
Leveraging MPI RMA to optimise
halo-swapping communications in
MONC on Cray XC Architecture

Michael Bareford, ARCHER CSE Team
m.bareford@epcc.ed.ac.uk

With thanks to Nick Brown and Michèle Weiland
EPCC, University of Edinburgh

Contents

• Background
• MONC, a code used by the UK Meteorological Office
• RMA, stands for Remote Memory Access, part of the MPI standard.

• RMA Implementation
• Initialisation of RMA memory window
• Optimisation of epoch creation
• Passive target synchronisation

• Results
• ARCHER, Cray XC30
• Weak and Strong Scaling

Met Office NERC Cloud (MONC) model
oMONC was developed for simulating clouds and atmospheric flows

(it was a replacement for Large Eddy Model)
• Written in Fortran 2003 and oriented around the concept of components.
• A model core is provided which contains general utility functionality, but all

science and parallelism is provided by independent, separate components

oMONC has been demonstrated up
to 32,768 cores using MPI point-to-
point (P2P) messaging for halo
swapping.

Brown, N. et al EASC 2015

MONC basic operation
o MONC is made up of many loosely

coupled components, which users
combine via configuration file settings for
specific runs.

o Halo Swap component provides an
interface for any physics components that
need to halo swap data.

o Underlying communication method (P2P or RMA) used for halo swapping
can be separated from the data being swapped.

MONC Halo Communication - MPI P2P

Initiate Halo Communication

Initiate Non-blocking Halo Swap

Finalise Halo Communication

Complete Non-blocking Halo Swap

o Setup a halo-swapping context that is returned to component to allow halo swapping of specific
fields --- operation involves the allocation of send/recv buffers for process neighbours.

o Model has completed execution --- clean up memory allocated for communication buffers.

• Register non-blocking receives from neighbouring processes.
• Pack domain data into send buffers.
• Send packed data via non-blocking sends.

• Wait for all communications to complete.
• Unpack received data into the appropriate halo locations.

per code run

per time step

MPI RMA Basics

o MPI Remote Memory Access (RMA) is a way of reading and writing
data to the memory of other processes without having to go through
the usual point to point semantics of inter-process communication.

o Memory is exposed between processes via windows (mpi_win_create).

o A communication is initiated by an origin process and involves
accessing the memory (via MPI get/put) of a target process.

o All RMA communications are non-blocking and take place within
epochs, which control process synchronization.

Active Target: Fence and PSCW (PostStartCompleteWait)
Passive Target: Lock synchronisation

Fence Synchronisation - MPI RMA Active Target

o Call mpi_win_fence to open and close an epoch.

o Each process synchronises with every other process in the windows
communicator.

o Can provide assertions to permit optimised operation, such as
MPI_MODE_NOPRECEDE and MPI_MODE_NOSUCCEED, but MPI
implementation can ignore these.

o Fence is the simplest method (similar to mpi_barrier) but some
overhead due to all-to-all synchronization.

PSCW Synchronisation - MPI RMA Active Target
o Communication between an origin process and a target process requires the

origin to enter an access epoch and the target to enter an exposure epoch.

Data

Target

mpi_win_post
/*exposure epoch*/
…
mpi_win_wait

Origin

mpi_win_start
/*access epoch*/
…
mpi_win_complete

o PostStartCompleteWait ensures that synchronisation occurs between
communicating processes only (MPI group).

o Pertinent to MONC where comms are nearest neighbour rather than across
all compute processes.

Data

mpi_put

Lock Synchronisation - MPI RMA Passive Target

o Only the active process is involved in the synchronisation
No interaction required by the target process.

o Origin process issues mpi_win_lock to start an access epoch,
mpi_win_unlock closes the epoch.

o Locks can be shared or exclusive, i.e., only one process at a time can
access the window of the target.

MPI RMA Memory Model
o MPI provides the concept of public and private copies of window data,

the so called separate model.

PrivateTarget

mpi_win_post
/*exposure epoch*/
…
mpi_win_wait

Origin

mpi_win_start
/*access epoch*/
…
mpi_win_complete Public

o There is also the unified model, which requires a cache coherent
machine: this allows certain synchronisations to be omitted.

o ARCHER MPI implementation (cray-mpich v7.5.5) supports the unified
memory model.

mpi_put

MONC Halo Communication - MPI P2P

Initiate Halo Communication
Setup a halo-swapping context that is returned to component to allow halo swapping of
specific fields.

