Incorporating a Test and Development System
Within the Production System

Cray User Group 2018
Nicholas P. Cardo, CSCS
Marco Induni, CSCS
May DD, 2018
Outline

- Test and Development Systems
- The Problem...
- Systems Description
- Motivation
- Implementation
- Challenges
- Story of Success
Value of a Test and Development System

- Evaluate the impact of new software levels
 - Without impacting production operations

- Provide an upgraded environment to rebuild and test applications
 - Mission Critical applications MUST work on new software/OS levels
 - Rebuilding large applications can take a significant effort and time

- Provide an environment for experimentation
 - Develop and optimize processes and procedures
The Problem

- So much money, so little hardware…

- Tradeoff
 - Buy more compute capacity
 - Buy TDS capability

- In Production HPC, TDS should prevail
 - But often doesn’t…

Non cogito, ergo sum…

Sometimes thinking is a bad idea.

https://www.1843magazine.com/content/ideas/ian-leslie/non-cogito-ergo-sum
Hardware Description

- **Compute Nodes (12)**
 - 8 x NVIDIA Tesla K80 GPUs
 - 256 GB of memory
 - 2 x Intel Xeon CPU E5-2690 v3

- **Post Processing Nodes (5)**
 - 256 GB of memory
 - 2 x Intel Xeon CPU E5-2690 v3

- **Login Nodes (3)**
 - 128 GB of memory
 - 2 x Intel Xeon CPU E5-2690 v3
Motivation

- Production weather forecasting system for Switzerland
 - Possibilities for test time are few and far between and short

- Without a TDS
 - Higher risk of introducing problems during tests

- Testing is time consuming
 - Many man-hours required to rebuild and re-validate

- Major upgrades are disruptive
 - Red Hat 6 -> Red Hat 7

- Specialized hardware is very expensive
 - And no money…
The Big What If...

What if we could “borrow” hardware from the production system and use it like a TDS and pigs could fly?

http://kineticmotions.ca/what-if

This simple question set in motion a series of events that would ultimately solve the problem.
Implemention Details

FINAL CONFIGURATION WITH TDS

- **Use VLANs**
- **Add disks**
- **Break the HA**

Diagram Details

- **GPU NODES 2-12**
- **PP NODES 2-5**
- **LOGIN NODES 1-2**

- **MGMT_1 ACTIVE**
- **MGMT_TDS ACTIVE**

- **TDS**
- **CSCS**
- **ETH Zürich**
Challenges

- No upgrade path to Red Hat 7 for the Cray Advanced Cluster Engine (ACE)
 - After 7 months, enough was enough
 - Switched to Bright Cluster Manager (BCM), through Cray

- No migration path from ACE to BCM
 - Need to do a fresh install
 - Took a while to get all the rpms right

- No High Availability for the system if H/A is broken
 - Acceptable risk due to other redundancies

- How many custom images?
 - End result only 1, personalize at boot time
And the Second System?

- Process repeated to prepare second system
 - Much faster having already worked it out

- Complicated but careful migration plan to new O/S
 1. Boot entire backup system to new O/S
 2. Switch production to backup system
 3. Run for 24 hours
 4. Boot primary system to new O/S
 5. Switch production to primary system

- Safety Precautions
 - Previous O/S available on second management workstations
 - A reboot returns system to previous levels
A Success Story

- Very Successful!
 - No interruption to production runs
 - Viable solution for future software updates
 - Capability remains in place
 - Red Hat 7.3 -> Red Hat 7.5 later this year…

- But still, there are challenges
 - Restoring H/A to management workstations
It Takes People…

- Thank-You to Cray for helping to work through our problems and frustrations
- Thank-You to Bright Computing for helping with the migration to BCM
Grazie per la vostra attenzione.
Thank-You for your attention.