

Strategies to Accelerate VASP with GPUs Using OpenACC

Stefan Maintz1 and Markus Wetzstein2

1) NVIDIA, Munich, Germany. E-mail: smaintz@nvidia.com

2) NVIDIA, Zurich, Switzerland. E-mail: mwetzstein@nvidia.com

Abstract—We present results of a porting effort of VASP (the

Vienna Ab Initio Simulation Package) to GPUs, using

OpenACC. While having been useful to researchers, the

existing CUDA C based port of VASP was hard to maintain

due to source code duplication. We demonstrate a directive

based OpenACC adaptation for the most important DFT-level

solvers available in VASP: RMM-DIIS and blocked-Davidson.

A comparative performance study shows that the OpenACC

efforts can even significantly outperform the former port. No

extensive code refactoring was necessary. Guidelines to

managing device memory for heavily aggregated data

structures are presented. These lead to cleaner code and lower

the entry barrier to accelerate additional parts of VASP and

might prove useful for accelerating other high-performance

applications.

Keywords-GPU; VASP; OpenACC; CUDA; porting;

performance optimization; heterogeneous; maintainability

I. INTRODUCTION

With the advent of GPUs for general purpose computing,
endeavors started to accelerate quantum-chemistry codes,
which consume a dominant share on computing centers all
over the world. Among these, the Vienna ab-initio
simulation package (VASP) [1-6] is one of the most widely
employed programs. When it comes to plane-wave based
solid-state calculations, it is perhaps the most important one.
In 2015 at NERSC, VASP alone consumed about 12% of the
total computing cycles [7] and the situation is similar at other
HPC centers. Hence, it is not surprising that starting in 2011,
first success stories to accelerate parts of VASP have been
published [8-10]. Each of these efforts focused on different
algorithms, solvers and even levels of theory. Given the
plethora of such combinations that are available in VASP,
even the combined and extended port that officially became
part of the VASP release 5.4.1 later in 2015, could not cover
all of these. This is understandable given all the available
pathways through the code, many of which show profiles
with lots of kernels with comparable importance for the total
run time. Thus, optimization and porting to heterogenous
architectures is a challenge. For such cases, Amdahl’s law

dictates to focus on whole application performance and
requires porting large portions of the code. However, given a
limited amount of development time this will eventually lead
to a trade-off between fully optimizing specific kernels
versus offloading others to the accelerator at all.

Starting with release 5.4.4, VASP officially supports
being compiled with the PGI compiler suite version 16.10
and higher. This is one option to enable the use of
programming frameworks like CUDA Fortran or OpenACC,
which allow to target NVIDIA GPUs and integrate
seamlessly with Fortran, the programming language used for
VASP. With respect to the described timeframes above, the
developers of the first GPU-accelerated versions of VASP
did not have these options. They chose to base their efforts
on CUDA C kernels and utilizing wrapper functions that can
be linked and called from Fortran. Interception points were
introduced in the call tree to hand off some computation to
the GPU and then proceed with the result.

While this proved valuable to show the performance
potential of GPUs, it led to massive code duplication and
significantly increased maintenance cost for the GPU port.
The VASP CPU code is continuously updated and enhanced
to enable more and improved science, and these changes
needed to be manually integrated into the GPU call-tree as
well. With limited staffing resourced for development,
keeping the existing code base up to date and porting new
features to the GPU becomes difficult, in particular in the
context of achieving good overall performance in the first
place.

From our perspective, a directive-based approach like
OpenACC combined with interfacing to specialized and
vendor-optimized libraries seemed like an ideal solution
here. This approach utilizes the knowhow of compiler and
library engineers for generating well optimized low-level
code. It allows the application developer to concentrate on
the scientific problems to be solved, and to drop into low-
level programming only on an as-needed basis. Our goal in
this effort was to make such a vision a reality, and to
understand what it takes to apply it to software packages as
complex as VASP.

