
GPU Usage Reporting

Nicholas P. Cardo, Miguel Gila, Mark Klein
Swiss National Supercomputer Centre (CSCS)

HPC Operations
Lugano, Switzerland

Abstract—For systems with accelerators, such as Graphics
Processing Units (GPUs), it is vital to understand their usage in
solving scientific problems. Not only is this important to
understand for current systems, but it also provides insight into
future system needs. However, there are limitations and
challenges that have prevented reliable statistic capturing,
recording and reporting. The Swiss National Supercomputer
Centre (CSCS) has developed a mechanism for capturing and
storing GPU statistical information for each batch job.
Additionally, a batch job summary report has been developed
to display useful statistics about the job, including GPU
utilization statistics. This paper will discuss the challenges that
needed to be overcome along with the design and
implementation of the solution.

Keywords; HPC, GPU, Usage Reporting

I. INTRODUCTION
Understanding the utilization of computational resources

is an important metric that is used for the sizing of next
generation systems. However, with accelerators, this has been
difficult to ascertain. Most accounting functionality will
cover the host processor and the node itself. While it is
possible for a user to obtain GPU usage information, this is
not linked to the general accounting. A solution is needed that
bridges the gap between statistical data from a GPU and the
integrated accounting with workload managers. Once the
information is integrated, reporting capabilities can be
explored further. The simplest example is that with this data,
it is possible to determine if a batch job simply used the node
with the host processor or actually used the available GPU.

II. OBJECTIVES
In order to design a solution, the problem had to be broken

down and clearly understood. What areas of work would be
required to accomplish an integrated solution? To start with,
the problem was simplified down to determining if a batch job
utilized the available GPUs. With the end result defined, it
was then possible to break down the problem of bridging the
gap between the GPU and accounting. Three components of
for an overall solution to providing GPU statistics were
identified. These were:

1. Data Capture: the ability to capture statistics
2. Data Store: the ability to store statistics
3. Data Reports: the ability to report statistics

Now that the problem was understood, the next step was
to define the boundary conditions for the solution. Several

design objectives were established to guide the development
efforts. These were:

1. Determine if a batch job utilized GPUs
2. Store statistics with job data accounting
3. Make the data available to users
4. Capability to report on all jobs

These objectives also became the success criteria for
development.

III. CHALLENGES
Limitations in GPU counters restricted the amount of data

that could be captured. This is an architectural limitation and
changes from model to model. The CSCS flagship system Piz
Daint utilizes the NVIDIA Tesla P100 GPU. The model of the
GPU establishes what data is available and could be useful for
data collection.

Piz Daint has more than 5,300 GPUs available for
production computational service. For large scale
applications, the challenge is how to capture the data and
aggregate it across all used compute nodes for any given batch
job in an efficient way. Computational resources are an
expensive commodity that need to be maximally available for
scientific computing.

Once the data has been captured, the next challenge was
how to get the data off the system in a way that can be linked
with job data. This would have been a simple problem if it
weren’t for the requirement of storing the data with the job’s
accounting data. Storing the data separately would have
created the problem of how to link the data from data stores in
potentially different locations and making it available to users
and system reporting. The ideal solution is to store it all in
one place.

With everything in place, the final challenge was how to
expose this data to the users as well as for system level
reporting. Users should be able to easily see the results
without custom software development. The data also needed
to be easily retrievable.

IV. DESIGN
CSCS utilizes the Slurm workload manager for controlling

access to the computational resources. It was clear that the
solution had to integrate seamlessly into the natural operation
of the workload manager ideally without custom
modifications. Having four clear objectives decomposed the
problem into solvable components that in the end needed to
work together to provide an integrated solution.

