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Abstract—We present results of a porting effort of VASP (the 

Vienna Ab Initio Simulation Package) to GPUs, using 

OpenACC. While having been useful to researchers, the 

existing CUDA C based port of VASP was hard to maintain 

due to source code duplication. We demonstrate a directive 

based OpenACC adaptation for the most important DFT-level 

solvers available in VASP: RMM-DIIS and blocked-Davidson. 

A comparative performance study shows that the OpenACC 

efforts can even significantly outperform the former port. No 

extensive code refactoring was necessary. Guidelines to 

managing device memory for heavily aggregated data 

structures are presented. These lead to cleaner code and lower 

the entry barrier to accelerate additional parts of VASP and 

might prove useful for accelerating other high-performance 

applications. 
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I.  INTRODUCTION 

With the advent of GPUs for general purpose computing, 
endeavors started to accelerate quantum-chemistry codes, 
which consume a dominant share on computing centers all 
over the world. Among these, the Vienna ab-initio 
simulation package (VASP) [1-6] is one of the most widely 
employed programs. When it comes to plane-wave based 
solid-state calculations, it is perhaps the most important one. 
In 2015 at NERSC, VASP alone consumed about 12% of the 
total computing cycles [7] and the situation is similar at other 
HPC centers. Hence, it is not surprising that starting in 2011, 
first success stories to accelerate parts of VASP have been 
published [8-10]. Each of these efforts focused on different 
algorithms, solvers and even levels of theory. Given the 
plethora of such combinations that are available in VASP, 
even the combined and extended port that officially became 
part of the VASP release 5.4.1 later in 2015, could not cover 
all of these. This is understandable given all the available 
pathways through the code, many of which show profiles 
with lots of kernels with comparable importance for the total 
run time. Thus, optimization and porting to heterogenous 
architectures is a challenge. For such cases, Amdahl’s law 

dictates to focus on whole application performance and 
requires porting large portions of the code. However, given a 
limited amount of development time this will eventually lead 
to a trade-off between fully optimizing specific kernels 
versus offloading others to the accelerator at all. 

Starting with release 5.4.4, VASP officially supports 
being compiled with the PGI compiler suite version 16.10 
and higher. This is one option to enable the use of 
programming frameworks like CUDA Fortran or OpenACC, 
which allow to target NVIDIA GPUs and integrate 
seamlessly with Fortran, the programming language used for 
VASP. With respect to the described timeframes above, the 
developers of the first GPU-accelerated versions of VASP 
did not have these options. They chose to base their efforts 
on CUDA C kernels and utilizing wrapper functions that can 
be linked and called from Fortran. Interception points were 
introduced in the call tree to hand off some computation to 
the GPU and then proceed with the result. 

While this proved valuable to show the performance 
potential of GPUs, it led to massive code duplication and 
significantly increased maintenance cost for the GPU port. 
The VASP CPU code is continuously updated and enhanced 
to enable more and improved science, and these changes 
needed to be manually integrated into the GPU call-tree as 
well. With limited staffing resourced for development, 
keeping the existing code base up to date and porting new 
features to the GPU becomes difficult, in particular in the 
context of achieving good overall performance in the first 
place. 

From our perspective, a directive-based approach like 
OpenACC combined with interfacing to specialized and 
vendor-optimized libraries seemed like an ideal solution 
here. This approach utilizes the knowhow of compiler and 
library engineers for generating well optimized low-level 
code. It allows the application developer to concentrate on 
the scientific problems to be solved, and to drop into low-
level programming only on an as-needed basis. Our goal in 
this effort was to make such a vision a reality, and to 
understand what it takes to apply it to software packages as 
complex as VASP. 



 

 

Following this strategy, our ultimate goal was to 
substantially improve the maintainability of the code base 
while making it feasible to port new parts of the code in the 
future. To achieve this in our feasibility study, our port was 
based on a development snapshot of VASP. This minimized 
the risk of diverging the code base right from the start. The 
port had to work out of the same existing source code 
primarily intended for the CPU. While GPUs and CPUs may 
have different requirements on algorithms to fully exploit 
their potential, we restricted ourselves to minor refactoring, 
even if that meant sacrificing GPU performance in favor of 
keeping changes to the code as minimal and as encapsulated 
as possible. Hence, maintainability for the original 
developers should remain intact. Finally, once the OpenACC 
implementation was finished we wanted to ensure we could 
compare its performance to the existing CUDA C port. 