Process 1 (p1)
has n-1 neighbours.

p2

p3

pn

p2

p3

pn

Send Buffers Recv Buffers

... ...

Initiate Halo Communication
Initiate Non-blocking Halo Swap
Complete Non-blocking Halo Swap

Finalise Halo Communication

MONC Halo Communication - MPI RMA
Initiate Halo Communication
Create RMA window: a contiguous 1D buffer that equals total size of neighbour send buffers.

Process 1 (p1)

p2 p3 pnRMA Window ...

p2 p3 pnSend Buffers ...

MONC Halo Communication - MPI RMA
Initiate Halo Communication
Create RMA window: a contiguous 1D buffer that equals total size of neighbour send buffers.

Process 1 (p1)

p2 p3 pnRMA Window ...

p2 p3 pnSend Buffers ...

All processes (1-n) swap window offsets (using issends, irecvs followed by waitall).

For example, Process 1 sends the offset that it uses for each neighbour to that
neighbour; and all other processes do the same.

MONC Halo Communication - MPI RMA
Initiate Halo Communication
Create RMA window: a contiguous 1D buffer that equals total size of neighbour send buffers.

Process 1 (p1)

p2 p3 pnRMA Window ...

p2 p3 pnSend Buffers ...

All processes (1-n) swap window offsets (using issends, irecvs followed by waitall).

For example, Process 1 sends the offset that it uses for each neighbour to that
neighbour; and all other processes do the same.

Process 3 (p3) p1 p2 pnRMA Window ...

So, later when p3 does an mpi_put to p1 it can use the offset that p1 provided, i.e.,
when p3 writes into p1’s window it writes to an offset reserved for p3.

MONC Halo Communication - MPI RMA

Initiate Halo Communication
What’s happened to the neighbour recv buffers?

Process 1 (p1)

p2 p3 pn RMA Window...

p2 Recv Pointersp3 pn

The neighbour recv buffers have been replaced by pointers into the RMA window.
The data is directly unpacked from the RMA window into the halo cells.

Tricky, as Fortran does not directly support pointer arithmetic, so this work is done in
C code instead. ISO C bindings provide the c_ptr derived type (used with
mpi_alloc_mem) as well as the c_f_pointer subroutine.

MONC Halo Communication - MPI RMA Fence

Initiate Halo Communication

Initiate Non-blocking Halo Swap

Finalise Halo Communication

Complete Non-blocking Halo Swap

o Create the RMA window.

o Free the RMA window.

• Pack domain data into RMA window
• mpi_win_fence(no_precede, ...)
• Send packed data via non-blocking RMA get.
• mpi_win_fence(no_succeed, ...)

• Unpack received data into the appropriate halo locations.

per code run

per time step

no_precede may not block
leading to data inconsistency

MONC Halo Communication - MPI RMA Fence

Initiate Halo Communication

Initiate Non-blocking Halo Swap

Finalise Halo Communication

Complete Non-blocking Halo Swap

o Create the RMA window.

o Free the RMA window.

• Pack domain data into send buffers.
• mpi_win_fence(no_precede, ...)
• Send packed data via non-blocking RMA put.
• mpi_win_fence(no_succeed, ...)

• Unpack received data into the appropriate halo locations.

per code run

per time step

MONC Halo Communication - MPI RMA Fence

Initiate Halo Communication

Initiate Non-blocking Halo Swap

Finalise Halo Communication

Complete Non-blocking Halo Swap

o Create the RMA window.
o mpi_win_fence(no_precede,...)

o mpi_win_fence(no_succeed, ...)
o Free the RMA window.

• Pack domain data into send buffers.
• Send packed data via non-blocking RMA puts.

• mpi_win_fence(no_succeed, ...).
• Unpack received data into the appropriate halo locations.
• mpi_win_fence(no_precede, ...).

per code run

per time step

MONC Halo Communication - MPI RMA PSCW
Initiate Halo Communication

Initiate Non-blocking Halo Swap

Finalise Halo Communication

Complete Non-blocking Halo Swap

o Create the RMA window and the neighbour MPI group.
o mpi_win_post(...)
o mpi_win_start(...)

o mpi_win_complete(...)
o mpi_win_wait(...)
o Free neighbour MPI group and RMA window.

