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Abstract—In this paper, we present PCJ (Parallel Computing
in Java), a novel tool for scalable high-performance computing
and big data processing in Java. PCJ is Java library implement-
ing PGAS (Partitioned Global Address Space) programming
paradigm. It allows for the easy and feasible development of
computational applications as well as Big Data processing. The
use of Java brings HPC and Big Data type of processing to-
gether and enables running on the different types of hardware.
In particular, the high scalability and good performance of
PCJ applications have been demonstrated using Cray XC40
systems. We present performance and scalability of PCJ library
measured on Cray XC40 systems with standard benchmarks
such as ping-pong, broadcast, and random access. We describe
parallelization of example applications of different character-
istics including FFT and 2D stencil. Results for standard Big
Data benchmarks such as word count are presented. In all
cases, measured performance and scalability confirm that PCJ
is a good tool to develop parallel applications of different type.

Keywords-PCJ, Java, Big Data, parallel computing, perfor-
mance

I. INTRODUCTION

In the recent years, we observe a number of exascale
initiatives which focus on the big challenges of exascale
for hardware and software architecture. We observe the
emergence of the phenomena of Big Data in a wide variety
of scientific fields. Big Data processing represents a shift
that is transforming the entire research landscape on which
plans for exascale computing must play out.

The problem is that the two paradigms split both in the
hardware and software used. The traditional packages used
for computing do not address Big Data type of processing.
Moreover, they are based on the computer languages such
as FORTRAN or C/C++ which are not that popular in data
analytics which nowadays relies on Java, Scala, Python and
other script languages. On the other hand, installation of the
data analytics framework on the HPC systems is not easy.
It is especially difficult to achieve good performance and
scalability. Integration with the queueing systems is also
a challenge. Therefore there is a need for new standards
that will govern the interoperability between data and com-
pute [1].

To address this problem we have developed PCJ [2], [3]
which is a library for scalable parallel computing in Java.
The PCJ brings high-performance computing in Partitioned
Global Address Space (PGAS) paradigm to Java program-
mers and the same time allows for efficient data processing.
The applications developed with the PCJ library can be run
on the traditional HPC systems as well as on Big Data
infrastructures such as Hadoop/Spark. PCJ library provides
a user with the easy to use and flexible programming tools
which allow implementing different parallelization schemas.
With just few programming constructs programmer can
implement the map-reduce algorithm as well as any other
computational or data-intensive algorithm. The PCJ appli-
cation can be run on wide range of the systems including
laptops and workstations as well as top supercomputers.

The paper is organized as follows: section II describes
PCJ library and its main functionality. In the section III
we present performance results for the selected HPC bench-
marks run on the Cray XC40 confirming good scalability
and performance of the PCJ library. The scalability and nu-
merical efficiency of the selected computational kernels such
as FFT or 2D stencil are presented in the section IV. The
performance results of the selected Big Data benchmarks
running on the Cray XC40 systems are presented in the
section V. The conclusions and future work are described
in the sections VI and VII.

The performance experiments have been performed on
Cray XC40 systems at ICM University of Warsaw, Poland
(Okeanos, 1024 nodes) and at HLRS, University of Stuttgart,
Germany (HazelHen, 7742 nodes). The PCJ version 5.0.6
with Oracle Java 1.8.0 51 were used. The C/MPI code was
compiled using GNU compuler 5.1 and Cray-mpich 7.6.

II. PCJ LIBRARY

PCJ is an OpenSource Java library developed under BSD
license. PCJ does not require any language extensions or
special compiler. The user has to download the single jar
file and then he can develop and run parallel applications on
any system with Java installed. A programmer is provided
with the PCJ class with a set of methods to implement
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Figure 1. Diagram of PCJ computing model (from [4] p. 67). Arrows
present possible communication using put() or get() methods acting
on shared variables.

necessary parallel constructs. All communication details
like threads administration or network programming are
hidden from the programmer. Instead of modifying problem
to fit given programming model such as map-reduce the
user implements his algorithm in an optimal manner. In
particular, a programmer can easily implement data and
work partitioning best suited to the problem he is solving.
PCJ library provides necessary tools for it including threads
numbering, data transfer and threads synchronization. The
communication is one-sided and asynchronous which makes
programming easy and less error-prone. Figure 1 shows the
diagram of PCJ computing model together with possible
exchange of data.

The PCJ applications can run on the PC’s, x86 clusters
and supercomputers including Cray XC40 systems. PCJ
has been tested on Intel KNL [5] processors as well as
Power8 systems. The applications implemented with PCJ
and Java scale up to hundreds of thousands of cores. PCJ
is well integrated with the whole range of the system
management tools including most popular batch systems
and execution environments. Thanks to the Java portability,
the PCJ application developed and tested on the laptop or
workstation can be moved to supercomputer without any
modifications or even without recompilation.

PCJ has been already used for parallelization of selected
applications. A good example is communication intensive
graph search from Graph 500 test suite. The PCJ implemen-
tation scales well and outperforms Hadoop implementation
by the factor of 100 [6], [7]. PCJ library was also used
to develop code for the evolutionary algorithm which has
been used to find a minimum of a simple function as
defined in the CEC’14 Benchmark Suite [8] and to find
parameters of the neural network simulating connectome of
C. Elegans [9], [10]. Recent examples include parallelization
of the sequence alignment [11], [12]. PCJ library allowed
for the easy implementation of the dynamic load balancing
for multiple NCBI-BLAST instances spanned over multiple
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Figure 2. The PCJ startup time for different number of nodes. The
execution time of hostname command is plotted for reference. Data
collected at Cray XC40 at HLRS.

nodes. The obtained performance was at least 2 times higher
than for the implementations based on the static work
distribution. The PCJ based implementation scales well up
to the hundreds of nodes and allows for significant reduction
of the analysis time.

