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Abstract—Deep learning has proven to be a successful tool for
solving a large variety of problems in various scientific fields
and beyond. In recent years, the models as well as the available
datasets have grown bigger and more complicated and thus an
increasing amount of computing resources is required in order to
train these models in a reasonable amount of time. Besides being
able to use HPC resources, deep learning model developers want
flexible frameworks which allow for rapid prototyping. One of
the most important of these frameworks is Google TensorFlow,
which provides both features, i.e. good performance as well
as flexibility. In this paper we discuss different solutions for
scaling the TensorFlow Framework to thousands of nodes on
contemporary Cray XC supercomputing systems.

Index Terms—deep learning, scalability, performance

I. INTRODUCTION

Deep learning has proven to be a powerful tool for solving
challenging problems not only in a large variety of verti-
cals in industry but also in many scientific fields: scientific
datasets grow rapidly in size as well as in complexity and
therefore some data analytics tasks have become challenging
problems which can only be attacked by using high perfor-
mance computing resources. For these problems, it is almost
imperative to consider a distributed training approach of deep
learning models. For many years, one unchallenged mantra
of the HPC community has been that in order to obtain
scalable high-performance code one has to resort to classical
HPC languages such as Fortran or C/C++ and use efficient
communication layers such as MPI [1]. Most deep learning
frameworks however utilize python to provide flexibility to
the model developer. Nevertheless, those frameworks usually
provide highly optimized back-ends written in C/C++ for
good single node performance. When it comes to distributed
computing however, many frameworks fall short in the sense
that their distributed computing capabilities are inefficient, if
at all available.

II. DATA PARALLEL TRAINING

Due to its simplicity, the predominant parallelization scheme
is data parallelism: the global batch of input data will be

split across the nodes and each node computes the forward
pass fully independently on his shard of the batch. Using the
loss obtained from the forward pass, each node will perform
the back propagation process [2] by computing the relevant
gradients locally. Before being incorporated into the model
by the solver, the gradients have to be averaged over all the
nodes. It is important to note that in this update process,
the local gradient computation can proceed without waiting
for the reduction to complete. Only before starting the next
forward pass for a given layer, the gradient reduction and
incorporation has to be finished. In deep and compute intensive
models it is therefore possible to hide a big fraction of the
communication time behind computation. This method of
data parallel training is called (fully) synchronous training,
as the model and gradients are always in sync between the
nodes. Another method of distributed data parallel training
is asynchronous training. There, a parameter server keeps
track of the model weights and receives gradient updates from
individual nodes and incorporates them into the model as well
as ships off the updated model to the nodes in the order as
they are received. This approach is more scalable than the
synchronous training as there is no global synchronisation
involved. However, the stochastical convergence of the loss can
be negatively impacted if the number of nodes participating in
the asynchronous update is too large, because the number of
outdated gradients incorporated into the model grows linearly
with the number of participating nodes. We believe that most
users will run distributed training processes on medium scale,
i.e. probably up to O(100) nodes for which the synchronous
update is still feasible. We will therefore focus on synchronous
training and discuss scalability of this approach to O(1000)
nodes.

III. TENSORFLOW

One of the most widely used frameworks today is Ten-
sorFlow [3], [4]. It was developed by Google in 2015 and
is maintained and continuously updated by implementing
results of recent deep learning research. Therefore, TensorFlow



supports a large variety of state-of-the-art neural network
layers, activation functions, optimizers and tools for analyzing,
profiling and debugging deep neural networks. In order to de-
liver good single node performance, the computationally heavy
kernels such as convolutions, dense matrix multiplications,
etc. are using optimized libraries as backend. For example,
TensorFlow can be compiled to use Intel MKL-DNN [5], a
library which contains highly optimized deep learning prim-
itives for recent Intel CPU architectures. On recent nvidia
GPU architectures, TensorFlow can utilize cuDNN [6], [7].
On modern architectures such as Intel Xeon Phi or nvidia
P100 or V100 GPUs, those libraries are able to achieve a
performance of multiple TFLOP/s on a single node for certain
layers and layer parameters. A practitioner can develop and
implement deep learning models in a sequential programming
approach in Python but in the execution phase, TensorFlow is
highly asynchronous: once a so-called Session is started, the
computational graph for the entire calculation is constructed
and executed in an asynchronous manner, e.g. by executing
independent edges of the graph in parallel or out-of-order. A
distributed computing approach to TensorFlow needs to take
this into account by not relying on a fixed order of certain
collective operations such as global reductions or broadcasts.
The frameworks which we are going to discuss below all
satisfy this requirement and thus are suitable for distributed
execution and training of TensorFlow models.