• Pack domain data into send buffers.
• Send packed data via non-blocking RMA puts.

• mpi_win_complete(...)
• mpi_win_wait(...)
• Unpack received data into the appropriate halo locations.
• mpi_win_post(...)
• mpi_win_start(...)

per code run

per time step

MONC Halo Communication - MPI RMA Lock (First Attempt)
Initiate Halo Communication

Initiate Non-blocking Halo Swap

Finalise Halo Communication

Complete Non-blocking Halo Swap

o Create the RMA window.

o Free the RMA window.

• Pack domain data into send buffers.
• For each neighbour...

mpi_win_lock(shared,...)
mpi_put(...)
mpi_win_unlock(...)

• Use mpi_win_flush() and mpi_barrier to ensure all comms have completed.
• Unpack received data into the appropriate halo locations.

per code run

per time step

MONC Halo Communication - MPI RMA Lock
Initiate Halo Communication

Initiate Non-blocking Halo Swap

Finalise Halo Communication

Complete Non-blocking Halo Swap

o Create the RMA window.
o mpi_win_lock_all(nocheck, ...)

o mpi_win_unlock_all(...)
o Free the RMA window.

• Pack domain data into send buffers.
• Send packed data via non-blocking RMA puts.

• Call mpi_irecv with empty message for all neighbours.
• mpi_win_flush_all(...)
• Call mpi_isend with empty message for all neighbours.
• Use mpi_testall to determine when irecv/isend comms have completed.
• if (SeparateRMAMemoryModel) mpi_win_sync(...)
• Unpack received data into the appropriate halo locations.

per code run

per time step

www.archer.ac.uk

Introducing ARCHER
Advanced Research Computing High End Resource

Introducing ARCHER
oCray XC30 MPP, 4920 Compute Nodes

Dual Intel Xeon processors (Ivy Bridge), 24 cores, 64 GB

oTests conducted on production system

oSupports Cray’s Distributed Memory Application API (DMAPP)
A communication library (v1.6.0) that can call straight through to the
underlying Aries networking ASIC on the Cray and implements many RMA
operations directly in hardware.

MONC test case

o A standard test case for marine stratocumulus cloud was used
which contains 25 Q (moisture) fields, as well as fields for
temperature, pressure and wind.

o All of these fields need to be swapped once per time step.

o MONC mode compiled using Cray Fortran Compiler v8.4.1 and
Cray MPICH v7.5.5.

o Run 1 process per core.

3 GB 768 GB

23 MB pp

!"
#$%

& '()(+ '+,-
./01#/

.

./01#/ = 500

3 GB 768 GB

23 MB pp

!"#$%" = 500

!"#$%" = 2000

!"#$%" = 2000

61 GB

30 MB pp 2 MB pp

!"#$%" = 500

Conclusions

Results show that RMA is worth pursuing, if you are careful with RMA
implementation (slides 13-22) and use DMAPP.

Conclusions

Results show that RMA is worth pursuing, if you are careful with RMA
implementation (slides 13-22) and you use DMAPP.

However, what is achievable with ARCHER Cray XC30, may not
be the case for other platforms.

Cirrus SGI ICE (20,160 cores)

Compute node: two 18-core
Broadwell processes, 256 GB.

SGI MPT v2.14 does not
implement passive target
synchronisation.

23 MB pp

3 GB 94 GB

Conclusions

However, what is achievable with ARCHER Cray XC30, may not
be the case for other platforms.

Cirrus SGI ICE (20,160 cores)

Compute node: two 18-core
Broadwell processes, 256 GB.

SGI MPT v2.14 does not
implement passive target
synchronisation.

7.6 GB

30 MB pp 2 MB pp

Results show that RMA is worth pursuing, if you are careful with RMA
implementation (slides 13-22) and you use DMAPP.

Conclusions

And of course MPI implementations will continue to evolve.
Expectation is that RMA performance will improve.

But, so could P2P...

ARCHER Cray XC30:
cray-mpich v7.7.0 module introduces “optimized message matching”.

Initial results have shown improvements of
as much as 16% in some micro-benchmarks

Cray Release Notes

Results show that RMA is worth pursuing, if you are careful with RMA
implementation (slides 13-22) and you use DMAPP.

