
Douglas Jacobsen1, and Zhengji Zhao2

1 Computational Systems Group
2 User Engagement Group
NERSC at LBNL
CUG, May 24 2018, Stockholm, Sweden

Instrumenting Slurm
User Commands to

Gain Workload
Insight

Motivation

• Need to understand factors influencing job
execution and success/failure

• Multiple ways users can specify job requirements
• Many different workloads of varying complexity
• Automated analysis to root cause job failures

• Challenges
– Instrumenting data sources of user activities
– Automated collection and processing of user data from

compute nodes

- 2 -

Slurm Batch Jobs

• User submits job on
external login nodes
with sbatch

• Batch script is
executed on a
compute node in the
job allocation

• srun launches the
parallel application
– srun itself only executes

on the job head node

- 3 -

Submit Job
script

elogin

Job Script
Execution

head compute node

Parallel Job
Execution

all compute nodes

sbatch

srun

elogin nodes

service/mom nodes

compute nodes

X

Slurm Interactive Jobs

• “salloc” on elogin
proxies user to
internal mom node

• salloc on mom node
obtains compute
allocation and
launches one node
srun to launch
interactive shell

• srun launches the
parallel application
– srun itself only executes

on the job head node

Submit Job
script

mom

Passthrough
srun for shell

mom

Interactive
Shell

head compute node

salloc à srun

srun

elogin nodes

service/mom nodes

compute nodes

X

Parallel Job
Execution

all compute nodes

srun

Example script

- 5 -

• test.sh:

• Execution:

Analysis of the example

• Script makes it clear that the user requested
– the regular partition

– a 5 hour time limit

– haswell nodes.

• Issues
– The number of nodes, reservation, and script arguments

are not recorded in the script.

– It appears to be an openmp application, was
$OMP_NUM_THREADS set? cpu_binding style?

– Debugging this user’s experience will rely somewhat on
their memory of the job submission.

- 6 -

Monitoring Slurm Data

• Needed Data beyond the Slurm Database
– slurmctld data structure representations of job/step data

• jobcomp/nersc

– capturing and logging all job and step submissions options,

including aspects of the environment

• cli_filter (this topic)
– jobacctgather profiling data (site enforced)

• need more scalable backends, hdf5 file per node per job doesn’t

scale well

• 2018 NERSC priority

- 7 -

Instrumenting Slurm Commands

cli_filter
– new stackable

plugin infrastructure
– adds hooks to allow

site-definable,
configurable
behavior for
• salloc
• sbatch
• srun
• sbcast (limited

support)

- 8 -

cli_filter setup_defaults()

• setup_defaults
– Runs once per cli_filter plugin per CLI execution
– Non-zero exit will terminate the CLI execution
– Runs after opt data structure allocation and initialization,

before environment or option processing
– Run long-running checks exactly once

• Implementations
– cli_filter/user_defaults reads ~/.slurm_defaults to set

options
– cli_filter/lua to set site default options

- 9 -

cli_filter/user_defaults

• Set defaults command line options in
$HOME/.slurm_defaults. Accepts (:?)(:?) = syntax.

• $HOME/.slurm_defaults example:

- 10 -

cli_filter pre_submit()

• pre_submit
– Runs once per job-pack per cli_filter plugin per CLI

execution
– Non-zero exit will terminate CLI execution
– Runs after all option processing but before slurmctld

message preparation (can change options here)
• Implementations
– cli_filter/lua plugin can be used to read options,

implement policy, change options or terminate job
submission

- 11 -

cli_filter/lua example

- 12 -

cli_filter post_submit()

• post_submit
– Runs once per job-pack per cli_filter plugin per CLI

execution
– Non-zero exit will attempt to terminate job (invalid for

sbatch)
– Runs after all option processing but before slurmctld

message preparation (can change options here)
• Implementations
– cli_filter/lua plugin can get data and log it cli_filter/syslog

dumps json record of submission to syslog

- 13 -

cli_filter/syslog Example output

- 14 -

Use Case 1: ALTD runtime library tracking
• cli_filter/lua allows the runtime library tracking
– Automatic Library Tracking Database (ALTD) is used to

track the library usage at NERSC by wrapping the ld (linker)
and srun (job launcher) commands at compile and
runtime. However, wrappers are often not desirable,
especially at runtime.