Following this strategy, our ultimate goal was to
substantially improve the maintainability of the code base
while making it feasible to port new parts of the code in the
future. To achieve this in our feasibility study, our port was
based on a development snapshot of VASP. This minimized
the risk of diverging the code base right from the start. The
port had to work out of the same existing source code
primarily intended for the CPU. While GPUs and CPUs may
have different requirements on algorithms to fully exploit
their potential, we restricted ourselves to minor refactoring,
even if that meant sacrificing GPU performance in favor of
keeping changes to the code as minimal and as encapsulated
as possible. Hence, maintainability for the original
developers should remain intact. Finally, once the OpenACC
implementation was finished we wanted to ensure we could
compare its performance to the existing CUDA C port.

In the following, we introduce our methodology to select
the features and code paths to begin our endeavor and
present the challenges we addressed to create a working in-
house OpenACC port of VASP. We show performance
measurements of this version and compare it to the same
benchmarks when run with the CUDA C based VASP 5.4.4.
Finally, we discuss the differences that put the OpenACC-
based approach ahead of VASP 5.4.4. We show that the
ability to focus more easily on whole application
performance, and to quickly port entire call trees, really pays
off as a strategy to accelerate scientific codes that pose
similar challenges as VASP.

II. USE CASE ANALYSIS

A. The science and the implementation in VASP

Scientifically, VASP is used mainly but certainly not
exclusively by quantum-chemists, physicists and material
scientists to predict properties of mainly solid-state systems,
i.e., crystals and surfaces, but also of atoms, molecules and
liquids. It does so by calculating their electronic structures as
approximate solutions to the many-body Schrödinger
equation from first principles, and enables molecular-
dynamics calculations on a quantum-mechanical foundation.
Many levels of theory and – by that also of accuracy – are
implemented into VASP. Among those are the Hartree-Fock
(HF) approximation and 2nd-order Møller-Plesset
perturbation theory (MP2), Green’s functions methods (GW,
ACFDT-RPA), time-dependent excitation methods (TDHF
and BSE) and density functional theory (DFT). The latter is
today’s quantum-chemical workhorse and solves sets of the
so-called Kohn-Sham (KS) equations

 HKS ψn(r) = εn ψn(r). (1)

Here, HKS is the effective Hamiltonian, while ψn(r) and εn

describe the eigenfunctions and -values of the associated KS-
orbital n, respectively. Due to the quantum-mechanical
foundations, these orbitals must be orthonormal, which is
why a significant part of the runtime of a VASP calculation
is spent in linear algebra libraries. To describe the periodic
wavefunctions, the projector-augmented-wave (PAW)

method is chosen. Besides smoothing wavefunctions by a
linear transformation, it employs plane waves

 ψn(k,r) = Ω-1/2 ΣG CG,n(k) exp{i (k + G) r}. (2)

The coefficients CG,n(k) are the main quantity that is to be

determined in VASP by iterative, self-consistent refinement
during which they are repeatedly transformed between
Fourier (k+G) and direct (r) space. This results in an
important dependency on FFT routines between custom
kernels which, for example, apply the Hamiltonian.

VASP has been under active development and
refactoring for about 25 years. Most of the code base is
written in Fortran 90. On the CPU-side, the current release at
the time of writing (5.4.4) has so far been parallelized with
MPI only, whereas endeavors toward a hybrid OpenMP/MPI
scheme have been reported [7,11]. For distributing the work
over the ranks, VASP offers three layers of parallelization of
which only one is used by default (see Figure 1 for
visualization). The KS-orbitals are mostly independent from
each other, but communication is inevitable for the described
orthonormalization. Generally, this default scheme offers the
best trade-off between load-balancing and data-exchange
overhead. On a higher level, larger chunks of the workload
can be distributed over k-points, but such a distribution is not
always viable, even though communication overhead would
also be low, because there are systems that comprise of only
a single such point. On the other end, distribution over the
plane-wave coefficients is also implemented in VASP. Since
this introduces a lot of reductions within the innermost loops,
it is crucial to adapt this scheme to the underlying topology.
Generally, this distribution scheme is best used only within
one (NUMA-) node.