In the following, we introduce our methodology to select 
the features and code paths to begin our endeavor and 
present the challenges we addressed to create a working in-
house OpenACC port of VASP. We show performance 
measurements of this version and compare it to the same 
benchmarks when run with the CUDA C based VASP 5.4.4. 
Finally, we discuss the differences that put the OpenACC-
based approach ahead of VASP 5.4.4. We show that the 
ability to focus more easily on whole application 
performance, and to quickly port entire call trees, really pays 
off as a strategy to accelerate scientific codes that pose 
similar challenges as VASP. 

II. USE CASE ANALYSIS 

A. The science and the implementation in VASP 

Scientifically, VASP is used mainly but certainly not 
exclusively by quantum-chemists, physicists and material 
scientists to predict properties of mainly solid-state systems, 
i.e., crystals and surfaces, but also of atoms, molecules and 
liquids. It does so by calculating their electronic structures as 
approximate solutions to the many-body Schrödinger 
equation from first principles, and enables molecular-
dynamics calculations on a quantum-mechanical foundation. 
Many levels of theory and – by that also of accuracy – are 
implemented into VASP. Among those are the Hartree-Fock 
(HF) approximation and 2nd-order Møller-Plesset 
perturbation theory (MP2), Green’s functions methods (GW, 
ACFDT-RPA), time-dependent excitation methods (TDHF 
and BSE) and density functional theory (DFT). The latter is 
today’s quantum-chemical workhorse and solves sets of the 
so-called Kohn-Sham (KS) equations 

 
 HKS ψn(r) = εn ψn(r). (1) 
 
Here, HKS is the effective Hamiltonian, while ψn(r) and εn 

describe the eigenfunctions and -values of the associated KS-
orbital n, respectively. Due to the quantum-mechanical 
foundations, these orbitals must be orthonormal, which is 
why a significant part of the runtime of a VASP calculation 
is spent in linear algebra libraries. To describe the periodic 
wavefunctions, the projector-augmented-wave (PAW) 

method is chosen. Besides smoothing wavefunctions by a 
linear transformation, it employs plane waves 

 
 ψn(k,r) = Ω-1/2 ΣG CG,n(k) exp{i (k + G) r}. (2) 
 
The coefficients CG,n(k) are the main quantity that is to be 

determined in VASP by iterative, self-consistent refinement 
during which they are repeatedly transformed between 
Fourier (k+G) and direct (r) space. This results in an 
important dependency on FFT routines between custom 
kernels which, for example, apply the Hamiltonian. 

VASP has been under active development and 
refactoring for about 25 years. Most of the code base is 
written in Fortran 90. On the CPU-side, the current release at 
the time of writing (5.4.4) has so far been parallelized with 
MPI only, whereas endeavors toward a hybrid OpenMP/MPI 
scheme have been reported [7,11]. For distributing the work 
over the ranks, VASP offers three layers of parallelization of 
which only one is used by default (see Figure 1 for 
visualization). The KS-orbitals are mostly independent from 
each other, but communication is inevitable for the described 
orthonormalization. Generally, this default scheme offers the 
best trade-off between load-balancing and data-exchange 
overhead. On a higher level, larger chunks of the workload 
can be distributed over k-points, but such a distribution is not 
always viable, even though communication overhead would 
also be low, because there are systems that comprise of only 
a single such point. On the other end, distribution over the 
plane-wave coefficients is also implemented in VASP. Since 
this introduces a lot of reductions within the innermost loops, 
it is crucial to adapt this scheme to the underlying topology. 
Generally, this distribution scheme is best used only within 
one (NUMA-) node. 

