
PBS Professional - Optimizing the "When & Where" of Scheduling

Cray DataWarp Jobs

Scott Suchyta

Altair Engineering, Inc.

Troy, MI

scott@altair.com

Abstract - Integrating Cray DataWarp with PBS Professional

was not difficult. The challenge was identifying when and

where it made sense to use the "applications I/O accelerator

technology that delivers a balanced and cohesive system

architecture from compute to storage." As users began to learn

more about how their applications performed in this

environment, it became clear that when and where jobs ran

could greatly affect performance and efficiency. With

DataWarp, job data is staged into a "special" storage object

(the where), the job executes, and the data is staged out. The

catch: minimize wasted compute cycles waiting for the data

staging (the when).

Keywords - Cray; DataWarp; Burst Buffer; Altair; PBS Pro;

Job Scheduling

I. INTRODUCTION

Before diving into the details of the Cray DataWarp™
integration with PBS Professional® (PBS Pro), it is
important to know the meaning of these technologies and
how these technologies are used.

Cray DataWarp provides an intermediate layer of high
bandwidth, file-based storage to applications running on
compute nodes. It is comprised of commercial SSD hardware
and software, Linux community software, and Cray system
hardware and software. DataWarp storage is located on
server nodes connected to the Cray system's high-speed
network (HSN). I/O operations to this storage completes
faster than I/O to the attached parallel file system (PFS),
allowing the application to resume computation more
quickly and resulting in improved application performance.
DataWarp storage is transparently available to applications
via standard POSIX I/O operations and can be configured in
multiple ways for different purposes[1].

PBS Pro is a fast, powerful workload manager designed
to improve productivity, optimize utilization & efficiency,
and simplify administration for HPC clusters, clouds and
supercomputers. PBS Pro automates job scheduling,
management, monitoring and reporting, and is the trusted
solution for complex Top500 systems as well as smaller
cluster owners.

The integration utilizes the PBS Pro Plugin Framework
(a.k.a., Hooks) to satisfy the expectations and requirements
from several Cray PBS Pro sites.

1. Schedule jobs based on the availability of DataWarp

storage capacity.

2. Setup the DataWarp job instance before the job begins
execution, such that the following DataWarp functions
are executed

a. paths
b. setup
c. data_in
d. pre_run

3. Teardown the DataWarp job instance after the job
terminates (i.e., normal, error, abort), such that the
following DataWarp functions are executed

a. post_run (free the compute nodes!)
b. data_out
c. teardown

4. When a non-successful DataWarp exit code (1) is
detected, the integration will attempt to re-queue the job
if the job has not started execution or leave the data and
job instance allocation intact is the job had executed
allowing the user/admin to manually resolve any issues.

II. INTEGTATION APPROACH

The integration relies on existing PBS Pro features and
utilizes the PBS Pro Plugin Framework (a.k.a., Hooks). The
interface is made up of Python objects, members, and
methods. You can operate on the objects and use the
methods in your Python code. There are multiple hook
events, as seen in Figure 1 Simplified view of Hook Events.
A hook writer can import the pbs module, which provides an
interface to PBS Pro and the hook environment[3].

Each hook can accept (allow) or reject (prevent) the
action that triggers it. The hook can modify the input
parameters given for the action. The hook can also make
calls to functions external to PBS Pro. In addition, the pbs
module can read and/or modify things such as job, server,
vnode, and queue attributes, and the event that triggered the
hook.

Figure 1 Simplified view of Hook Events

III. INGTEGRATION WORKFLOW

Referring to Figure 2 High-level diagram of PBS Pro
daemons and DataWarp hooks, we will walk through the
lifecycle of what the user is required to do before job
submission through the final steps of DataWarp teardown.

For sites that do not install the PBS Server/Scheduler on
the Cray Service Database (SDB) node or allow users to
submit jobs from systems outside of the Cray environment, it
is required to following the instructions provided in the
XC™ Series DataWarp™ API Access from non-Cray
Environments Installation Guide[3]. IMPORTANT:
DataWarp API Access Requires SLES 12SP3.