B. Real-world use cases

When starting from scratch to accelerate a software
package which offers a highly diverse set of features and
algorithms, it is obvious that not all functionality can be
ported right away. To decide whether a new approach is
worth pursuing and potentially even superior over another, it
is crucial to begin with use cases that are representative of
what users of the application run on a daily basis, while still
allowing to compare against features implemented in the

Figure 1. Visualization of the MPI-based layers of parallelization

available in VASP 5.4.4. Top level parallelization distributes work

over multiple k-points which is controlled by the KPAR keyword. The

default distribution scheme is over KS-orbitals and optionally finer-

grained distribution can be enabled over the plane-wave coefficients

using the NCORE keyword.

existing port. One option to determine what those use cases
are is to poll as many experts in the field as possible, asking
what they think is most important. Ultimately, one cannot
prevent bias in such opinions based on respective
backgrounds and experiences. Another option would be to
gather data about jobs run at HPC computing centers.
Unfortunately, such statistics are hard to interpret because
different users have different needs and they usually stick to
only a few supercomputers. This would require averaging
over as many computing facilities as possible. However, this
would still not include the use cases from on-premises
installations, which are not run at major centers.

Keeping that in mind, any hints toward real-world usage
are helpful and we were provided with usage data on VASP
collected on NERSC’s Cray XC30 supercomputer “Edison”
in late 2014. Of course, requirements on methodological
accuracy might have changed since then and the dataset did
not contain data on machine hours, so we can only correlate
select features to job count. Hence long running jobs with
many nodes have the same weight as short jobs on a few
nodes.

In terms of job sizes, the evaluation of the data showed
that 34% of all jobs ran within a single node only, while
another 28% occupied only 2-4 nodes. In other words: more
than half of the submitted jobs were required 4 or less nodes.
Assuming a GPU-node would be 4x faster than an
unaccelerated node, half of the jobs should fit into a single
accelerator node. Even though 95% of all examined jobs
were using 12 nodes or less, the remaining 5% may very
well make up for a lot more machine hours. To cover most
jobs, we focused on smaller node counts first.

In terms of levels of theory, Figure 2 shows that 96% of
the jobs rely exclusively on standard DFT. About 4% of the
jobs were using hybrid DFT, i.e. to increase overall
accuracy, they include results of exact exchange, as defined
by the HF method, into the final result. This requires an
increased computational complexity and even though
machine hours were not part of the dataset, it can be

expected that the percentage of hybrid DFT would be
considerably higher if machine hours would be the reference
metric. RPA and BSE seem not to have played a significant
role, but they are also much more computationally
demanding than standard DFT, so machine hour percentage
could show a different picture here as well. Additionally,
both methods are fairly new implementations as compared to
DFT and HF, so a more recent statistic could show a larger
share for them, as their popularity increases.

Turning back to selecting what levels of theory should be
tackled first for the porting effort presented here, Figure 2
gives a clear answer: standard DFT. In relation to the
increased complexity, hybrid DFT would be the second in
line.

VASP implements several main solvers like the blocked-
Davidson or the residual minimization method with direct
inversion of the iterative subspace (RMM-DIIS) methods. It
does not come as a surprise that the default Davidson
algorithm was used in the majority of the jobs, i.e. 51% (see
Figure 3). This is probably due to its known good stability,
whereas the RMM-DIIS algorithm that is known to be a lot
faster makes up for 8%. To alleviate the lesser reliability of
RMM-DIIS to directly converge to the desired result, it pays
off to combine it with a few steps of blocked-Davidson in the
beginning. For the latter combined scheme, RMM-DIIS
often is the predominant part, especially for slowly
converging calculations. So RMM-DIIS plus the combined
scheme sum up to 46% of the jobs. As both algorithms are
nearly equally important, the decision on where to start needs
to be made on different grounds: we decided to start with
RMM-DIIS because it allowed for an easier 1:1 comparison
between the performance of the CUDA C and OpenACC
ports.

A last option to be discussed is the projector evaluation
scheme, because this also leads to different call-trees to be
ported first. VASP offers three options: the reciprocal-space,

Figure 2: Percentage of quantum-mechanical methods used for VASP

jobs in terms of count that ran on Edison late 2014. Standard DFT

makes up for 96% of the jobs, but the remaining methods have
(heavily) increased computational complexity and machine hours have

not been accounted for.