IV. DISTRIBUTED TENSORFLOW

TensorFlow provides a built-in mechanism for distributed
training based on Google’s GRPC protocol [8]. This protocol
however is not suited for HPC architectures as it requires at
least one server and utilizes network protocols such as TCP/IP.
Designed for internet traffic, messages from these protocols
have a large header and thus require more bandwidth than
traditional HPC interconnect messages. Furthermore, they are
forced into 64k frames and always routed through the kernel.
Therefore, GRPC cannot make use of performance optimized
interconnect features such as hardware atomics, RDMA, etc.
A study investigating the scaling capabilities of TensorFlow
with GRPC on the NERSC Cori System [9] showed rapid
decrease of the per-worker efficiency on more than 128 nodes
for Resnet-50 [10]. In this paper, we will discuss more efficient
alternatives to the GRPC approach which integrate seamlessly
with TensorFlow and thus have the potential to offer good
distributed training performance at minimal implementation
overhead for the TensorFlow practitioner.

A. Horovod

This framework [11], [12], [13] is developed by Uber and
provides functions and function wrappers which seamlessly
integrate into the TensorFlow programming style. It uses MPI
as communication backend and thus can benefit from any
optimizations made in the underlying MPI library. The amount
of code which needs to be added in order to enable distributed
training is limited to a few lines of code. By default, Horovod
uses OpenMPI [14] but for efficiency we re-compiled Horovod

and linked it against Cray MPICH. In order to distinguish
this Horovod build from other flavors, we will refer to it as
Horovod-MPI in this study.

1) Modus Operandi: Horovod implements a gradient re-
duction cycle which run concurrently to the TensorFlow graph
execution and is connected through hooks to the latter. Once
TensorFlow reaches such a hook it will push the tensor iden-
tifier to a queue managed by a Horovod background thread.
Until the tensors belonging to these identifiers are reduced,
all operations on those tensors are blocked. The TensorFlow
scheduler is free to execute other tasks in the meanwhile, e.g.
such as continuing the local part of the back propagation step
so that communication and computation can be overlapped.
The background thread in the meanwhile executes a 5ms cycle
in which it will do the following:

1) copies the queue and clears the original one so that the
graph scheduler can push new items.

2) send the identifiers to rank 0, to notify the root that those
tensors are ready for reduction.

3) send empty message to rank 0 to signal that the rank is
ready for reductions.

4) rank 0 gathers all tensor identifiers and ready for
reductions messages. Once it has received all of the
latter it will parse through the tensor identifier buffer
and look for tensors which are ready for reduction
on all nodes. Depending on the maximal fusion size
in bytes as specified by the environment variable
HOROVOD_FUSION_THRESHOLD, it will fuse multiple
tensors into the same MPI_Allreduce call. It then
broadcasts the identifiers of all tensors involved in the
following reduction to all nodes together with informa-
tion about which tensors will be fused. Rank 0 then calls
MPI_Allreduce on these tensors.

5) All ranks receive the identifiers of the tensors for the
following reduction, allocate buffers and perform the
requested MPI_Allreduce operations.

6) The nodes copy the reduced data back into the original
buffers and notify the TensorFlow Scheduler that those
tensors can be operated on. The cycle is continued.

For neural networks with only one sequential pass this dy-
namic scheduling approach is over-complicated, as all re-
ductions occur solely in order and thus can be statically
scheduled. However, since TensorFlow can in theory perform
out-of-order executions for example for neural networks with
multiple parallel passes, a dynamic approach like the one
implemented by Horovod is necessary. For whole process to
work, Horovod relies on a thread-safe MPI implementation:
by default it asks for MPI_THREAD_MULTIPLE for multi-
threading interoperability with mpi4py. However, in our case
only one thread is performing the actual communication and
thus this can be lowered to MPI_THREAD_SERIAL.