A. Multinode execution

The application using PCJ library is run as typical Java
application using Java Virtual Machine (JVM). In the multi-
node environment, one (or more) JVM has to be started on
each node. PCJ library takes care of this process and allows
a user to start execution on multiple nodes, running multiple
threads on each node. The number of nodes and threads can
be easily configured, however, the most reasonable choice
is to limit on each node number of threads to the number
of available cores. Typically, single Java Virtual machine is
run on each physical node although PCJ allows for multiple
JVM scenario.

The startup time for typical PCJ application (see Fig. 2)
is similar to the startup time of any parallel application
launched using system tools such as srun or aprun. The
startup time increases with the number of nodes used. The
scalability is similar to one obtained for running simple
commands such as hostname.

Since multinode PCJ application is not running within sin-
gle JVM, the communication between different threads has
to be realized in different manners. If communicating threads
run within the same JVM, the Java concurrency mechanisms
can be used to synchronize and exchange information. If
data exchange has to be realized between different JVM’s
the network communication using for example sockets has
to be used.

The PCJ library handles both situations hiding details
from the user. It distinguishes between inter- and intranode
communication and picks up proper data exchange mech-



anism. Moreover, nodes are organized in the graph which
allows optimizing global communication.

B. PCJ methods

Each PCJ task (PCJ thread) executes its own set of
instructions. Variables and instructions are private to the
task, however, some variables can be communicated (shared)
between tasks. Every shared variable is declared as a field of
a class. Listing 1 can be referred for a sample declaration.
Exposition of local fields for remote addressing is performed
with the use of annotations supplied with the PCJ library.
Firstly, the use of @Storage annotation coupled with a
custom enumeration allows PCJ communication methods
to reference a shared variable by name in a safe manner.
Therefore all enum’s constants point to the fields that a given
class shares with other threads of execution. Type of the
shared variable is inferred from the type of the associated
field. Secondly, every enumeration and a storage associated
with it has to be registered by the thread that owns a given
shared variable. Other threads can access the shared variable
by providing relevant registered enum’s constant name, but
do not have to register the enum itself. Storages can be
automatically registered on application start phase if the
@RegisterStorage annotation is used on actual StartPoint
class. While using the PCJ.registerStorage(...) method
during runtime allows for a greater flexibility, in practice
library’s users tend to use annotation-based registration.

1 @RegisterStorage(Example.Shared.class)
2 public class Example implements StartPoint {
3 @Storage(Example.class)
4 enum Shared { a }
5 public double a;
6 ...

Listing 1. Shared variable declaration.

The basic primitives of PGAS programming paradigm
offered by the PCJ library are listed below. They may be
executed by all the threads of execution or only over a subset
forming a group:

• get(int threadId, Enum<?> name) – allows to read a
shared variable (tagged by name) published by another
thread identified with threadId; this method is blocking
– there exists a non-blocking method asyncGet(...)

with the same parameters;
• put(T newValue, int threadId, Enum<?> name) –

dual to get(), writes to a shared variable (tagged by
name) owned by a thread identified with threadId;
the operation is blocking – does not return till
the update acknowledge is received; there is also
non-blocking method asyncPut(...) with the same
parameters which can be used for busy waiting for
acknowledgment;

• barrier() – blocks the threads until all come to
the synchronization point in the program; a two-point
version of barrier that synchronizes only the selected

two threads is also supported; moreover there exists
non-blocking barrier method called asyncBarrier()

that allows for proceed with execution and for checking
if all threads pass the synchronization point;

• broadcast(T newValue, Enum<?> name) – broadcasts
the newValue and writes it to each thread’s shared
variable tagged by name; the broadcast is blocking – it
blocks the invoking thread until all threads receive new
value; there also exists nonblocking asyncBroadcast

(...) method with the same parameters;
• waitFor(Enum<?> name) – due to the asynchronicity of

communication, there is a method that allows to block
thread until a change of its shared variable (tagged with
a name) is done;

• monitor(Enum<?> name) – resets the modification
count of a shared variable (tagged by name) used by
waitFor(...) method.

All non-blocking, asynchronous methods return
PcjFuture<?> object that can be used for checking
for the completion of the operation, or waiting for
completion with a defined timeout or even without a
timeout. The blocking methods are just wrappers for
non-blocking methods that wait for completion without
timeout (e.g. call to get(threadId, name) is equivalent to
asyncGet(threadId, name).get()).

III. PCJ BENCHMARKS

In order to determine basics characteristics of communi-
cation within PCJ library, we have performed ping-pong and
broadcast microbenchmarks. Those tests measure the perfor-
mance of simplest forms of interprocess communication. In
addition, we present performance of the random access test
which combines communication with the memory access.

A. Ping-pong

We have measured the bandwidth for sending an array
of double elements ranged from 1 element (8 bytes) up to
4,194,304 elements (32 MB). We have done 5 tests, each
sending 100 times the array and calculating average time
necessary to finish the sending loop. The best time (the
lowest value) is taken as a result. The JVM was warmed
up so first runs were not accounted. Listing 2 shows code
fragments of the ping-pong benchmark implementation in
PCJ using PCJ.get() method.

The results obtained for the ping-pong between threads
running on the same node are presented in Fig. 3. For
the PCJ the best results are obtained for the non-blocking
method PCJ.put() (see Listing 3). In this case, the next
block of data is sent just after previous data was transferred
to sending buffer. The confirmation of correctly received
message is not used here.