Figure 3: Percentage of main solving algorithms used for VASP jobs
in terms of count that ran on Edison late 2014. The blocked Davidson

algorithm is default and was used 51% of the cases. The RMM-DIIS

scheme on its own was used in 8% of the cases, but is also the
predominant step, when combined with Davidson in another 38%.
Specialized algorithms share the remaining 3%.

real-space and automatic scheme. While the reciprocal
scheme is the most accurate one, the real-space method
offers significant computational advantages when dealing
with large supercells. The automatic scheme is also
computed in real space and gives the same call-tree within
the relevant code parts. Because the job statistics gave a
50:50 distribution, we selected the real-space scheme first for
two reasons: a) it helps with larger cells and acceleration
sounds more attractive the larger the job is and b) the
reciprocal scheme is not supported in VASP 5.4.4 and would
not have allowed for comparisons.

The usage statistics have been tremendously helpful to
select the features that we focused on supporting first:
parallelization schemes seem not of utmost importance at
first sight, since most of the examined jobs could maybe
even fit into a single accelerator node. Besides, we chose to
look at standard DFT with the RMM-DIIS algorithm in the
real-space projection scheme first, but blocked-Davidson
seems just as important regarding next features to port.

III. PORTING WITH OPENACC

A. Managing discrete memory

From the outset, OpenACC was designed to be
performance portable across processor architectures. It
allows you to write programs that will map efficiently not
only to GPUs, but also to multicore CPUs and manycore
processors. At compile time it is decided to target multicore
CPUs or GPUs by specifying one or more target
architectures in the compilation options. When compiling for
a target that includes a discrete memory, such as a GPU,
managing the latter needs to be addressed somehow.

OpenACC includes data movement directives for
managing movement between host memory and accelerator
memory. These can safely be ignored for targets that don’t
need them and the resulting program will still be correct.
Besides that, techniques like managed memory are available
for NVIDIA GPUs that give a seamless mode of operation
by moving data to device memory on demand. While this
can offer various advantages of its own, it would also allow
for fastest porting, implementing a strategy of dealing with
low-level memory management only on an as-needed basis.
By design, managed memory can only work with allocated
data because an allocation call is replaced by functions that
allocate and register the requested memory with the runtime
that will then take care of data movement. Statically declared
data cannot be moved without help from the operating
system, though. Until such functionality becomes widely
available there is no way around directives in codes that use
such data.

OpenACC data directives for Fortran allow all intrinsic
datatypes to be used as arguments. Derived types can be
handled in an analogous manner, but need further treatment:
when a derived-type variable is copied to the device,
OpenACC will transfer the base pointer and all statically
defined members. If the derived type contains dynamically
allocated data, these need to be transferred separately and
after the parent structure has been created on the device. The
same holds for other members that are of derived type

themselves. In addition to treating their dynamically
allocated members and possible further derived types, a
derived-type member needs to be adapted on the device
because during the initial copy it contained the associated
memory location of the host’s member. After the latter has
been transferred to the device as well, its memory location
on the device needs to be used in the device copy of the
parent type. That process requires to use the OpenACC
pointer attach feature. Of course, when moving such
structures back to the host, the process needs to be reversed
(detach operation).

For codes that employ deeply nested derived-type data
structures like VASP, writing custom control routines that
take care of the described “deep-copy” operations was the
crucial step to proceed with the port. We wrote routines that
handle the deep-copy analogues to the create, delete, copyin,
copyout and update OpenACC data directives in either
direction, and encapsulated them in a separate module. Since
the compiler cannot treat them as directives, their call sites
need preprocessor treatment to not interfere with the existing
CPU code. Writing these routines seems tedious but is a
straightforward process and OpenACC 3.0 will hopefully
include fully automatic deep-copy directives that will
alleviate this porting overhead.

What is not as straightforward, is to limit the transfers
and memory usage on the device to the bare minimum.
Moving data back and forth more often than necessary will
of course hurt performance. Beyond that, it is well possible
that there are parts of complex derived-type structures that
could be stored on the device as part of a full deep-copy, but
are never referenced within any compute kernel or library
call. Using the approach of manual deep-copy as we do here,
removing these transfers and freeing device storage is as
easy as removing the associated lines from the data-
management routines after identifying the opportunities.
Proceeding in that fashion sounds like unnecessary overhead,
but can lead to quicker success during initial porting. While
it can be hard to figure out what data is missing in a complex
kernel that crashes for this reason, any redundant data can be
removed in a subsequent optimization step.