2) Using Horovod: Despite the complicated underlying
dynamic scheduling approach, using Horovod in a TensorFlow
program is very simple. In the best case, only three lines of
code have to be changed to make the program multi-node
ready. After importing the Horovod module for TensorFlow,



horovod.tensorflow (referred to as hvd in the
following), the MPI communicators needs to be initialized
by calling hvd.init(). Next, the optimizer needs
to be wrapped by hvd.DistributedOptimizer.
This effectively overloads the minimize and
compute_gradients function and inserts global reduction
hooks in the appropriate places. In order to broadcast the
model to all the nodes at beginning of the run, the broadcast
hook hvd.BroadcastGlobalVariablesHook(0)
needs to be added to the list of hooks. Finally, the
tf.Session() statement needs to be replaced by
tf.train.MonitoredTrainingSession() which
supports hooks and certain initializers which are relevant
to multi-node processing. The broadcast hook needs to be
passed to that call. It is up to the user to split his dataset for
distributed training but that can be achieved with standard
python tools and usually does not need additional MPI calls.
It is noteworthy that Horovod supports a global reduction
call for numpy arrays so that performance metrics such as
losses, accuracies etc. can be averaged over the ranks before
printing. Besides these functions for communication, Horovod
implements convenience functions for querying the number
of ranks and local rank id as well as global rank id.

B. Horovod-MLSL

This is an experimental framework developed by Intel
which adopts Horovod’s interface for portability/usability rea-
sons but employs Intel R© Machine Learning Scaling Library
(MLSL) [15], [16] as communication backend instead of MPI.
It uses an optimized Horovod background thread logic for
communicating tensors and tuning affinity settings. Intel R©

MLSL supports optimized deep learning communication prim-
itives and further allows to spawning separate communica-
tion threads which can perform message progression in the
background. For instance, MLSL delivers 1.5x-2x performance
improvement over MPI for Deepbench Allreduce bench-
mark [17]. Besides highly efficient communication, MLSL
supports prioritization of latency-bound communication, i.e.
gradient exchange for the first layers of neural network topolo-
gies [15], and message quantization. While we do not enable
these optimizations for the results presented in this paper, we
believe Horovod-MLSL has further potential to improve over
Horovod-MPI and is being planned for public release. Please
note that we refer to this experiment as Horovod-MLSL as no
official name has been assigned yet.

1) Using Horovod-MLSL: The modifications to the Ten-
sorFlow program are the same as for Horovod-MPI. The main
difference is that additional steps have to be performed in the
launch phase of the program if background processes steering
the communication are used: the number of those can be
adjusted by the environment variable MLSL_NUM_SERVERS.
If at least one background server is used, those have to
be started also. At the time of writing of this paper, Cray
MPI does not support dynamic spawning of MPI processes
and thus these servers have to be launched manually using
the ep_server script shipped with MLSL. Note that this

is a Cray-specific limitation as process spawning is part of
the MPI standard and supported by other widely used MPI
implementations such as e.g. OpenMPI and Intel MPI.

C. Cray Programming Environment (CPE) ML Plugin

The CPE ML Plugin is a deep learning framework portable
communication plugin based on MPI. It couples itself to
a TensorFlow graph with a provided custom TensorFlow
operation (cf. [18] for documentation on custom TensorFlow
operations). Similar to Horovod it is able to directly operate
on in-graph memory. The API and usage differs from Horovod
because it supports frameworks other than TensorFlow as well.

1) Modus Operandi: CPE ML is fully GPU/CPU address
aware and for the case of GPUs manages a tunable number of
CUDA streams for message buffering. The plugin manages
a pool of helper threads organized into teams to progress
communication independent from graph operations. There are
no unique processes when using the CPE ML Plugin. Every
MPI rank produces local gradients and contributes to the
global reduction. This eliminates the need for parameter server
processes, simplifies its usage, and results in overall efficient
use of resources. Compared to Horovod, CPE ML requires
more code modifications in the TensorFlow program but also
provides more fine grained control over e.g. communication
threads, message pipelining etc..