Similar results are obtained for the ping-pong benchmark
running on two nodes. As presented in Fig. 4 for the PCJ
the nonblocking communication is the fastest and reaches



1 @Storage(PingPong.class)
2 public enum Shared { a }
3 double[] a;
4 final int ntimes = 100;
5 final int number_of_tests = 5;
6 ...
7 int n = numberOfElementsToTransmit;
8 ...
9 PCJ.barrier();

10 for (int k = 0; k < number_of_tests; k++) {
11 long time = System.nanoTime();
12 for (int i = 0; i < ntimes; i++)
13 if (PCJ.myId() == 0)
14 b = PCJ.<double[]>get(1, Shared.a);
15 time = System.nanoTime() - time;
16 PCJ.barrier();
17 }

Listing 2. Code fragments of ping-pong benchmark. The implementation
based on PCJ.get() method.

1 PCJ.monitor(Shared.a);
2 PCJ.barrier();
3 ...
4 for (int k = 0; k < number_of_tests; k++) {
5 long time = System.nanoTime();
6 for (int i = 0; i < ntimes; i++)
7 if (PCJ.myId() == 0)
8 PCJ.asyncPut(b, 1, Shared.a);
9 else PCJ.waitFor(Shared.a);

10 time = System.nanoTime() - time;
11 PCJ.barrier();
12 }

Listing 3. Code for ping-pong benchmark using PCJ.asyncPut(...)
method.
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Figure 3. Performance of the ping-pong communication between two
threads running on the same node of Cray XC40. Performance as function
of the data size is presented for implementations using different PCJ
methods and for C/MPI and for Java/MPI.

80 MB/s for the largest datasets. This is a physical limit of
the IP over InfiniBand communication used by PCJ library.

For both cases, one and two node communication, PCJ
shows similar performance. The measured bandwidth, com-
pared to C/MPI, is couple times lower for small data sizes
and several times lower for large data sets. This is due to
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Figure 4. Performance of the ping-pong communication between two
threads running on the different nodes of Cray XC40. Performance as
function of the data size is presented for implementations using different
PCJ methods and for C/MPI and for Java/MPI.

the fact, that the messages in the PCJ have to be serialized
to have a complete copy (clone) of the data, even when the
sender and receiver are on the same node. Another important
reason is a type of communication channel used. PCJ real-
izes all communication between nodes using NIO methods
utilizing TCP/IP sockets while MPI takes advantage of the
Cray Aries interconnect. The performance of Java/MPI (Java
MPI bindings) [13] is similar to C/MPI, however, blocking
communication for large data sizes is slower than for non-
blocking one. It is because in nonblocking communication
direct buffer contains the data to be transferred and there
is no need to create an additional copy of the data. The
data is placed in the direct buffer while receiving and to be
able to use it, it is necessary to convert it back to proper
type (e.g. double[]). In the blocking communication, it
is possible to directly use an array of primitive type, and
the array’s binary data is copied to the proper buffers for
underlying MPI function in the JNI call.

B. Broadcast

Broadcast benchmark measures time needed for sending
value from one selected thread (thread 0) to all threads.
Like in the ping-pong, the message size is calculated as a
length in bytes of the data without adding a size of any
header. Similarly, the data sent in this benchmark is an
array of double elements ranged from 1 element (8 bytes) to
4,194,304 elements (32 MB). The benchmark method was
invoked 100 times and the average time necessary to finish
broadcasting (with notification) was calculated as a result.
Listing 4 shows code fragments of the PCJ implementation.

The results presented in Fig. 5 show time needed for
transferring data of various sizes to a number of threads
ranged from 48 to 98,304 (1 to 2048 nodes of XC40).

The time spent for the broadcast operation using PCJ on
average is significantly longer than for C/MPI for both small



1 @Storage(Broadcast.class)
2 public enum SharedEnum { a }
3 double[] a;
4 final int ntimes = 100;
5 final int number_of_tests = 5;
6 ...
7 int n = numberOfElementsToTransmit;
8 ...
9 PCJ.barrier();

10 for (int k = 0; k < number_of_tests; k++) {
11 long time = System.nanoTime();
12 for (int i = 0; i < ntimes; i++)
13 if (PCJ.myId() == 0)
14 PCJ.broadcast(b, SharedEnum.a);
15 time = System.nanoTime() - time;
16 PCJ.barrier();
17 }

Listing 4. Code for broadcast benchmark. The code for filling table with
data is omitted.
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and large arrays. The transfer is limited by the performance
of the TCP/IP communication used by the PCJ library. For
the largest data size, PCJ library achieves an aggregated
speed of 27 MB/s for 1 node and 17 MB/s for 2048 nodes
which is significantly (more than 10 times) less than for
MPI.

C. Random Access

Random Access is a benchmark that identifies the pro-
gram’s ability to perform random updates on an array that
is distributed among all program’s threads of execution.
There is a little relationship between successive memory
updates. Each update is an operation that involves reading
random memory location, performing a modification of
the value stored therein (usually the xor operation), and
subsequent write of new value to that location – thus
introducing a potential race condition in case of at least
two threads modifying the same location at the same time.
This is accounted for in the benchmark description, as

at most 1% of random memory updates can be lost due
to data races [14]. Yet, most of the known contemporary
implementation avoid any data races and PCJ follows suite.
Additionally, as far as the benchmark’s requirements go, its
underlying assumptions disapprove of using large internal
look-ahead buffers of random numbers, limiting them to
1024 elements. That means that at most 1024 numbers
(that identify memory locations) can be cached locally be-
fore performing distributed memory updates. This precludes
from implementing an embarrassingly parallel version of
the benchmark, in which every thread of execution locally
generates and inspects the same stream of random values
and updates only those distributed memory regions that are
affiliated with that thread. In PCJ implementation caching
limit enforces the performance of total inter-thread data
exchange every time a series of 1024 random numbers is
generated. Thus the performance of all-to-all communication
scheme lays at the crux PCJ performance in case of random
access test.