B. Compute kernels

Beyond managing data movement, porting VASP to
GPUs with OpenACC mostly consisted of interfacing FFT
and linear algebra operations to the respective GPU libraries,
cuFFT, cuBLAS and cuSolver, plus adding OpenACC
directives to the large number of custom kernels in between.
On purpose, we did not refactor loops, e.g., to enable
batching for a set of FFTs. This is usually beneficial for
GPUs, whereas CPUs often profit more from grouping
together multiple operations that work on the same parts of
the data because of cache re-use. This compromises GPU
performance in favor of a unified code base that helps with
maintainability.

Our presented strategies worked out well throughout all
parts that we have ported, except for two kernels: one that
calculates the non-local contribution of the Hamiltonian with
the real-space projection scheme, and another that projects
the KS-orbitals onto projection operators within the same

scheme. Structurally, both routines are comprised of multiple
nested loops, mainly calculating offsets and pre-factors, and
at the innermost level use multiple consecutive loops with a
tiny matrix-matrix multiplication (GEMM) in between. Such
structures make it hard to expose all the possible parallelism,
while not launching excessive amounts of separate tiny
kernels. It is technically possible to use device-side cuBLAS
functions from within an OpenACC kernel, but without
intra-kernel synchronization control that would mean
serializing the GEMM, disregarding the possible parallelism
and hence dramatically impairing performance. For this
reason, we added two routines that calculate the same
quantities but structured them to expose as much parallelism
as possible. They perform much better on GPUs than the
original CPU routines, but are slower than those when
compiled without OpenACC. While introducing these two
GPU specialized routines appears to deviate from our
guideline to not diverge CPU and GPU code, this was a
necessary step where lower-level optimization had to be
done. In terms of code maintainability, handling only two
specialized routines throughout the whole code should still
be manageable in contrast to replicated entire sections of the
call-tree.

C. Communication and GPU activity

At various places data which resides on the GPU needs to
be exchanged between MPI ranks. With OpenACC 2.6 and
with a GPU-aware MPI implementation, this is as easy as
enclosing every MPI call with the HOST_DATA construct.
By adding the IF_PRESENT clause, attempts to pass a
device pointer are only made when the data really resides on
the GPU. This is important as certain subroutines containing
the communication can be shared between a calling routine
that runs on the GPU and another one that does not.
Nevertheless, care should be taken with communications,
when data to be communicated is also needed on the CPU. In
this case, it is a matter of the algorithm, communication
pattern and also interconnect topology, if updating the data
on the host and initiating the communication from there can
perform better than the other way around.

To deal with (de-)activation of GPU functionality, we
found it beneficial to introduce an on-off-switch control
infrastructure that is respected by every kernel and by every
call to a library function. This eases debugging tremendously
and facilitates sharing of routines that contain ported kernels
between GPU and CPU.

IV. PERFORMANCE COMPARISON

A. Whole application

So far, we have discussed which challenges needed to be
addressed for an OpenACC port of VASP, which adheres to
the guidelines outlined in the introduction. While we have
already mentioned that many optimization strategies have
purposefully not been applied, the obvious concern and
ultimate question to be answered is, how well the resulting
OpenACC port performs on real-word benchmarks as
discussed in section 2. Hence we compare the new
OpenACC port to the CUDA C based port as available in

VASP 5.4.4. All benchmarks presented in the following were
run on an NVIDIA DGX-1 system that hosts two Intel Xeon
E5-2698 v4 Broadwell CPUs that are accompanied by 8
NVIDIA Tesla V100 GPUs. To ensure fair performance
comparison in all tested cases, all runs based on VASP 5.4.4
were using Intel’s compiler suite, MKL and their
implementation of MPI. The CPU-only runs always used all
40 available cores.

The discussed NCORE parallelization scheme can help
with efficiency for CPU runs. Our benchmarks stay within a
single node, so CPU-wise we achieved best performance
when matching NCORE with the number of available CPU
cores, i.e. 40. For GPU runs, NCORE needs be set to 1. As a
side-effect the CPU-only calculations have indeed a smaller
workload than the GPU calculations. When distributing the
plane-wave coefficients over all MPI ranks, no workload
distribution will be carried out over the KS-orbitals (default
scheme, see Figure 1). Consequently, there is no need to
increase the number of calculated KS-orbitals to a value that
is divisible by the number of ranks, which easily happens for
NCORE = 1 calculations. Nevertheless, comparing such
different calculations is reasonable: adding some KS-orbitals
will not alter the scientific result. Thus, speedups between
the calculations presented here are time-to-solution
comparisons against an optimized setup for the CPU-only
runs. Other runtime parameters like NSIM (that controls how
many orbitals are treated in a block) have been tuned for best
performance with the respective architecture and port.