A. Validating DataWarp Directives

It is strongly recommended that the user validate the
correctness of the DataWarp directives (#DW) by executing
a Cray supplied utility call dw_wlm_cli prior to job
submission.

dw_wlm_cli {-f | --function} job_process {-j | --

job} jobscriptfile

The user is expected to correct any errors prior to job

submission. Failure to correct the error(s) will result in the

delaying of the job execution or worse the job may exit the
batch queue system without executing the job.

There is a pending PBS Pro RFE for allowing a queuejob
hook to read the job script. Once this PBS Pro feature is
available in the software, then the user would not be
recommended to perform this step.

B. Job Submission

Upon the submission of the job to the PBS Server, the
dw_queuejob_hook will be executed. This hook will be
responsible for validating the user's DataWarp capacity and
pool request. The validation of the user's request should be
nearly instantaneous.

From the user's perspective, they will submit the job with
PBS custom resources that are specific to DataWarp.

required: -l dw_capacity=<value>

optional: -l dw_pool=<value>; assuming

resources_default.dw_pool=<value>

Here is an example job script:

#!/bin/bash

#PBS -l

select=1:vntype=cray_login+16:ncpus=4:vntype=cray_c

ompute

#PBS -l walltime=1:00:00

#PBS –l dw_capacity=2TiB

#DW jobdw type=scratch access_mode=striped

capacity=2TiB

aprun -n 64 IOR -a POSIX -g -b 8G -t 1M -e -o

$DW_JOB_STRIPED/ior_example1 -G 1234567890 –w -k

aprun -n 64 IOR -a POSIX -g -b 8G -t 1M -e -o

$DW_JOB_STRIPED/ior_example1 -G 1234567890 -W

If the job is submitted with -l dw_capacity, then the

dw_queuejob_hook will construct the proper job submission
request for PBS Professional and create the appropriate
attributes for the DataWarp workflow. Otherwise, the
dw_queuejob_hook (and other DataWarp hooks) will accept
the job "as-is" and it will be assessed by any other site-
defined hooks before being accepted by the PBS Server.

If the dw_queuejob_hook should timeout or fail, the user
will receive an error message.

If the hook times out, the administrator can increase the
duration of the hook's alarm.

C. Job Eligibility (Job Scheduling)

Relying on existing PBS Professional job scheduling
capabilities (parameter server_dyn_res, which calls dw
_capacity_check), the scheduler will compare the user's
dw_capacity request with the availability of DataWarp
capacity. If there is sufficient capacity and all other scheduler
policies are satisfied, the scheduler will inform the Server of
which nodes to dispatch the job and request the job to be
executed. If there is insufficient capacity, then the job will
remain queued, but will be eligible for scheduling at the next
scheduling cycle.

Figure 2 High-level diagram of PBS Pro daemons and DataWarp hooks

D. DataWarp Path

Prior to the job being dispatch to the nodes, the Server
will execute a runjob hook, dw_paths_hook, that will setup
the job's environment with the DataWarp-specific
environment variables, which will be referenced in the user's
job script. The updating of the job's environment with the
DataWarp-specific environment variables should be nearly
instantaneous. If the setup is successful, then the job will
proceed to staging in the data.

If this hook should fail or timeout, then the job is re-
queued and put in a 'H'old state. By placing the job into a
'H'old state, the administrator can investigate why the setup
of the job's environment variables failed. Depending on the
resolution of the issue, the administrator will be able to
release the hold (qrls -h s <pbs_jobid>), and the job will
be re-considered in the next scheduling cycle.

The dw_paths_hook will record information in the PBS
Server logs ($PBS_HOME/server_logs). It is possible to
increase verbosity of the log messages to troubleshoot the
issue by enabling debug in the hook.

E. DataWarp Setup

Before the job begins execution, PBS Professional will
need to setup the storage object and stage-in the user's data,
if specified. The PBS MOM will execute an
execjob_prologue hook, dw_setup_hook, that will allocate
and configure a new storage object for the job. In practice,
the setup of the job's storage object will take a few seconds.
A successful setup will transition the job to staging the data
in to the storage object.