Typical runs of random access tests for HPC system
performance assessment use about 50% of available system
memory. In case of this work, strong scalability was tested,
therefore all benchmarked runs used the same-sized global
distributed array of 226 elements, irrespective of a number
of threads used.

Three all-to-all communication scenarios have been tested
in the case of PCJ – namely (i) hypercube-based and those
that utilize (ii) blocking and (iii) non-blocking all-to-all
communication. Each scenario was executed every time a
local look-ahead limit of 1024 generated remote locations
was hit. When browsing the stream of generated numbers,
each thread of execution fills its shared updatesShared

variable (cf. Listing 5 for its initialization procedure) so
that its i-th cell holds a stream of random locations that
are affiliated with the fragment of shared array held by
i-th thread. Upon the completion of this local phase, a
communication phase is initiated.

In case of blocking communication, a simple algorithm
based on prior CAF implementation was used, as suggested
for Cray XC30 in [15]. It uses a simple loop, iterating from
myId()+1 to numThreads()-1 and then from 0 to myId()-1

to avoid network congestion. On each iteration, a value is
received from target thread in blocking manner (see List-
ing 6). In case of non-blocking implementation (Listing 7)
PcjFutures are used for the communication initialization
and the list of futures is constantly traversed in search
of futures which have already finished communicating and
made remote data available.

In hypercube-based communication algorithm data is
transferred in log2PCJ .threadCount() phases. This scheme
is generally implemented for thread numbers that are a
power of two and in each of d phases of communication
(0 ≤ d < log2PCJ .threadCount()) each thread commu-
nicates with its neighbor, i.e. a thread whose identification
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using C/MPI is presented for reference.

1 @Storage(RandomAccessNew.class)
2 enum Shared { updatesShared }
3 List<Long> updatesShared[];
4 ...
5 //prepare properly-sized arrays for communication
6 List<Long>[] updatesToAdd
7 = new ArrayList[PCJ.threadCount()];
8 for (int i = 0; i < updatesToAdd.length; i++)
9 updatesToAdd[i] = new ArrayList<>();

10 //initialize shared variable
11 PCJ.putLocal(updatesToAdd, Shared.updatesShared);

Listing 5. Shared variable used for inter-thread communication in blocking
and non-blocking implementation of all-to-all communication primitive.

number differs only on a d-th bit [16]. For reference, code
that uses hypercube-based communication is presented in
Listing 11 for reduction collective and all-to-all collective
implementation is analogous. Presented codes exhibit that
standard Java collection classes can be used in PGAS
environment unproblematically.

Additionally, a facultative time-limit for the benchmark
was implemented mimicking reference MPI implementa-
tion. It is based on poison pill pattern – when a thread
0 approaches time limit, a special stop-signaling value is
transmitted between all the threads during communication
phase ensuring a deadlock-free graceful program shutdown.

As expected, the best performing PCJ implementation is
based on the hypercube communication scheme as it is pre-
sented in the Fig. 6. The scalability of PCJ implementations
exhibit behavior that is similar to that for MPI, however,
in the whole range the performance is 5–10 times lower.
The performance of PCJ library in case of a communication
scenario that involves a frequent exchange of relatively small
messages is still a subject of our scrutiny.

1 private void alltoallBlocking() {
2 PCJ.barrier();
3 for (int num = 0,
4 image = (PCJ.myId() + 1) % PCJ.threadCount();
5 num != PCJ.threadCount() - 1;
6 image = (image + 1) % PCJ.threadCount()) {
7 List<Long> recv = (List<Long>) PCJ.get(
8 image, Shared.updatesShared, PCJ.myId());
9 performUpdates (recv);

10 num++;
11 }
12 PCJ.barrier();
13 }

Listing 6. Simple blocking implementation of total all-to-all exchange
with the use of PCJ library. Data intended for exchange is held in
updatesShared variable.

1 private void allToAllNonBlocking() {
2 PCJ.barrier();
3 //prepare futures array
4 PcjFuture<List<Long>>[] futures
5 = new PcjFuture[PCJ.threadCount()];
6 //get the data
7 for (int num = 0,
8 image = (PCJ.myId() + 1) % PCJ.threadCount();
9 num != PCJ.threadCount() - 1;

10 image = (image + 1) % PCJ.threadCount()) {
11 if (image != PCJ.myId())
12 futures[image] = PCJ.asyncGet(
13 image, Shared.updatesShared, PCJ.myId());
14 num++;
15 }
16

17 //receive the data
18 int numReceived = 0;
19 while (numReceived != PCJ.threadCount() - 1) {
20 for (int i = 0; i < futures.length; i++) {
21 if (futures[i] != null
22 && futures[i].isDone()) {
23 List<Long> recv = futures[i].get();
24 processUpdates(recv);
25 numReceived++;
26 futures[i] = null;
27 }
28 }
29 }
30 }

Listing 7. Non-blocking implementation of total all-to-all exchange
with the use of PCJ library. Data intended for exchange is held in
updatesShared variable.

IV. APPLICATIONS

A. FFT

Fast Fourier Transform available as a reference MPI
implementation in HPC Challenge Benchmark is based on
the algorithm published by Takahashi and Kanada [17]. In
the case of PCJ, as a starting point, we have chosen PGAS
implementation developed for Coarray Fortran 2.0 [18]. The
original Fortran algorithm uses a radix 2 binary exchange
algorithm that aims to reduce interprocess communication:
firstly, a local FFT calculation is performed based on the bit-
reversing permutation of input data; after this step all threads
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Figure 7. Performance of the FFT implemented using different algorithms.
The data for the HPCC implementation using C/MPI is presented for
reference.

perform data transposition from block to cyclic layout, thus
allowing for subsequent local FFT computations; finally,
a reverse transposition restores data to is original block
layout [18]. Similarly to Random Access implementation,
interthread communication is therefore localized in the all-
to-all routine that is used for a global conversion of data
layout, from block to cyclic and vice verse. Such imple-
mentation allows to limit the communication, yet makes the
implementation of all-to-all exchange once again central to
the overall programme’s performance.