1) RMM-DIIS
To measure and compare the performance of the

OpenACC-based approach we chose the silica_IFPEN
benchmark as a test dataset. On the one hand, it matches our
previously discussed choices in term of level of theory,
solver and projector evaluation scheme. On the other hand, it
has been prominent throughout the development of the
CUDA C port and we want to compare our efforts against
datasets for which the CUDA port can be expected to have
been well tuned. The CPU-only runtime of the complete
calculation took 465 s.

Figure 4 compares the speedups of the GPU runs with
VASP 5.4.4 and the OpenACC port over CPU-only 5.4.4

Figure 4: Comparison of the speedups over a CPU-only run between

the CUDA C based GPU accelerated port of VASP 5.4.4 and our new
OpenACC based porting effort for 1 to 8 Tesla V100 accelerator cards

for the silica_IFPEN benchmark, which features the RMM-DIIS

algorithm.

runs. Version 5.4.4 showed maximum performance when run
with multiple ranks per GPU, i.e. 8, 4, 2 and 1 rank per GPU
for 1,2,4 and 8 GPUs, respectively. To achieve this, the
NVIDIA CUDA Multi Process Service (MPS) was
employed. The same technique helps with OpenACC as
well, but it turns out fewer ranks are needed for best
performance, i.e. 4, 2, 1 and 1 ranks per GPU, respectively.
Using MPS introduces some start-up overhead which can
become significant for benchmarks that finish in only 86 s on
8 GPUs: disregarding the initialization phase, 2 ranks per
GPU outperform 1 rank per GPU also for 4 and 8 devices.

It may come as a surprise that the OpenACC approach
indeed outperforms 5.4.4 for any tested configuration. To not
open a discussion on OpenACC versus CUDA execution
speeds here, we stress that the share of accelerated routines
between both approaches is not identical. But even though
we did not apply aggressive optimizations, our result
outperforms the existing port notably. The reason is probably
that the porting strategy coming along with OpenACC,
allowed us to focus on whole application performance and to
quickly be able to accelerate some regions as well, which
remained on the CPU in the 5.4.4 release.

2) Blocked-Davidson
As a second testcase we examined the performance of a

benchmark that uses the blocked-Davidson algorithm. The
same arguments presented to select silica_IFPEN, apply to
the si-Huge benchmark as well. A notable difference besides
the main solver is that it is a bigger system, which translates
to its CPU-only execution time of 4852 s. This would
alleviate penalties paid during initialization, but nevertheless
best performance for GPU-accelerated 5.4.4 was achieved
with 4, 2, 2 and 1 ranks per GPU, which suggests that MPS
apparently hinders GPU execution speeds for this dataset but
is beneficial to increase CPU processing speeds by enabling
more cores. For the OpenACC port, no multiple ranks per
GPU configuration performed better than a direct mapping,
excluding the single GPU setup. The latter could not be run
with the OpenACC port, because of insufficient device
memory on a single 16 GB V100, as in its current
development state, the port uses more device memory than
5.4.4.

The si-Huge benchmark shows an even higher gap
between 5.4.4 and our OpenACC port. But even though there
is still room left for optimization, the scaling efficiency to
more accelerator cards has dramatically improved: For 8
GPUs the new approach is more than 2x faster than the
existing accelerated version. Yet again, we argue that this is
not caused by OpenACC itself, but more based on the
freedom it offers to focus on the right strategy for highly
complex code bases.

B. Kernel-level comparison

To further analyze where the performance advantages
stem from, we switch from full benchmark comparisons to
the finer level of individual kernels. This is not as trivial as it
may sound because kernels cannot be mapped 1:1 between
the two ports. One reason is that in the CUDA C based
approach, heavy refactorings have been applied. Fusing
kernels that traverse the same memory is a worthwhile
optimization used in the CUDA port. But we refrained from
using it in the OpenACC port. Starting a single kernel
instead of multiple ones can reduce launch latencies, but
depending on code structure, yet again, would require
refactoring.