2) Using CPE ML: The necessary modifications to the Ten-
sorFlow program are in the same spirit as those Horovod re-
quires but it uses a different syntax. After importing ml_comm
(referred to as mc in the following), the user needs to initialize
the framework using mc.init. In contrast to Horovod, CPE
ML requires pre-allocation of buffers and thus the user has
to specify the approximate size of the required buffer size
in Bytes. Additionally, the user can spawn multiple teams
and threads per team in this call. This feature is especially
useful when using gradient pipelining. The user can specify
the number of total update steps per team and other useful
features via mc.config_team. In contrast to Horovod, CPE
ML does not provide convenience wrappers for variable broad-
casting and gradient reduction yet. Therefore, the user has
to implement his own session hook using mc.broadcast
and gradient reduction step using mc.gradients. However,
these commands are nicely integrated into the TensorFlow
graph execution and can thus be used like any other Ten-
sorFlow operation. Other convenience routines for checking
model consistency across ranks, querying rank number or
communicator size are also available.

V. MODELS

We chose two neural network models for our performance
study. Both are convolutional neural networks as that is what
most of our users are training at the moment, but they differ in
their communication to computation ratios. We will describe
the two models in more detail below.



A. HEP-CNN

The motivation behind this network is to solve the chal-
lenging task of distinguishing interesting events from un-
interesting events measured by the ATLAS detector at the
Large Hadron Collider (LHC) experiment at CERN. In the
LHC, protons collide violently at almost light speed and will
produce new particles in the scattering process. Those are
detected by experiments such as ATLAS by measuring energy
deposits in two different calorimeters (so-called hits) as well
as reconstructed tracks through the tracking detector. To first
approximation the detector is cylindrical and thus the data can
be unrolled into a 224x224 pixel, three channel image with
one channel per calorimeter and one for the tracking detector.
One such snapshot is called event and it contains a pile-up
of results from multiple collisions in a short readout time-
interval. Interesting events are those which cannot be explained
by the Standard Model of particle physics and those need to
be distinguished from the events which can. In order to solve
this task, the HEP-CNN model [19], [20], [21] implements a
6-layer convolutional binary classifier (5 convolution and pool
units and one fully connected layer) and can be trained on
labeled data generated by the fast Monte-Carlo event generator
Delphes [22]. It is developed for scalability and thus does
not use a big multi layer perceptron (MLP) for global feature
correlation but instead it employs a lightweight convolutional
layer and average pooling combination combined with a small
fully connected layer. The interesting fact here is that the
whole model is only about 2.3 MB in size and does not
provide many opportunities for hiding communication behind
computation. It can thus be used to test the latency sensitivity
of the various distributed training frameworks. For more
information on the network architecture see [20].

B. CosmoGAN

This network implements a deep convolutional generative
adversarial network (DC-GAN) for producing cosmology mass
maps [23]. These are usually obtained in expensive simulations
and thus having a network which can generate cheap surrogate
examples is mandatory for training inference workflows on
cosmological parameter estimations. The GAN is comprised of
two independent network, the generator and the discriminator.
The former utilizes one linear layer for correlating the features
of the 64-element random input vector with each other and
then a stacked de-convolutional architecture comprised of four
layers to scale that vector up to a full 256x256 pixel, single
channel image. The discriminator fundamentally implements
a binary classifier by essentially reversing this architecture
(except that the fully connected layer projects to a single
value). After each (de-)convolutional layer of generator and
discriminator, a batch norm layer is inserted to improve
precision. Since the network consists of sparse layers and
only very lightweight dense layers, it is inherently scalable
in a performant way. Compared to the previous example,
this model has about 17 · 106 parameters and is thus much
more compute intensive. It thus provides more opportunities

for hiding communication and tests this aspect of the frame-
works discussed above. For more information on CosmoGAN
cf. [23].

VI. EXPERIMENT SETUP

We will run a variety of experiments on two contemporary
HPC systems which will be described below.