In the case of FFT, the three all-to-all exchanges are
implemented in the same fashion as in Random Access test
(see Sec. III-C). The performance results for complex one-
dimensional FFT of 226 elements (Fig. 7) show how the
three alternative all-to-all implementations compare in terms
of scalability. It should be noted, that those performance
results were to an extent limited by the queueing system’s
policy. At most 256 computing nodes were available for
single-run performance testing and PCJ library reaches the
best performance when each node is affiliated with single
PCJ thread. While nonblocking communication allowed to
achieve the best peak performance, the hypercube-based
solution allowed to exploit the available computational re-
sources to the greatest extent, reaching peak performance
for 1024 threads when compared to 256 threads in case
of nonblocking communication. In the case of latter, the
performance decreases due to the available resources ex-
haustion can be clearly seen from the plot. For reference,
Jtransforms [19] performance is plotted. It is a Java imple-
mentation of FFT that is universally regarded as offering the
best performance, yet its scalability is inherently limited to 4
threads of execution. Thus its performance is surpassed by
PCJ implementations when more computational resources
are available.

Figure 8. Representation of Game of Life 64×64 cells universe divided
for processing by four PCJ threads represented by different color squares.
Small black squares represent alive cells.

B. Game of Life

The Game of Life is a cellular automaton devised by the
John Conway [20]. In the original problem, there is two
dimensional possibly infinitive board called universe with
evenly placed cells. Each cell can be either in the alive or
dead state. The universe, so the state of the cells, changes
with time that elapses discretely. The state of a cell in the
next step depends on the number of its alive neighbors in
the current moment. In the original rules, the cell is born, so
changes the state from the dead to alive, when it has exactly
three alive neighbors. Any alive cell stays alive if has two
or three alive neighbors, if the number of alive neighbors is
lower or higher, the cell dies from under- or overpopulation.
The Game of Life can be seen as a typical stencil algorithm
with a 9-point 2D stencil – the 2D Moore neighborhood.

We modified the problem to have finite universe – the
board has its maximum width and height. Each thread owns
subboard – a part of the board divided in a uniform way
using block distribution (see Fig. 8). Although there are
known fast algorithms and optimizations that can save com-
putational time generating next universe state, like Hashlife
or memoization of the changed cells, we have decided to
use a straightforward implementation with a lookup of the
state for each cell. However, to save memory, each cell is
represented as a single bit – a part of int array for C and
by using BitSet class in Java – where 0 and 1 means that
cell is dead and alive respectively.

After generating the new universe state, the border cells
of subboards are exchanged between proper threads. This is
done asynchronously: the state of cells is sent to neighbors,
and then the received state is incorporated into the board
for the next step. The code fragment of exchanging data is



1 // sending West column to neighbour’ East
2 if (!isFirstColumn) {
3 for (int row=1; row<=rowsPerThread; ++row)
4 sendShared.W[row - 1] = board.get(1, row);
5 PCJ.asyncPut(sendShared.W,
6 PCJ.myId() - 1, Shared.E);
7 }
8 // sending North-West cell to neighbour’ South-

East
9 if (!isFirstColumn && !isFirstRow) {

10 sendShared.NW = board.get(1, 1);
11 PCJ.asyncPut(sendShared.NW,
12 PCJ.myId() - threadsPerRow-1, Shared.SE);
13 }
14 ...
15 // receiving East side
16 if (!isLastColumn) {
17 PCJ.waitFor(Shared.E);
18 for (int row=1; row<=rowsPerThread; ++row)
19 board.set(colsPerThread + 1, row,
20 recvShared.E[row - 1]);
21 }
22 // receiving South-East cell
23 if (!isLastColumn && !isLastRow) {
24 PCJ.waitFor(Shared.SE);
25 board.set(colsPerThread + 1, rowsPerThread + 1,
26 recvShared.SE);
27 }

Listing 8. Code fragments of sending and receiving column and corner
cell states. The code is presented only for selected columns and corner
cells. The exchange of the other data is performed in analogous way.

available on Listing 8. The threads that have cells on the first
and last columns and rows of the universe are not exchanging
the cells state to the opposite threads – the universe is not a
2D torus, but a grid. The state of neighbor cells that would
be behind universe edge is treated as dead.

1) Performance results: We have measured the perfor-
mance in a total number of cells processed in the unit of time
(cells/s). For the N×N cells universe, we measured time
using high-resolution time source (in nanoseconds) needed
for calculating cells next state and exchanging state of cells
on the border of subboards, and then performance was
calculated as N×N

time . For each test, we performed eleven time
steps. We warmed up the Java Virtual Machine to allow the
JVM to use just-in-time compilation (JIT) to optimize run
instead of execution in interpreted mode. We also ensured
that garbage collector (GC) had not much impact on the
gained performance. To do so we took average performance
for steps 4–11 or peak performance (maximum of steps
performance) for the whole simulation.