A. Satisfying Objective #1
Like most workload managers, Slurm includes the

capability of executing a site defined prologue (executes
before the job) as well as a site defined epilogue (executes
after the job). Computing the GPU utilization difference
between job startup and job completion yields the utilization
for that job. Basic information regarding usage of the GPU
was available directly from the GPU. The data could be
reported as high-water marks and/or accumulated
consumption of the resource. The following data was
determined to be useful:

1. GPU seconds, averaged over the nodes
2. Maximum GPU second of a node
3. Maximum GPU memory of a node
4. Total GPU memory across all nodes

While not an exhaustive amount of data, it is sufficient to
deliver on Objective #1: did a batch job utilize the GPU.

B. Satisfying Objective #2
Objective #2 requires that the newly captured data be

stored in a manner that is integrated with a batch job’s
accounting data. The Slurm accounting records are fixed and
modifying the database records was determined to be
undesirable. However, carefully analysis of the data structure
revealed that an existing variable text field could be utilized to
hold the data. As previously identified, there are four data
elements to store with only a single field to store them. A
multi-variable storage format was needed that conversion
tools were readily available. The solution was found in using
JavaScript Object Notation (JSON) format. The design would
allow for a JSON format string to be inserted into a job’s
record into the AdminComment field. All the data was now in
a single storage location satisfying Objective #2.

C. Satisfying Objective #3
Objective #3 called for providing users access to the newly

collected information. Since this was stored in the Slurm
accounting data the solution came with the sacct command.
This is the standard command for access accounting data for
batch jobs. Command options allow for requesting the
AdminComment field to be displayed. However, the
information displayed would still be in JSON format. This
created an additional requirement to have the tools available
to decode the JSON formatted text. The provided tools
needed to provide both a library and command-line method
for parsing the text. Under CLE 6, the Jansson C library for
JSON manipulation is already included enabling compiled
codes to have a standard way to parse JSON. There are many
command-line utilities available for parsing JSON formatted
text. After trying several options, JQ was selected as the
command-line tool to make available to users. With the data
and tools available, Objective #3 is satisfied.

D. Satisfying Objective #4
In order to satisfy the reporting requirements of Objective

#4, the information needed to be easily presented to the users
without much work on their part. Furthermore, system level
reporting capabilities are necessary. A batch job summary

report could be presented to the user appended to the end of
each batch job that contains the GPU usage information.
Having the data included in the Slurm job accounting record
would automatically expose the new data to system level
reports. These reporting solutions satisfied the requirements
of Objective #4. The design and implementation of system
level reports would be developed separately.

V. IMPLEMENTATION
A custom plug-in was developed to perform the data

capture and amortize it over the scale of the job. The
functionality desired is very close in methodology to the way
Cray’s Resource Utilization Reporting (RUR) package
worked. However, under native Slurm, RUR is not supported.
What if the RUR functionality could be made to work and
extended to handle the requirements of gathering GPU
statistics? This is exactly the approach taken for the initial
release.

A. JSON Format
JSON provides a standardized format with a large

selection of tools for generation and processing. With this,
several parameter and value pairs could be embedded within
a single storage location. Five elements of data are embedded
into the AdminComment field of the Slurm accounting record
for a given batch job. The following is a sample JSON string:

{"gpustats":{
 "maxgpusecs": 146,
 "maxmem": 17034117120
 "gpupids": 1,
 "summem": 17034117120,
 "gpusecs": 146
}

Each field provides details about the usage of a GPU.

These fields are:

• maxgpusecs: high water mark of seconds a GPU
was in use across all used GPUs

• maxmem: high water mark of memory usage of a
GPU across all used GPUs

• gpupids: GPU identifier
• summem: total accumulated memory usage across

all used GPUs
• gpussecs: total accumulated seconds the GPUs

were used across all used GPUs

Because JSON was chosen as the data format, it can easily
be extended. Additional data elements can be inserted without
the need to change what is already working. As long as the
names of the existing fields are not changed others fields can
be inserted. Also, location is not important as with JSON a
field is requested by name. This is a very important factor as
it enables an ease of growth. Over time as more data is
identified, the string can be increased without impacting the
existing production operation. Reporting mechanisms can
then be adjusted asynchronously.

