object Storage Targets (OSTs) with a 1MB
stripe size. With the file per node layout the striping is
based on the block size, number of OSTs, and number of
local MPI processes. Striping parameters must fall within
the constraints set by the underlying filesystem.

When writing to a DataWarp filesystem the may need
to be set for the stage-out location on Lustre. This is
done automatically based on the dataset offset mode,
file size, and Lustre OST count. A user can con-
trol the striping on files staged out to Lustre by set-
ting the datawarp_stage_out_stripe_count and
datawarp_stage_out_stripe_count configuration
variables on the dataset.

E. Lustre Stripe Locking

The user can specify a Lustre locking mode using the
lock_mode configuration variable. This variable is not
expected to provide any performance benefit to datasets
with the unique offset mode. As of libhio v1.4.1 the avail-
able modes are default, group, and no-expand. The default
uses the best available mode while still guaranteeing byte-
level write granularity. The group mode (default for the
file per node) turns on Lustre group locking which effec-
tively disables stripe locks. This mode can greatly improve
performance but changes the required write conflict granu-
larity from byte to page (4kB). This is due to underlying
requirements from the filesystem.

F. Space Management

libhio supports automatic space management on
DataWarp filesystems. This support is handled through
the discovery and deletion of DataWarp resident libhio
datasets. The maximum number of dataset instances left
resident on DataWarp can be controlled by setting the
datawarp_keep_last configuration variable. The
default is to keep at most 1 complete dataset instance
pending stage-out. When a dataset instance is closed if
the number of resident datasets exceeds the threshold then
libhio will either cancel (end of job stage mode) or wait
for completion of (immediate stage mode) stage out of the
oldest resident dataset instance. Once this is complete the
dataset is unlinked from DataWarp.

VII. RELATED WORK

Many of the features and optimizations found in libhio
are present in other IO libraries. plfs[4][5] is a user-space
filesystem, developed at LANL, that refactors application
IO to optimize it for Lustre and other parallel filesystems.
The file per node output mode is modeled directly after the
optimizations used by plfs to refactor all IO as sequential
IO on the underlying filesysem. Unlike plfs, libhio does not
attempt to implement a user-space filesystem.

The API of libhio shares many of the same design
characteristics as those of ADIOS[6]. libhio differs from
ADIOS in the way IO is defined. Whereas libhio provides IO
calls similar to POSIX (pointer, size, and offset) ADIOS has

VIII. FUTURE WORK

In this paper, we presented details on the libhio API and
its usage on Cray XC-40 systems. In the future, we plan to
investigate improvements to libhio to improve performance.

additional APIs to support describing the data being written.
This description includes the type, dimensions, layout, size,
and other details.

A unique feature of libhio is its automatic management
of space and the migration of datasets from temporary data
stores, such as Cray DataWarp, and more permenant storage.
We will look at adapting libhio to support additional burst-
buffer implementations including distributed burst-buffers
both with and without a globally visible file space. We
intend to investigate adding additional capabilities including
in-memory checkpointing.

ACKNOWLEDGMENT

The authors would like to thank Alliance for Computing
at Extreme Scale (ACES) management and staff for their
support. Work supported by the Advanced Simulation and
Computing program of the U.S. Department of Energy’s
NNSA. Los Alamos National Laboratory is operated by Los
Alamos National Security, LLC for the NNSA. LA-UR-18-
24391

REFERENCES

[1] D. Henseler, B. Landsteiner, D. Petesch, C. Wright, and
N. Wright, “Architecture and design of cray datawarp,” Cray
User Group CUG, 2016.

[2] “HDF5 virtual file layer,” https://support.hdfgroup.org/HDF5/
doc/TechNotes/VFL.html, Nov. 1999.

[3] N. Hjelm and C. Wright, “libhio: Optimizing io on cray xc
systems with datawarp,” in Cray User Group CUG, 2017.

[4] J. Bent, G. Gibson, G. Grider, B. McClelland, P. Nowoczynski,
J. Nunez, M. Polte, and M. Wingate, “Plfs: a checkpoint
filesystem for parallel applications,” in High Performance
Computing Networking, Storage and Analysis, Proceedings of
the Conference on. IEEE, 2009, pp. 1–12.

[5] J. Bent, S. Faibish, J. Ahrens, G. Grider, J. Patchett, P. Tzelnic,
and J. Woodring, “Jitter-free co-processing on a prototype
exascale storage stack,” in Mass Storage Systems and Tech-
nologies (MSST), 2012 IEEE 28th Symposium on. IEEE, 2012,
pp. 1–5.

[6] J. F. Lofstead, S. Klasky, K. Schwan, N. Podhorszki, and
C. Jin, “Flexible io and integration for scientific codes through
the adaptable io system (adios),” in Proceedings of the 6th
international workshop on Challenges of large applications in
distributed environments. ACM, 2008, pp. 15–24.

https://support.hdfgroup.org/HDF5/doc/TechNotes/VFL.html
https://support.hdfgroup.org/HDF5/doc/TechNotes/VFL.html

	introduction
	Overview and Background
	About libhio
	Motivation
	Namespace
	Data Layout
	HDF5 Plugin

	Application Programming Interface
	Configuration Interface
	File Configuration
	Environment Configuration
	Configuration APIs

	Context
	Data Roots

	Dataset
	Element

	libhhio HDF5 Plugin Interface
	XC-40 Usage
	DataWarp Support
	Data Layout
	POSIX Dataset
	Striping
	Lustre Stripe Locking
	Space Management

	Related Work
	Future Work
	References