2) Single node execution: The first benchmark was made
to determine the impact of hyper-threading on execution.
The tests were run on HazelHen supercomputer using
aprun command that allows allocating 24 or 48 CPUs
per node depending on the value of -j parameter (1 and
2 respectively; depth (-d) parameter was accordingly set to
24 and 48). In the benchmark, we also tried to determine, if
it was better to run two JVMs, each using 12/24 PCJ threads
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Figure 9. Performance results for various parameters, number of JVMs
and PCJ threads for 604,800×604,800 cells running on 1 node of Cray
XC40 at HLRS.
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Figure 10. Strong scalability of Game of Life implemented with Java/PCJ
and C/MPI for 604,800×604,800 cells running on Cray XC40 at HLRS.
Ideal scaling for PCJ is drawn. Results for MPI using Intel and Cray
compilers practically overlap.

or one JVM with 24/48 PCJ threads.
As it is presented in Fig. 9, the best results were ob-

tained utilizing 48 PCJ threads per node. In this situation,
the number of JVMs did not matter much – the average
performance is similar, slightly better if only one JVM per
node was used. Additionally, when using a smaller number
of PCJ threads, setting the proper value of used CPUs per
node is very important as it can affect the performance.

3) Strong scaling: We have also done benchmarks to see
the strong scaling of the Game of life application on the
HazelHen system. Based on the previous results we decided
to fully occupy computational nodes – to use 48 PCJ threads
per node.

In the first run, we decided to use universe size
604,800×604,800 that could be allocated on the single node.
The results presented in Fig. 10 show that the application
scales almost linearly up to 98,304 PCJ threads (2048
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Figure 11. Weak scalability of Game of Life application when processing
about 221,184,000 cells per thread running at Cray XC40 at HLRS.

nodes). Usage of 196,608 PCJ threads (4096 nodes) gives
similar performance. We also compared PCJ implementation
with a similar application written in C using MPI. We
were able to run MPI code only from 1 node to up to
512 nodes due to the limits of the available computational
time. However, for 1 and 2 nodes (48 and 96 MPI ranks),
the MPI version could not be computed due to Cannot
allocate memory error. For the larger number of nodes, the
performance of MPI version was up to 3 times higher than
for PCJ version.

We also decided to run benchmark using larger universe
(2,419,200×2,419,200 cells). The size was so big, that it did
not fit in the memory of 16 nodes (768 PCJ threads). We
were able to run a benchmark using from 32 to 2048 nodes
(from 1536 up to 98,304 PCJ threads). The scalability for
that size was almost ideal for the whole range of nodes.
The same scalability was achieved for MPI version but
the performance was up to 3 times higher than for PCJ
implementation. However, it was not possible to execute test
using MPI for 32 nodes (1536 MPI ranks) due to lack of
memory.

4) Weak scaling: Next benchmark that we run on Hazel-
Hen supercomputer was weak scaling. Each thread pro-
cessed about 221,184,000 = 216·33·53cells/step. The
exact value depends on the number of threads used in
the execution that threads generated universe of square
size (103,008×103,008 cells for 48 PCJ threads to
4,662,960×4,662,960 cells for 98,304 PCJ threads).

The results presented in Fig. 11 show ideal scaling for
a whole range of nodes and threads used (more than 98%
parallel efficiency for 2048 nodes).

5) Comparison with MPI: As the Open MPI in version
3.0.0 gives Java bindings for the MPI, we decided to run
benchmarks using this technology. We run the following
benchmarks on Okeanos supercomputer where we were able
to run only 24 Java/MPI ranks per node. Usage of 48
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Figure 12. Strong scalability of Game of Life implemented with Java/PCJ,
Java/MPI and C/MPI for 2,419,200×2,419,200 cells running at Cray
XC40 at ICM with 24 threads/ranks per node.

Java/MPI ranks per node resulted in unpredictable behavior
and errors (error creating local BTE/FMA CQ, error cre-
ating local SMSG CQ, error creating remote SMSG CQ).
However, those error messages in some unclear situations
did not prevent the application to run and finish successfully.
Moreover, due to the limit of 4096 ranks per job for
Java/MPI in our installation, it was not possible to execute
benchmark using 6144 Java/MPI ranks (on 256 nodes).

Figure 12 presents the performance results obtained
on universe consisting of 2,419,200×2,419,200 cells. For
benchmarking Java/MPI, PCJ and C/MPI version of Game of
Life we decided to run each version with the same number of
threads/ranks – i.e. 24 per node. It was not possible to run the
benchmark using Java/MPI on 16 nodes using 384 Java/MPI
ranks as there were thrown java.lang.OutOfMemoryError.
The same error occurred for PCJ, but using 8 nodes (192
PCJ threads) and not for 16 nodes. For pure MPI version, the
errors associated with insufficient memory (Cannot allocate
memory error) happened for 32 nodes (768 MPI ranks). The
performance of PCJ version, similarly to results obtained on
HazelHen, is about three times lower than for C/MPI but is
about two times higher than for Java/MPI. In our opinion, it
is due to fact, that it was necessary for Java/MPI to use direct
buffers for exchanging data to be able to use nonblocking
sending method (MPI.COMM_WORLD.iSend ≡ MPI_Isend), so
after preparing data, it had to be copied to the buffers before
sending and the Java/MPI is binding so before sending data
it was necessary to call native methods from within JVM.

6) MPI compilation optimizations: We have also per-
formed a comparison of the MPI performance depending
on the compiler optimizations level using Cray and Intel
MPI compilers as well as a comparison of Oracle JVM
with GraalVM. GraalVM [21], [22] is the Java Virtual
Machine based on OpenJDK that has just-in-time compiler
focused on bringing the best peak performance for the
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Figure 13. Performance results for various implementations and compiler
options. Data obtained for universe consisting of 2,419,200×2,419,200
cells running at 64 nodes of Cray XC40 at ICM.

Java applications. For abovementioned comparison, we have
used the newest freely available version of GraalVM –
Community Edition 1.0 RC1.