B. Adapting RUR
RUR utilizes a plugin architecture for capturing data.

GPU data is obtained with the gpustat_stage.py plugin.
A problem was found which was resulting in the gpu seconds
being double reported. A minor update was made to correct
this behavior.

 lines = re.split("\n", nvacct)
 for line in lines:
- try:
+ if re.search("maxMemoryUsage=0",line):
+ continue
+ try:

This minor modification to first check memory
consumption corrected the behavior.

Another modification was required for the
taskstats_stage.py plugin in order to get RUR to work.

 if jobid:
- if data.data['pjid'] != 0 and
 data.data['apid'] != 0:
+ if data.data['uid'] != 0 and
 data.data['apid'] != 0:

RUR was developed for systems running the Cray
Application Level Placement Scheduler (ALPS). However,
on Piz Daint, Slurm is configured in “native” mode which
eliminates the need for ALPS. RUR would attempt to obtain
the list of nodes for the job through ALPS which is not
available in native mode. This was simple to overcome by
simply switching to the environment variable
SLURM_JOB_NODELIST.

The final part to RUR was to enable it to record the data
into the Slurm accounting record for that job. By using the
file_output.py plugin as a template, a new plugin was
written specifically to record the Slurm data.

jout={}
line=line.replace('\r', '').replace('\n',

'').replace('[','').replace(']','').replace("
', ","'=").replace("'","").replace(",","")

raw=dict(token.split('=') for token in
shlex.split(line))

jout['gpustats']=dict((k,int(v)) for k,v
in raw.iteritems())

jout=json.dumps(jout)
command= "/usr/bin/mysql -h somesvr -u

someuser -p somepass somedb -e 'update
%s_job_table set admin_comment=\"%s\" where
id_job=%s and id_user=%s'" %
(cluster,jout.replace("\"",'\\"'),jobid,uid)

subprocess.call(command,shell=True)

While this may appear complicated, it is simply cleaning
up the JSON output and using MySQL to update the job’s
accounting record.

The main advantage of leveraging the technology in RUR
is the embedded capability to accumulate the data from all
nodes assigned to the batch job. RUR already had the
capability to capture and accumulate data from a batch job’s
node list making it an ideal technology to leverage.

C. Batch Job Summary Report
A batch job summary report is produced in the epilog and

appended to the jobs standard output file. However, at the
time of generating the report, the job’s standard output file is
no longer accessible. A workaround to this is to write directly
to the batch’s job standard output file. The limitation that
interactive jobs, jobs not created with sbatch, would not
receive the output was an acceptable compromise. This
limitation is created because there is no standard output file
for interactive jobs.

Deciding what to automatically report back at the end of
each job is very site specific and customized to the appropriate
user community. At CSCS, the following elements of the
report were determined to be required:

• Batch job life span
• Elapsed time
• Requested time
• Username
• Account name
• Slurm partition
• Number of nodes
• Consumed Energy
• GPU Usage Statistics, when on a hybrid node
• Scratch file system inode usage

This list was determined after an analysis of user tickets to
answer the question of what could be provided that either
would have eliminated a question, arrived at the true problem
quicker, or eliminated additional work.

From this report users can understand the basics about

their job’s resource consumption as well as clearly indicate
their GPU usage. It is also true that a job that did not use an
available GPU now becomes identifiable. By knowing the
batch job’s elapsed time and the maxgpusecs, an
approximation can be made regarding how long a batch job
used a GPU with respect to the job’s overall run time.

The “Batch Job Summary Report” is a simple BASH
script called from the slurmctld prolog that extracts the data
from the Slurm accounting database and from the system.