The challenge was to identify a set of kernels in either
port which calculate the same quantities and only those.
Table 1 lists the runtimes of kernels that calculate the energy
expectation values for a block of NSIM = 4 KS-orbitals
within the silica_IFPEN benchmark, which basically means
doing NSIM independent reductions. The primary difference
between both approaches is that the CUDA C port launches
one kernel per orbital and after all of them are finished,
another kernel per NSIM-block. The OpenACC port just
launches 8 kernels per orbital without a fused post-
processing kernel. To properly fuse the post-processing, a
synchronization point is inevitable. We can only guess that
the implementation in the CUDA C port was beneficial on
earlier GPU generations. OpenACC can adapt its
optimizations according to the architecture at compile time
and in this case results in a 15% faster code, even though it
does not make use of aggressive optimization techniques.

C. Section-level comparisons

A main solving algorithm in VASP can be grouped into
various high-level sections. Depending on that section, the
share of subroutines that run on the GPU can vary drastically
between the CUDA C approach and the OpenACC port. To
directly compare CUDA C and OpenACC performance one
should examine a section that has the least amount of

CUDA-C port OpenACC port

Kernels per orbital
1

(69 µs)

8

(90 µs total)

kernels per NSIM-block

(4 orbitals)

1

(137 µs)

0

(0 µs)

runtime per orbital 103 µs 90 µs

runtime per NSIM-block

(4 orbitals)
413 µs 360 µs

Figure 5: Comparison of the speedups over a CPU-only run between

the CUDA C based GPU accelerated port of VASP 5.4.4 and our here
presented OpenACC based porting effort for 1 to 8 Tesla V100

accelerator cards for the si-Huge benchmark that features the blocked-

Davidson algorithm.

Table 1: Kernel level comparison between OpenACC and CUDA C
based approaches for energy eigenvalue optimization

differences which are unrelated to these two frameworks.
Before we do so, let’s look at a section that differs widely
first, still sticking to the silica_IFPEN dataset:

1) Orthonormalization
In Table 2 we give runtimes of subsections needed to

orthonormalize the orbitals. The first step is to redistribute
data, which in the CUDA C port requires transferring the
data back to the host first. The OpenACC port in contrast
saves 75 ms by saving these buffer copies and in addition
can benefit from lower latency and higher bandwidth GPU-
GPU NVLink-interconnect as available on the employed
DGX-1 platform. Of course, the exchanged data needs to be
brought back to the GPU for the subsequent GEMMs, that is
not as costly as in the first step because the CUDA C port
uses streaming to hide the transfer behind computation and
loses only 4 ms. Saving a comparably small memory transfer
and probably designed prior to the latest performance
improvements in cuSolver, 5.4.4 kept the Cholesky
decomposition on the CPU, which nowadays loses another
12 ms. For further GEMMs we sacrificed device memory
consumption in OpenACC for performance, saving another
17 ms and the final MPI data exchange sets the CUDA-C
port back for another 105 ms. While GPU-aware MPI gains
roughly 40% in this section, another 7.5% have been saved
by a more complete port of the section.

2) EDDRMM
Finally, we turn to a section where influences by

different MPI implementations and additionally ported
subsections and -routines are minimal. Yet, different
implementations as exemplified in Section IV. B show their
effect. Figure 6 shows that for the EDDRMM section for
single GPU runs, VASP 5.4.4 achieves comparable
performance as the OpenACC port. But for 8 GPUs, the new
port has a clear advantage due to improved scaling. For both
approaches using MPS to increase the number of MPI ranks
mapped to a GPU is beneficial, within this section. While
EDDRMM alone cannot explain the improvement over the
existing port in 5.4.4, it clearly plays a major role given it is
one of the most time-consuming sections, taking 17% of
total runtime for 8 GPUs.

V. CONCLUSION

We have shown that OpenACC enables straightforward
porting of complex codes, after managing device memory
has been addressed with techniques such as manual deep-
copy. Aggressive optimizations that lead to major code
refactoring were not applied on purpose and only two kernels
needed to be rewritten to express more parallelism. Focusing
on whole application performance has paid off because our
first attempts on the RMM-DIIS and blocked-Davidson
solvers outperforms the existing CUDA C port in VASP
5.4.4 for all benchmarks that we have tested by a significant
margin, while the applied strategy suggest that there is still
room for further optimization.