A. Cori (Phase II)

The Cori (Phase II) HPC system at NERSC [9] is a Cray
XC40 supercomputer comprised of 9,688 self-hosted Intel
Xeon Phi 7250 (Knight’s Landing, KNL) compute nodes.
Each KNL processor includes 68 cores running at 1.4GHz
and capable of hosting 4 HyperThreads for a total of 272
threads per node. Each core has two 512bit-wide vector units
supporting the MIC-AVX512 instruction set. Each node is
equipped with 96GB DDR4 and 16GB high-bandwidth on-
package memory. The processor can be configured in dif-
ferent numa and memory modes and we are using quadrant,
cache mode in this paper. The nodes are connected with the
diameter-5 dragonfly topology high speed, low latency Aries
interconnect. The single precision AVX peak performance for
the whole system is approx. 50.6 PetaFLOP/s.
On the software side, we are using TensorFlow 1.5 with MKL-
DNN 2017 backend and compile it using gcc 6.3.0. Note
that we only activate O3 and AVX2 optimization flags in the
Google Bazel [24] build system as most FLOPS come from
the precompiled optimized MKL-DNN backend.
We build Horovod-MPI v0.11.2 against cray-mpich v7.6.2
with disabled hugepages support. Note that this MPI version
has support for RDMA accelerated collectives and makes use
of those under the hood. Horovod-MLSL is based on Horovod
v0.11.2 and uses MLSL 2018 Preview as communication
layer. The Cray ML plugin craype-ml-plugin used is
v1.1.0. Both, Horovod-MPI and CPE ML Plugin do not need
special binding and thus we perform runs with those on 66
threads in spread binding by setting OMP_NUM_THREADS
to 66, OMP_PLACES to threads and OMP_PROC_BIND
to spread. For CPE ML we are employing one team with
a single thread for HEP-CNN and two teams with a single
thread each for CosmoGAN. The latter model runs indepen-
dent optimizers for each of the two sub-networks and we
investigate whether utilizing two independent communication
teams will improve the performance. In case of Horovod-
MLSL, we use numactl to bind threads in a way to avoid
the cores occupied by the background processes from Horovod
and MLSL. In that case we have only 64 threads left for
the TensorFlow runtime as we avoid using HyperThreading.
The environment variable MLSL_NUM_SERVERS is either set
to 0 or 2 for our tests and defines how many background
processes are used in order to drive message progression for
MLSL. Since on Cray systems MPI_Comm_Spawn is not
supported at the time of our experiments, we need to start
these background services manually. We do this by specifying
--gres=craynetwork:2 as batch environment variable



in order to obtain two network resources and then launch the
servers on resource 1 and TensorFlow on resource 0.

B. Piz Daint

Piz Daint at CSCS [25] is a hybrid Cray XC40/XC50
system and in this section we are referring to the XC50
portion of the machine. This part is comprised of 5320
hybrid CPU+GPU nodes. The CPU are single-socket Intel
Xeon E5-2695v3 with 12 hardware cores which can host
2 HyperThreads each at 2.6Ghz. Each node has 64GB of
DDR memory and is further equipped with one nvidia Pascal
GPU (P100) with 16GB HBM2 memory and 32GB/s PCIe
bandwidth. The inter-node network is the same as the one
deployed in Cori. The single precision peak performance is
about 49.5 PetaFLOP/s.
We compile TensorFlow 1.6 with cuDNN 7.1.1 backend
for CUDA 8.0 using gcc 5.3.0. Horovod-MPI v0.12.0 is
compiled with cray-mpich v7.6.0. with disabled hugepages
support. We enable GPU-aware collectives by specifying
HOROVOD_GPU_{ALLGATHER,ALLREDUCE,BROADCAST}
at compile time and enable the corresponding Cray MPICH
flags at runtime.
For testing purposes, we also compiled Horovod against the
nvidia collective communications library NCCL [26] v2.1.4
and refer to this variant as Horovod-NCCL. Due to the
unavailability of a Horovod-MLSL build, we do not include
this framework in our measurements on the Piz Daint system.
In case of the CPE ML plugin, we used v1.1.0.

Note that some of the software versions differ between
Cori and Piz Daint but the main intention of this paper is
to compare the various distributed training frameworks on
a given architecture and not cross architectural performance
comparisons.

C. Training Process

If not stated otherwise, we train both models using the
ADAM optimizer [27], [28] without large-batch gradient
booster improvements such as Layer-Wise Adaptive Rate
Scaling (LARS, [29]). The latter would improve the accuracy
of the trained model but does not impact scaling performance
significantly. Therefore, we won’t consider using LARS in this
paper.

VII. RESULTS

We perform weak and strong scaling experiments as well
as a time to solution study. Strong scaling a model is the
easiest way of training a model which was tweaked for optimal
single node convergence in a distributed fashion. However,
deep learning models usually do not scale out efficiently when
the local batch is distributed across more and more nodes
as local parallelism drops rapidly. Nevertheless, we think it
is important to test strong scaling capabilities of distributed
deep learning frameworks. Therefore, the best way to scale a
deep learning process is weak scaling, in which the local batch
size is kept constant when adding more nodes to the training
process. We will investigate weak scaling capabilities of the

frameworks discussed above. Lastly, we will do a small time to
solution study to illustrate that scaling a deep learning training
process weakly to a small number of nodes can speed up the
training process even if no sophisticated large-batch-optimized
training algorithms are employed.