If this hook should fail or timeout, then the job is re-
queued and put in a 'H'old state. By placing the job into a
'H'old state, the administrator can investigate why the setup

of the job's environment variables failed. Depending on the
resolution of the issue, the administrator will be able to
release the hold (qrls -h s <pbs_jobid>), and the job will
be re-considered in the next scheduling cycle.

The dw_setup_hook will record information in the PBS
MOM logs ($PBS_HOME/mom_logs). It is possible to increase
verbosity of the log messages to troubleshoot the issue by
enabling debug in the hook.

If the hook is timing out, the administrator can increase
the duration of the hook's alarm.

F. DataWarp Stage-in

After a successful setup of the storage object, PBS
Professional will initiate the DataWarp data_in function. It is
expected that the data being staged in will be relatively
quick; less than 5 minutes. The PBS MOM will execute an
execjob_prologue hook, dw_data_in_hook, that will stage
data into a storage object from an external source. A
successful stage-in will connect the compute nodes to the
DataWarp job instance.

If this hook should fail or timeout, then the job is re-
queued and put in a 'H'old state. By placing the job into a
'H'old state, the user and/or administrator can investigate
why the stage-in of the job's data failed. Remember, that the
dw_wlm_cli -f job_process, which the user is expected to
execute before job execution does not validate paths of files
or directories. So, it is possible that the user has specified an
invalid path.

Depending on the resolution of the issue, the
administrator will be able to release the hold (qrls -h s
<pbs_jobid>), and the job will be re-considered in the next
scheduling cycle. NOTE: the storage object from the
previous attempt will have been torn down.

The dw_data_in_hook will record information in the PBS
MOM logs ($PBS_HOME/mom_logs). It is possible to increase
verbosity of the log messages to troubleshoot the issue by
enabling debug in the hook.

If the hook is timing out, the administrator can increase
the duration of the hook's alarm.

G. DataWarp Pre Run

After a successful stage-in of the user's data, the PBS
MOM will execute an execjob_launch hook,
dw_pre_run_hook, that will connect the compute nodes to
the storage object. In practice, the connection of the compute
nodes is nearly instantaneous. A successful setup will
transition the job to begin execution.

If this hook should fail or timeout, then the job is re-
queued and put in a 'H'old state. By placing the job into a
'H'old state, the administrator can investigate why the setup
of the job's environment variables failed. Depending on the
resolution of the issue, the administrator will be able to
release the hold (qrls -h s <pbs_jobid>), and the job will
be re-considered in the next scheduling cycle.

The dw_pre_run_hook will record information in the
PBS MOM logs ($PBS_HOME/mom_logs). It is possible to
increase verbosity of the log messages to troubleshoot the
issue by enabling debug in the hook.

If the hook is timing out, the administrator can increase
the duration of the hook's alarm.

H. DataWarp Post Run

Once the job terminates (i.e., normal, error, or abort) PBS
Professional will initiate the DataWarp post_run function.
The PBS MOM will execute an execjob_epilogue hook,
dw_post_run_hook, that will disconnect compute nodes from
storage object. In practice, the disconnect of the compute
nodes from the storage object will take a few seconds. A
successful post_run will initiate the stage-out and teardown
of the job.

If this hook should fail or timeout, then the job exits the
system without initiating the proceeding hook that will be
responsible for the stage-out and teardown of the storage
object. This is an intention decision to avoid purging the
user's data.

The dw_post_run_hook will record information in the
PBS MOM logs ($PBS_HOME/mom_logs). It is possible to
increase verbosity of the log messages to troubleshoot the
issue by enabling debug in the hook. The administrator will
need to investigate why the post_run failed and will need to
manually rectify the issue.

If the hook is timing out, the administrator can increase
the duration of the hook's alarm.