Once presented with our preliminary performance
numbers and after they were able to compare the ported
source code to the original CPU version, the developers of
VASP at the University of Vienna have decided that
OpenACC is the way to move forward to accelerate VASP
with GPUs.

ACKNOWLEDGMENT

We thank Zhengji Zhao and everyone at NERSC who
helped gathering the usage statistics on VASP in their
facility for providing the data and the fruitful, associated
discussion. We are also grateful to Georg Kresse and Martijn
Marsman for their continued interest in the project and
helpful, open discussions around it.

REFERENCES

[1] G. Kresse and J. Hafner, “Ab initio molecular dynamics for liquid
metals”, Phys. Rev. B, vol. 6, pp. 558−561, January 1993.

[2] G. Kresse, and J. Hafner, “Ab initio molecular-dynamics simulation
of the liquid-metal–amorphous-semiconductor transition in
germanium,” Phys. Rev. B, vol. 49, pp. 14251−14269, May 1994.

[3] G. Kresse, and J. Hafner, “Norm-conserving and ultrasoft
pseudopotentials for first-row and transition elements,” J. Phys.:
Condens. Matt., vol. 6, pp. 8245, 1994.

[4] G. Kresse, and J. Furthmüller, “Efficiency of ab-initio total energy
calculations for metals and semiconductors using a plane-wave basis
set,” Comput. Mat. Sci., vol. 6, pp. 15–50, July 1996.

[5] G. Kresse, and J. Furthmüller, “Efficient iterative schemes for ab
initio total-energy calculations using a plane-wave basis set,” Phys.
Rev. B, vol. 54, pp. 11169−11186, October 1996.

[6] G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the
projector augmented-wave method,” Phys. Rev. B., vol. 59, pp.
1758−1775, January 1999.

[7] Z. Zhao, M. Marsman, F. Wende, and J. Kim, “Performance of

CUDA-C port OpenACC port

Redistributing
wavefunctions

Host-only MPI
(185 ms)

GPU-aware MPI
(110 ms)

Matrix-Matrix-Muls
Streamed data

(19 ms)

GPU local data

(15 ms)

Cholesky decomposition
CPU-only

(24 ms)

cuSolver

(12 ms)

Matrix-Matrix-Muls
Default scheme

(30 ms)
better blocking

(13 ms)

Redistributing

wavefunctions

Host-only MPI

(185 ms)

GPU-aware MPI

(80 ms)

Figure 6: Comparison of the speedups over a CPU-only run between
the CUDA C based GPU accelerated port of VASP 5.4.4 and our here

presented OpenACC based porting effort within the EDDRMM section

only for 1 to 8 Tesla V100 accelerator cards for the silica_IFPEN

benchmark that features the RMM-DIIS algorithm.

Table 2: Section-level comparison between OpenACC and CUDA C
based approaches for orthonormalization of the KS-orbitals

Hybrid MPI/OpenMP VASP on Cray XC40 Based on Intel Knights
Landing Many Integrated Core Architecture”, In: CUG Proceedings,
2017.

[8] S. Maintz, B. Eck, R. Dronskowski, “Speeding up plane-wave
electronic-structure calculations using graphics-processing units,”
Comput. Phys. Commun., vol. 182, pp. 1421−1427, July 2011.

[9] M. Hutchinson, M. Widom, “VASP on a GPU: Application to exact-
exchange calculations of the stability of elemental boron,” Comput.
Phys. Commun., vol. 183, pp. 1422−1426, July 2012.

[10] M. Hacene, A. Anciaux-Sedrakian, X. Rozanska, D. Klahr, T.
Guignon, P. Fleurat-Lessard, “Accelerating VASP electronic
structure calculations using graphic processing units,” J. Comput.
Chem., vol. 33, pp. 2581−2589, December 2012.

[11] F. Wende, M. Marsman, Z. Zhao, J. Kim, “Porting VASP from MPI
to MPI+OpenMP [SIMD]”, In: IWOMP 2017, pp. 107−122.