A. Weak Scaling

We are performing weak scaling runs for the two deep
learning models on the two systems described above. In this
experiment, we perform calculations with node-local batch
sizes of 128 and 64 for the HEP-CNN and CosmoGAN model
respectively. Starting from single node, we scale in powers of
two as far as possible. For each run, we measure the timing per
training step over a number of steps in order to obtain a good
estimate of the duration per step. From that timing we can
compute the duration per sample as well as total number of
samples per second. We compute the median and the central
68% confidence interval and take those as our estimate and
error bar respectively.

Since this is a weak scaling experiment, the ideal/perfect
scaling case would correspond to constant duration and linear
increase in total number of samples per second. Note that the
total size of the dataset is kept constant in this experiment.
This seems to be contradictory as this implies strong scaling
with respect to the global dataset. However, this is the typical
situation a deep learning practitioner is facing and thus more
representative than scaling the size of the dataset with the
number of nodes. Furthermore, ignoring file caching effects on
small local shards of the total dataset, the total performance is
mainly influenced by the local batch size and the computation
to communication ratio.

Our weak scaling results are shown in Fig. 1. The per-
formance of the various frameworks is shown in a color
consistent manner across architectures and models. The black
ideal scaling line was computed based on the best achieved
per-step performance across the frameworks on the given
architecture. This number does not necessarily correspond to
the single node performance: the reason for that is that there
is a tradeoff between file caching effects and communication
overhead. The plot exhibits that the HEP-CNN model is harder
to scale because of lower compute to communication ratio. In
this regime, CPE ML outperforms all other solutions by a
small margin. This is probably due to the reduced overhead
as this frameworks makes heavy use of RDMA and other
asynchronous optimizations. Horovod-MLSL is better than
Horovod-MPI but it is not beneficial to launch additional
background servers here. We are currently investigating this
and believe that the communication of the main TensorFlow
runtime with the background servers generates some overhead
which is visible in this very latency and jitter sensitive
environment. For the more compute intensive CosmoGAN,
Horovod-MLSL performs very well even at massive scale
and even better when background servers are enabled: it
achieves almost ideal scaling up to 1024 workers on Cori. On
2048 workers, the sustained performance of Horovod-MLSL
is about 5% higher than CPE ML. However, this difference



is less important when performance variability is taken into
account. Both solutions outperform Horovod-MPI at that scale
by being about 20% more efficient.
On Piz Daint, CPE ML outperforms Horovod-MPI at very
large scale for HEP-CNN and shows almost ideal scaling.
We observe that, however, Horovod-MPI performs well at
medium to large scale. Our experiments with NCCL delivered
promising results at small scales but deadlocked for concur-
rencies greater than 64 nodes so that we were unable to
assess its true potential. Nvidia is aware of these issues and
working on solving this problem. For CosmoGAN, Horovod-
MPI surprisingly showed better scalability on Piz Daint. It
might be beneficial to tweak the number of teams and number
of threads per team setting slightly to improve performance
of CPE ML. Since the computing workload is offloaded to
the GPU, most of the CPU cores would be available for
communication. We will leave this experiment for a future
study.
In terms of performance variation we see that Horovod-
MLSL shows consistent performance even at 2048 Cori nodes,
whereas Horovod-MPI shows stronger fluctuations. The over-
all performance variability on Piz Daint is larger, potentially
because a CPU-GPU system is more sensitive to jitter than a
CPU only system. In a future study, we also aim at collecting
Horovod-MLSL data on Piz Daint as soon as this framework
is available on the system.

B. Strong Scaling

We perform a strong scaling study for CosmoGAN on Cori,
starting with a node-local batch size of 256 samples on single
node. This is the largest power-of-two batch we could fit on
a single Xeon Phi node and for this size the network still
converges smoothly. We then double the number of nodes and
half the node-local batch and scale out to 128 nodes. On that
concurrency, a single node is working on a batch of size 2.
We measure the achieved throughput dependent on the number
of nodes using various scaling frameworks. Since we expect
that communication will be the limiting factor for small local
batch sizes, we employ 2 servers in Horovod-MLSL. Fig. 2
shows the achieved throughputs.