VI. EARLY RESULTS
After successful testing on the XC50 test and development

system, Dom, the solution was moved to Piz Daint.
Immediately after entering production, a large number of
RUR timeouts were being recorded. Further investigation
identified that data was not being recorded for all jobs. With
the successfully working on Dom, it was likely related to scale

Batch Job Summary Report for Job "test1" (6802625) on daint

Submit Eligible Start End Elapsed Timelimit
------------------- ------------------- ------------------- ------------------- ---------- ----------
2018-04-12T06:58:40 2018-04-12T06:58:40 2018-04-12T06:58:41 2018-04-12T07:01:19 00:02:38 00:15:00

Username Account Partition NNodes Energy
---------- ---------- ---------- ------ --------------
cardo csstaff debug 1 18.31K joules
--
gpusecs maxgpusecs maxmem summem
------- ---------- ------------ ----------------

146 146 17034117120 17034117120
--
Scratch File System Files Quota
-------------------- ---------- ----------
/scratch/snx3000 2 1000000

on Piz Daint. The problem was confirmed and the problem
isolated to the open file limit on the tier-2 boot nodes for
rsyslogd. Piz Daint has 7,134 compute nodes all trying to
record data. The initial limit was set to 8,192 and causing
some connections to timeout resulting in data not being
recorded. The solution was to double the value to 16,384.
With this change both problems disappeared; no more
timeouts or missing data.

In the line of work in providing support for HPC systems,
it is very rare to receive a compliment from a user. This in
fact, was an unexpected pleasure to have reported through our
trouble ticket system.
Dear CSCS

Since today I get Batch Job Summary Reports by
default at the end of my jobs.

They are very useful. Thanks for enabling the
feature. Well done.

Cheers

Appreciation from the user community is a clear sign of
value provided to them.

VII. NEXT STEPS
Given the flexibility of the design, other data elements will

be evaluated to add to JSON text.
The development of system level reports is an ongoing

effort. CSCS is currently working to define meaningful
reports and/or metrics. Reporting could be performed down
to the project level or a broader view from the system level.
A conceptual idea for a report has been put together and work
will progress to produce it for evaluation. This is likely to be
an iterative process until meaningful reports are routinely
produced.

The current solution is based on an adaptation of RUR.
Considerations are being given to taking this to a completely
independent solution. The end result should be a solution that
in portable and can run on any system that employs GPUs.

The Data Center GPU Manager (DCGM) by NVIDIA
continues to evolve. It may be possible to adopt dcgm into the
solution.

VIII. SUMMARY
This solution has been successfully running in full

production since February 21, 2018. Data is continuously

being collected for analysis. User level accessibility to the
collected has been greatly simplified with the Batch Job
Summary report that is automatically generated into their
standard output file.

The initial deployment has been completed and the
development of meaningful system level reports is now
underway.

This endeavor has opened the door to future development
opportunities including the possibility of delivering a system
independent solution.

ACKNOWLEDGMENT
This work was supported by the Swiss National

Supercomputing Centre (CSCS).

REFERENCES
1. SchedMD, “Slurm Workload Manager,” [online].

Available: https://slurm.schedmd.com
2. NVIDIA Corporation, “NVIDIA,” [online].

Available: https://www.nvidia.com
3. NVIDIA Corporation, “Data Center GPU Manager,”

[online].
Available: http://www.nvidia.com/object/data-center-
gpu-manager.html

4. Cray Inc., “Cray,”, [online].
Available: https://www.cray.com

5. “JavaScript Object Notation (JSON),” [online].
Available: https://www.json.org

6. “Jansson,” [online].
Available: http://www.digip.org/jansson

7. “./jq,” [online].
Available: https://stedolan.github.io/jq

8. Oracle, “MySQL,” [online].
Available: https://www.mysql.com

9. Cray Inc., “Resource Utilization Reporting,” [online].
Available: https://pubs.cray.com/content/S-
2393/CLE%206.0.UP05/xctm-series-system-
administration-guide/resource-utilization-reporting

10. Cray Inc., “XC Series Application Placemen Guide,”
[online].
Available: Cray Inc., https://pubs.cray.com/content/S-
2496/CLE%206.0.UP01/xctm-series-user-application-
placement-guide-cle-60up01