I. DataWarp Stage-out & Teardown Job

At this point, the compute nodes have been successfully
disconnected from the storage object, and the data can be
staged-out and the storage object can be torn down.
Although, it is expected that the data produced by the job
will be large (e.g., 100s of GB and more). In an effort to
avoid having PBS Professional keep the compute nodes
allocated to the job while staging out data, the PBS MOM

will execute an execjob_epilogue hook,
dw_secondary_job_hook, as the user by submitting a
secondary job. The secondary job will be responsible for
triggering the stage-out of the user's data and teardown of the
storage object. In practice, the submission of the secondary
job will be instantaneous. A successful submission of the
secondary job will allow the job to exit, barring no other site-
specific hooks are executing later.

If this hook should fail or timeout, then the job exits the
system without initiating the stage-out or teardown of the
storage object. This is an intentional decision to avoid
purging the user's data.

The dw_post_run_hook will record information in the
PBS MOM logs ($PBS_HOME/mom_logs). It is possible to
increase verbosity of the log messages to troubleshoot the
issue by enabling debug in the hook.

If the hook is timing out, the administrator can increase
the duration of the hook's alarm.

J. DataWarp Stage-out & Teardown

The stage-out of the user's data and teardown of the
storage object is initiated by the secondary job that was
submitted on behalf of the user. The job itself will execute
very quickly (i.e., /bin/true) on the PBS MOM node that

had executed the original job. Then the PBS MOM will
execute an execjob_epilogue hook,
dw_data_out_n_teardown_hook, that will stage-out the user's
data. If data is staged out successfully, the teardown of the
storage object is executed.

If this hook should fail or timeout, then the job exits the
system without initiating the stage-out and teardown of the
storage object. This is an intentional decision to avoid
purging the user's data. Remember, that the dw_wlm_cli -f
job_process, which the user is expected to execute before
job execution does not validate paths of files or directories.
So, it is possible that the user has specified an invalid path.

The dw_data_out_n_teardown_hook will record
information in the PBS MOM logs ($PBS_HOME/mom_logs).
It is possible to increase verbosity of the log messages to
troubleshoot the issue by enabling debug in the hook. The
administrator will need to investigate why the post_run
failed, and will need to manually rectify the issue.

It is expected that the data produced by the original job
will be large (e.g., 100s of GB and more), which could take
upwards of 30 minutes or more to stage out. If the hook is
timing out, the administrator can increase the duration of the
hook's alarm.

IV. INSTALLATION

The site administrator will need to create the DataWarp
pool(s) prior to configuring PBS Professional. Review the
DataWarp manuals for details on how to setup and configure
DataWarp pool before proceeding.

After successfully creating the DataWarp pool(s), the
administrator, as root, will need to complete a few manual
steps to install and configure the integration of DataWarp
with PBS Professional. These steps consist of importing the
DataWarp hooks, updating the PBS Scheduler, and finalizing
the default values.

V. CONFIGURATIONS

The integration has several configuration options, which
the site will need to consider if the defaults are reasonable
for their site.

A. DataWarp Hook Alarms

In practice, the dw_wlm_cli command can take several
seconds to complete execution for several of the functions.
The data_in and data_out could take multiple minutes,
depending on the user's data. Therefore, it advisable for the
site to become familiar with the execution time of the
dw_wlm_cli command and adjust the respective hook alarms.
If the dw_wlm_cli command exceeds the hook alarm, then
the hook will fail.

If one of the DataWarp hooks should timeout, the
proceeding hooks in the workflow will execute. This is by
design of the PBS Pro Plugin framework. However, each
hook has logic to handle a failure scenario.

The DataWarp hooks have the following default alarm
attributes.

set hook dw_queuejob_hook alarm = 10

set hook dw_paths_hook alarm = 600

set hook dw_setup_hook alarm = 600

set hook dw_data_in_hook alarm = 600

set hook dw_pre_run_hook alarm = 600

set hook dw_post_run_hook alarm = 600

set hook dw_secondary_job_hook alarm = 600

set hook dw_data_out_n_teardown_hook alarm = 1800

To change a hook's alarm attribute, the administrator will

execute

qmgr -c "set hook <hook_name> alarm = <value>"

where the value is a positive integer, and the units are in

seconds.