The results of Game of Life application that use universe
consisting of 2,419,200×2,419,200 cells are presented in
Fig. 13. The compilation without optimization flags implies
the second level of optimizations. The Java and PCJ ver-
sion runs like MPI code compiled using the first level of
optimizations. The Java/MPI version runs almost two times
less efficient than the first level of optimizations, but almost
two times more efficient than MPI without optimization.
The performance for code compiled with Cray and Intel
compilers is similar. The usage of GraalVM gives perfor-
mance improvements of 12% for PCJ based code and 20%
for Java/MPI version of the application. The improvement is
obtained without modifying or recompiling the code – just
by using different Java Virtual Machine for the execution.

V. BIG DATA PROCESSING

In the map-reduce paradigm, usually connected with Big
Data processing, the parallel execution is performed through
data distribution. Each thread is performing calculations
on the local data and partial results are gathered in the
reduction process. Partial sums and the number of elements
processed are gathered in the second phase – the number
of elements processed by each thread is usually the same
but can differ. Upon obtaining of data from all threads, the
reduction operation can be performed. This scenario can be
easily implemented in the PGAS model using PCJ library
as presented in Listing 9. Despite the usage of distributed
data, the computation kernel is identical to the sequential
implementation. The number of additional lines of code
needed to perform distributed calculations is limited, with
the code responsible for results reduction being the main
addition.

1 @Storage(MyClass.class)
2 enum Shared { sum, usersCount }
3 long sum;
4 int usersCount;
5 ...
6 myUsers = loadUsers(PCJ.myId());
7 ...
8 long s = myUsers.stream()
9 .mapToLong(User::getAge)

10 .sum();
11 PCJ.putLocal(s, Shared.sum);
12 PCJ.putLocal(myUsers.size(), Shared.usersCount);
13 PCJ.barrier();
14 s = pcj_reduce(Shared.sum);
15 int count = pcj_reduce(Shared.usersCount);
16 if (PCJ.myId() == 0) {
17 double average = (double) s / count;
18 }

Listing 9. Implementation of the map-reduce algorithm in Java using PCJ
library. The distributed data is processed by each thread independently.

A. WordCount

WordCount is a simple piece of code that demonstrates ba-
sics of programming in map-reduce paradigm. Test program
reads an input file line-by-line and counts the number of
unique words occurring in each line. Reduction step gathers
computed partial results. In the end, a mapping between
all the unique words in whole text and number of their
occurrences are emitted.

In PCJ code the word calculations are divided into two
steps. Mapping phase utilities the word-division code and
partial results are stored in a shared global variable, unique
to every thread of execution (see Listing 10). No prior text
transformations are performed (for example, stop word list
and stemming are not utilized), so – depending on input
formatting and used word division algorithms – glyphs
like punctuation marks and their combinations might be
considered a unique word; the same goes for different
grammatical forms of the same word. After this phase, a
reduction occurs with thread 0 as root. No overlap between
two phases is facilitated. The reduction policies are a major
contribution to the overall scalability results and in case of
PCJ three distinct policies were implemented:

• Reduction 1 – 2-step reduction scheme; the first step
consists of intra-node reduction, in second step thread 0
collects partial results from remote computation nodes.

• Reduction 2 – 2-step reduction scheme in which all
threads affiliated with node 0 performed remote reduc-
tion; remote computation nodes are assigned to node 0
threads on a round-robin fashion; after this step intra-
node 0 reduction is performed.

• Reduction 3 – hypercube-based reduction (presented on
Listing 11).

1) Input data: Two novels were chosen as a textual
corpus of the text. We have used an UTF-8 encoded plain
text English translation of Lev Tolstoy’s War and Peace [23],



1 //Shared variable definitions
2 @Storage(WordCountPcj.class)
3 enum Shared {
4 //global wordcount, used in reduction phase
5 reducing,
6 //thread-local wordcounts
7 localCounts
8 }
9 public HashMap<String, Integer> localCounts;

10 public HashMap<String, Integer> reducing;
11

12 private void countWords() throws IOException {
13 Pattern WORD_BOUNDARY
14 = Pattern.compile("\\s*\\b\\s*");
15 Map<String, Integer> wordCounts
16 = new HashMap<>();
17 Files.readAllLines(Paths.get(myFileName),
18 StandardCharsets.ISO_8859_1)
19 .stream()
20 .map(WORD_BOUNDARY::split)
21 .flatMap(Arrays::stream)
22 .filter(word -> !word.isEmpty())
23 .forEach(word ->
24 wordCounts.merge(word, 1, Integer::sum));
25 PCJ.putLocal(wordCounts, Shared.localCounts);
26 }

Listing 10. Mapping phase and shared variable definitions in PCJ
WordCount implementation.

1 private void getGlobalCountHypercube() {
2 resultMap = PCJ.getLocal(Shared.localCounts);
3 int mask = 0;
4 int d = Integer.numberOfTrailingZeros(
5 PCJ.threadCount());
6 int myId = PCJ.myId();
7 PCJ.barrier();
8 for (int i = 0; i < d; i++) {
9 if ((PCJ.myId() & mask) == 0) {

10 if ((myId & (1 << i)) != 0) {
11 int dest = myId ˆ (1 << i);
12 PCJ.put(resultMap, dest, Shared.reducing);
13 PCJ.barrier(dest);
14 } else {
15 int src = myId ˆ (1 << i);
16 PCJ.barrier(src);
17 HashMap<String, Integer> reducedArgument
18 = PCJ.getLocal(Shared.reducing);
19 reducedArgument.forEach((k, v) ->
20 resultMap.merge(k, v, Integer::sum));
21 }
22 }
23 mask ˆ= (1 << i);
24 PCJ.barrier();
25 }
26 }

Listing 11. Hypercube-based reduction in PCJ WordCount example.

a file of 3.3 MB, and lesser-known, but nevertheless consid-
erate in length plain ISO 8859-1 encoded text of original
French version of Georges de Scudéry’s Artamène ou le
Grand Cyrus [24], one of the longest novels ever written,
totaling in 10 MB file size. Different encodings were ac-
counted for in the code. Whilst datasizes itself are quite
small, they have been the basis for the weak scalability
testing, thus forming a sizable dataset for larger numbers
of threads.