The plot illustrates that training a model with small local
batches yields low computational performance. We could
not achieve significant speedup beyond 8 and 16 nodes for
CPE ML and the Horovod-based frameworks respectively.
However, at a low degree of parallelism, i.e. up to 8 nodes, su-
perlinear speedup could be achieved. One possible explanation
for this could be lower memory pressure and improved cache
reuse. Another reason could be that the convolutional kernels
benefit from higher vectorization efficiency: in MKL-DNN
convolutions, the samples are vectorized over batch and filter
dimensions and thus batch sizes/strides of 32 or 16 floating
points numbers can efficiently fill the vector processing units
on Xeon Phi. But this also suggests that the originally chosen
single node batch size of 64 is not far from delivering optimal
single node performance.

C. Time to Solution

Another important experiment is to print the time to solu-
tion, e.g. the time to reach a certain loss in the deep learning
context. The fact whether a network converges or not heavily
depends on the network architecture and the hyper parameters
as well as the solver chosen for the optimization task. In
that sense, it is more of a design and algorithm question and
not dependent on a specific distributed computing framework.
However, the practitioner who needs to decide whether to
employ distributed training or not wants to know if it is
beneficial at all. GAN are notoriously fragile and hard to
train even on a single node and require a lot of parameter
tuning. Therefore, we will answer this question for the more
robust HEP-CNN model instead: we weak-scaled the network
from a single node to 8, 16, 32 and 64 Cori nodes and
computed the loss in dependence on wall clock time. We
are only using the CPE ML framework for this study but
due to the small concurrencies we expect the results to be
similar for all the frameworks considered in this paper. The
results shown in Fig. 3 exhibit that the training could be
accelerated by involving more nodes in the calculation. Picking
a target value of 0.1 for the loss (black horizontal line), we can
compute how long it takes for the individual configurations
to reach this value in their minimization process (vertical
colored lines). Since the single node training does not reach the
target value in the observed time, we normalize the efficiency
by the time obtained on 8 nodes. For that case we achieve
efficiencies of 86%, 78% and 62% respectively. Note that
conventional ADAM was used as the optimizer in this study
and we expect these efficiencies to improve when large-batch-
optimized solvers such as LARS would be used.

VIII. CONCLUSION

We have tested several python modules which transform a
single node TensorFlow program into a model which can be
trained in data parallel fashion. Even the original Horovod-
MPI shows good weak scaling up to 1024 workers on the
Cori and Piz Daint systems. We can thus recommend this
framework without any doubts to users who want to perform
small and medium scale distributed training runs. The CPE
Machine Learning Plugin is very promising and shows mostly
excellent performance even large massive scale. It is rapidly
evolving and supports other advanced features which we have
not tested, such as gradient pipelining and solver cool down
for faster training and better convergence. We can recommend
this software to users who predominantly run on their training
on Cray systems. However, since the module interface is
different from Horovod-based solutions and it is only available
on Cray architectures, codes using CPE ML are not portable
to systems from other vendors. Users looking for a solution
which shows excellent performance at large scale which is
additionally portable to other systems should have a look at
Intel’s Horovod-MLSL solution. Since the interface is compat-
ible to Horovod, Tensorflow code written for Horovod-MLSL
is interoperable with any other framework which adopted the
Horovod API. A special case is Horovod-MPI with NCCL



(a) HEP-CNN

(b) CosmoGAN

Fig. 1: Weak scaling of HEP-CNN (top row) CosmoGAN (bottom row) and on the Cori (left column) and Piz Daint (right
column) HPC systems. The different colors correspond to the various frameworks. The datapoints are shifted in x-direction to
improve readability. The black line depicts the ideal scaling, based on the best achieved performance across frameworks and
concurrencies for the given HPC system.
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Fig. 2: CosmoGAN strong scaling with global batch of size
128 for our three main frameworks.

integration. On Piz Daint, we could not see a benefit over
Horovod-MPI but that is expected as Piz Daint nodes only

contain a single GPU. However, we expect that on systems
with fat nodes hosting multiple GPUs such as the OLCF
Summit system [30] could benefit highly from this solution.
Users who plan to run on these architectures are encouraged
to try this solution as well.
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