B. DataWarp Command Retry

Each DataWarp hook can be configured to retry the
DataWarp command, dw_wlm_cli. By default, each
DataWarp hook will attempt to retry the command three (3)
times.

number_of_tries = 3

NOTE: the dw_queuejob_hook does not have this option.

If you change the debug variable to True, then you will

need to re-import the hook into the PBS Server via qmgr
command.

qmgr -c "import hook <hook_name> application/x-

python default <hook_name>.py"

C. DataWarp Hook Verbosity

By default, each DataWarp hook is configured to log
minimal job-specific information in the daemon logs.
However, it is possible to increase the verbosity of the

DataWarp hook to help troubleshoot an issue. Each
DataWarp hook has a variable call debug and is defined after
the import declaration of the hook.

debug = False

IMPORTANT: there is a separate debug variable for the

run_command function, which will only enable the debug
message for when the hook is executing a command, e.g.,
dw_wlm_cli and PBS commands.

If you change the debug variable to True, then you will
need to re-import the hook into the PBS Server via qmgr
command.

qmgr -c "import hook <hook_name> application/x-

python default <hook_name>.py"

VI. TROUBLESHOOTING

The integration attempts to log as much useful and user-
friendly information as possible. From the user's perspective,
there are a few conditions where the job submission may fail,
and the error message is returned to the user instantaneously.
From the administrator's perspective, troubleshooting the
DataWarp workflow can be tricky. When a non-successful
DataWarp exit code is detected, the integration attempts to
re-queue the job if the job has not started execution or leaves
the data and job instance allocation intact if the job had
executed allowing the user/admin to manually resolve any
issues.

A. Troubleshooting - Job Submission

qsub: Missing required option dw_capacity. Submit

with -l dw_capacity=<value>.

The user has submitted a job with -l dw_pool, but
neglected to submit the job with -l dw_capacity. A
DataWarp job submission requires -l dw_capacity.

qsub: Job requested -l dw_capacity - Missing

required -l dw_pool. Either resubmit with -l

dw_pool=<value>, or request administrator to set

the resources_default.dw_pool=<value> attribute.

The user submitted with the required dw_capacity
attribute, however, a default dw_pool was not configured
within qmgr. The administrator can configure the default
dw_pool, or the user can request -l dw_pool at submission
time.

qsub: Job requested a DataWarp pool (my_pool) that

is not available. Resubmit with eligible DataWarp

pool (wlm_pool,dev,test), or admin needs to

configure DataWarp pool.

The -l dw_pool request does not match the eligible
DataWarp pools configured within qmgr. The user can
resubmit the job requesting an eligible DataWarp pool, as
provided in the error message. Or, the administrator will
need to configure the missing DataWarp pool within qmgr.

B. Troubleshooting - DataWarp Workflow

DataWarp hooks were written to associate the record
with the PBS jobid in PBS daemon logs:

PBS_HOME/server_logs: dw_queuejob_hook,

dw_paths_hook

PBS_HOME/mom_logs: dw_setup_hook, dw_data_in_hook,

dw_pre_run_hook, dw_post_run_hook,

dw_secondary_job_hook, dw_data_out_n_teardown_hook

The user/administrator will be able to parse the logs by

jobid or use the PBS Pro tracejob command.

DataWarp: jobscript did not exist. Contact your

Administrator.

The dw_wlm_cli command requires the job script through
the life cycle of the job's execution. If the hook cannot locate
the job script, then this is a critical issue that will prohibit the
integration from executing correctly.

The job script will be found in
$PBS_HOME/server_priv/jobs or
$PBS_HOME/mom_priv/jobs (when executing).

The job script filename will be based on the PBS jobid
with a 'SC' file extension (e.g., 3855.dw01.SC). The log
entry will have the full path to the expected job script.

The administrator should verify the
1. filesystem where $PBS_HOME is located is not

full or have read-only permissions.
2. PBS Professional commands are installed.
3. /etc/pbs.conf file's $PBS_EXEC contains the

correct path to the PBS Professional commands.