During the weak scalability testing, each file was repli-
cated n times, for n ∈ {1, 2, 4, 8, 16, . . . , 8192}. This
allowed to affiliate each PCJ thread with one input file:
each PCJ thread read its own copy of input data. We have
used default filesystem available on XC40 (Lustre), yet there
exists a possibility to use other solutions (e.g. a version of
PCJ WordCount that utilizes HDFS was successfully devel-
oped and is described elsewhere [6]). For comparison, we
have implemented a scenario in which all threads read data
from the same file located in the shared Lustre filesystem
accessible by all nodes. To establish a configuration that
allowed for the best performance, different combination of
thread counts and number of nodes were evaluated (for
example, 4 threads could have been started on 4 nodes –
using 1 PCJ thread per node; or 2 nodes – 2 PCJ threads
per node; or 1 node running 4 threads). The effect of hyper-
threading on the overall performance was also studied (the
option --hint=[no]multithread was passed to the
queuing system). The figures show the times used for the
best-performing configuration of nodes and hyper-threading
policy per given number of threads. For mapping phase,
which is I/O-bound, the best results were achieved, grosso
modo, with a single PCJ thread per node. Conversely, for
reduction phase the best timing results were achieved with
hyper-threading turned off and with the largest possible
number of PCJ threads running on the same node (thus
reducing interconnect congestion). This corroborates the
results achieved earlier with hypercube-based all-to-all code
in case of FFT. .

2) Mapping phase: The performance of the mapping
phase for the de Scudéry’s novel is presented in Fig. 14.
Results are obtained in the weak scaling mode, therefore
with the increased number of threads, the size of processed
data increases. The best processing time is plotted, therefore
up to 256 threads, the time for execution of the one thread
per node is presented. The execution time of the mapping
phase does not depend on the number of threads up to 256
which expresses almost ideal scaling. For the larger number
of threads, the time necessary for the mapping increases
which is related to the increase of the I/O time. With the
multiple threads running on the single node, we have a race
condition in the access to the disk for reading data which
increases processing time. The race situation occurs while
reading data from the single file or when multiple files are
used. More detailed description of the PCJ I/O performance
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for different filesystems is described elsewhere [12].
3) Reduction phase: The execution time of the reduction

phase for the different scenarios described above is presented
in Fig. 15. The Reduction 1 policy scales linearly (O(n))
with the increased number of threads (intuitively: increase
in the number of threads used increases the number of nodes
used as well, thus the time node 0 takes to read intra-
node reduction results from remote nodes grows). Similar
scaling is obtained for the Reduction 2, however, it is slower
due to the increased processing time. The hypercube-based
reduction (Reduction 3) scales as O(log(n)) and especially
for a large number of threads is the fastest one.

4) Overall performance: The total execution time for
the hypercube-based reduction for both input files used
in tests is presented in Fig. 16. The execution time is
dominated by the reduction phase, therefore in all cases,
it increases with the number of threads. The difference
between small and large file used is visible for a small
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number of threads where the time for reduction phase is
smaller than for mapping. The execution time of mapping
phase is proportional to the size of the data processed, the
execution of the reduction phase depends less on the size of
the input data. Since the installation of the Hadoop or Spark
on the Cray XC40 system is not trivial, we were not able
to perform direct performance comparison. However, such
comparison performed using x86 cluster confirms that PCJ
implementation of the WordCount application is at least 7
times faster than Hadoop one [6].

VI. FUTURE WORK

Since beginning PCJ library is using sockets for transfer
data between nodes. This design was straightforward, how-
ever, the novel communication hardware such as Cray Aries
or InfiniBand interconnects cannot be fully utilized. There
is ongoing work to use novel technologies in PCJ, however,
we are looking for Java interfaces which can simplify
integration. DiSni or iVerbs seems to be a good choice,
however, both are based on the specific implementation of
communication and their usage by PCJ library is not easy.
We hope to solve this issue soon.

Another reason for low communication performance is
mentioned the problem of a copy of the data during send
and receive process. This cannot be avoided due to the Java
design, and technologies based on the zero-copy and direct
access to the memory do not work in this case. This is
an important issue not only for PCJ library but for Java in
general as it is degrading Java/MPI ping-pong performance
for large datasets.

Compare to other tools, PCJ library has no fault tolerance
mechanism, however, an experimental version exists [25]
and will be integrated with the main release soon.



VII. CONCLUSION

PCJ library is highly scalable, easy to use tool for develop-
ment of parallel applications, including Big Data processing.
PCJ library works well especially for large applications
where the overlap between calculations and communications
can be utilized. In such cases, PCJ library allows for easy
code development resulting in very good scalability and
performance. One should note that PCJ implementation is
much easier and provides better application performance
than Java MPI bindings. Moreover, the development with
PCJ is much easier than in the case of other tools. It requires
fewer libraries to use and minimizes the number of language
constructs used. The resulting code is usually shorter and
more readable.

PCJ applications can be developed and tested using stan-
dard Java environment, the time-consuming installation and
maintenance of the infrastructure tools such as Hadoop are
not required.
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[24] Scudéry, M. de: Artamène ou le grand Cyrus Chez Avgvstin
Covrbe’, Imprimeur & Libraire ordinaire de Monseigneur le
Duc d’Orleans, dans la petite Salle du Palais, à la Palme 1972
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