- 15 -

a.zz217@cori11:~/tests> objdump -s -j .altd a.out

a.out: file format elf64-x86-64

Contents of section .altd:

0000 414c5444 5f4c696e 6b5f496e 666f0000 ALTD_Link_Info..
0010 00000000 00005665 7273696f 6e3a322eVersion:2.
0020 303a004d 61636869 6e653a63 6f72693a 0:.Machine:cori:
0030 00546167 5f69643a 39653131 35313965 .Tag_id:9e11519e
0040 2d333031 652d3433 37392d61 3736652d -301e-4379-a76e-
0050 66346265 36363134 34613132 3a005965 f4be66144a12:.Ye
0060 61723a32 3031383a 00000000 00000000 ar:2018:........
0070 414c5444 5f4c696e 6b5f496e 666f5f45 ALTD_Link_Info_E

0080 6e6400 nd.

Just need to collect
the Tag_id.

Use case 2: Application workload analysis

• cli_filter/syslog used to get the detailed workload
analysis for all srun/sbatch/salloc executions
– Slurm can track the application names that are run with

the srun, however, it is often desirable to know more
details about how the applications are used, e.g., what are
the most commonly used code paths, which provides
developers with a more targeted code optimizations

• cli_filter/lua used to collect workload-specific data
– e.g, VASP, we can collect its input control files (not atomic

positions), to find out the commonly used job types (code
paths) to guide the application readiness effort for the
developers.

- 16 -

Gathering Data via LLM

elogin nodes

service/mom nodes

compute nodes

tier2 nodes

tier1
nodes

SM
W

Log

External
RabbitMQ

Setting up LLM Rules
Service Node add /var/spool/rsyslog/local-rules/ruleset.conf
Direct SlurmCli Syslog
$RuleSet rule.slurmcli.syslog
$MainMsgQueueFileName slurmcli_syslog
$MainMsgQueueDiscardMark 880000
$MainMsgQueueHighWatermark 660000
$RulesetCreateMainQueue on
$IncludeConfig /var/spool/rsyslog/local-rules/always.conf
$IncludeConfig /var/spool/rsyslog/local-rules/rule.slurmcli.syslog.conf
$IncludeConfig /var/spool/rsyslog/rsyslog-forward.conf
$IncludeConfig /var/spool/rsyslog/rsyslog-options.conf
. -?file-userslurm;format-rfc5424
$inputPTCPServerBindRuleset rule.slurmcli.syslog
$InputPTCPServerRun 5187
$InputUDPServerBindRuleset rule.slurmcli.syslog
$UDPServerRun 5187

- 18 -

Setting up LLM Rules
SMW add /var/spool/rsyslog/local-rules/main.conf

$template file-slurmcli, "/var/opt/cray/log/%MSGID%/slurmcli/%APP-NAME%-
%$YEAR%%$MONTH%%$DAY%"

if $structured-data == '[slurmcli@34]' then
-?file-slurmcli;format-message

& stop

- 19 -

Using LLM
Have cli_filter plugins use script to:
• On elogin, use syslog
• On service node, use syslog
• On compute, send UDP message to randomly selected tier2

node on configured LLM port

RFC 5424 formatted message like:

<34>1 2018-05-24T00:51:15.003Z c0-0c0s1n1 altd 42
bootsession [slurmcli@34] test userslurm message

- 20 -

Future Work

- 21 -

elogin nodes

service/mom nodes

compute nodes
tier2 nodes

tier1
nodes

SM
W

Log

External
RabbitMQ

• Upcoming
– Working with SchedMD to explore cli_filter merge options
– Finish modeling work on test system
– Export via rsyslog to site data collect (RabbitMQ)

- 22 -