DataWarp <function> failed. Contact your

Administrator.

The hook attempted to execute the
and had received a non-zero exit code from the

command.
The administrator should consider enabling debug within

the hook; specifically, in the run_command function. By
enabling debug, the stdout, stderr, and rc will be logged in
the daemon log file.

DataWarp <data_in | data_out> failed. Verify #DW

directives (file and directory paths) or contact

your Administrator.

The hook attempted to execute the dw_wlm_cli -f

<data_in | data_out> function and had received a non-
zero exit code from the command.

It is possible that the user has specified an invalid path to
a file or directory.

The administrator should consider enabling debug within
the hook; specifically, in the run_command function. By
enabling debug, the stdout, stderr, and rc will be logged in
the daemon log file.

VII. LESSON LEARNED

As seen at all of the Cray PBS Professional sites, it is
crucial that the site administrator verifies the dw_wlm_cli
functions are working properly from the service and login
nodes. Although the integration makes every attempt to
requeue or hold jobs, so nothing is lost, the outcome can be
confusing for the admins or users.

The use of cray_eswrap around the dw_wlm_cli
command produced errors/exceptions, which will break the
integration. Fortunately, the integration records the
dw_wlm_cli command and arguments for admins to test
themselves.

For Cray PBS Professional sites using RHEL/CentOS for
PBS Professional Server/Scheduler cannot use integration
because DataWarp API Access Requires SLES 12SP3.

REFERENCES

[1] (2018) XC™ Series DataWarp™ User Guide (CLE 6.0 UP06)], Cray
Inc. [Online] Available: https://pubs.cray.com/pdf-
attachments/attachment?pubId=00529370-
DB&attachmentId=pub_00529370-DB.pdf

[2] (2018) XC™ Series DataWarp API Access from non-Cray
Environments Installation Guide (CLE 6.0 UP06), Cray Inc. [Online]
Available: https://pubs.cray.com/pdf-
attachments/attachment?pubId=00532494-
DA&attachmentId=pub_00532494-DA.pdf

[3] (2018) PBS Professional Big Book (14.2, contains Install,
Administrator, Reference, User, and Program Guides), Altair
Engineering Inc. [Online] Available:
https://pbsworks.com/pdfs/PBS14.2.1_BigBook.pdf

https://pubs.cray.com/pdf-attachments/attachment?pubId=00529370-DB&attachmentId=pub_00529370-DB.pdf
https://pubs.cray.com/pdf-attachments/attachment?pubId=00529370-DB&attachmentId=pub_00529370-DB.pdf
https://pubs.cray.com/pdf-attachments/attachment?pubId=00529370-DB&attachmentId=pub_00529370-DB.pdf
https://pubs.cray.com/pdf-attachments/attachment?pubId=00532494-DA&attachmentId=pub_00532494-DA.pdf
https://pubs.cray.com/pdf-attachments/attachment?pubId=00532494-DA&attachmentId=pub_00532494-DA.pdf
https://pubs.cray.com/pdf-attachments/attachment?pubId=00532494-DA&attachmentId=pub_00532494-DA.pdf
https://pbsworks.com/pdfs/PBS14.2.1_BigBook.pdf

	I. Introduction
	II. Integtation Approach
	III. Ingtegration Workflow
	A. Validating DataWarp Directives
	B. Job Submission
	C. Job Eligibility (Job Scheduling)
	D. DataWarp Path
	E. DataWarp Setup
	F. DataWarp Stage-in
	G. DataWarp Pre Run
	H. DataWarp Post Run
	I. DataWarp Stage-out & Teardown Job
	J. DataWarp Stage-out & Teardown

	IV. Installation
	V. Configurations
	A. DataWarp Hook Alarms
	B. DataWarp Command Retry
	C. DataWarp Hook Verbosity

	VI. Troubleshooting
	A. Troubleshooting - Job Submission
	B. Troubleshooting - DataWarp Workflow

	VII. Lesson Learned
	References