B. Real-world use cases 

When starting from scratch to accelerate a software 
package which offers a highly diverse set of features and 
algorithms, it is obvious that not all functionality can be 
ported right away. To decide whether a new approach is 
worth pursuing and potentially even superior over another, it 
is crucial to begin with use cases that are representative of 
what users of the application run on a daily basis, while still 
allowing to compare against features implemented in the 

Figure 1.  Visualization of the MPI-based layers of parallelization 

available in VASP 5.4.4. Top level parallelization distributes work 

over multiple k-points which is controlled by the KPAR keyword. The 

default distribution scheme is over KS-orbitals and optionally finer-

grained distribution can be enabled over the plane-wave coefficients 

using the NCORE keyword. 



 

 

existing port. One option to determine what those use cases 
are is to poll as many experts in the field as possible, asking 
what they think is most important. Ultimately, one cannot 
prevent bias in such opinions based on respective 
backgrounds and experiences. Another option would be to 
gather data about jobs run at HPC computing centers. 
Unfortunately, such statistics are hard to interpret because 
different users have different needs and they usually stick to 
only a few supercomputers. This would require averaging 
over as many computing facilities as possible. However, this 
would still not include the use cases from on-premises 
installations, which are not run at major centers. 

Keeping that in mind, any hints toward real-world usage 
are helpful and we were provided with usage data on VASP 
collected on NERSC’s Cray XC30 supercomputer “Edison” 
in late 2014. Of course, requirements on methodological 
accuracy might have changed since then and the dataset did 
not contain data on machine hours, so we can only correlate 
select features to job count. Hence long running jobs with 
many nodes have the same weight as short jobs on a few 
nodes. 

In terms of job sizes, the evaluation of the data showed 
that 34% of all jobs ran within a single node only, while 
another 28% occupied only 2-4 nodes. In other words: more 
than half of the submitted jobs were required 4 or less nodes. 
Assuming a GPU-node would be 4x faster than an 
unaccelerated node, half of the jobs should fit into a single 
accelerator node. Even though 95% of all examined jobs 
were using 12 nodes or less, the remaining 5% may very 
well make up for a lot more machine hours. To cover most 
jobs, we focused on smaller node counts first. 

In terms of levels of theory, Figure 2 shows that 96% of 
the jobs rely exclusively on standard DFT. About 4% of the 
jobs were using hybrid DFT, i.e. to increase overall 
accuracy, they include results of exact exchange, as defined 
by the HF method, into the final result. This requires an 
increased computational complexity and even though 
machine hours were not part of the dataset, it can be 

expected that the percentage of hybrid DFT would be 
considerably higher if machine hours would be the reference 
metric. RPA and BSE seem not to have played a significant 
role, but they are also much more computationally 
demanding than standard DFT, so machine hour percentage 
could show a different picture here as well. Additionally, 
both methods are fairly new implementations as compared to 
DFT and HF, so a more recent statistic could show a larger 
share for them, as their popularity increases. 

Turning back to selecting what levels of theory should be 
tackled first for the porting effort presented here, Figure 2 
gives a clear answer: standard DFT. In relation to the 
increased complexity, hybrid DFT would be the second in 
line. 

VASP implements several main solvers like the blocked-
Davidson or the residual minimization method with direct 
inversion of the iterative subspace (RMM-DIIS) methods. It 
does not come as a surprise that the default Davidson 
algorithm was used in the majority of the jobs, i.e. 51% (see 
Figure 3). This is probably due to its known good stability, 
whereas the RMM-DIIS algorithm that is known to be a lot 
faster makes up for 8%. To alleviate the lesser reliability of 
RMM-DIIS to directly converge to the desired result, it pays 
off to combine it with a few steps of blocked-Davidson in the 
beginning. For the latter combined scheme, RMM-DIIS 
often is the predominant part, especially for slowly 
converging calculations. So RMM-DIIS plus the combined 
scheme sum up to 46% of the jobs. As both algorithms are 
nearly equally important, the decision on where to start needs 
to be made on different grounds: we decided to start with 
RMM-DIIS because it allowed for an easier 1:1 comparison 
between the performance of the CUDA C and OpenACC 
ports. 

A last option to be discussed is the projector evaluation 
scheme, because this also leads to different call-trees to be 
ported first. VASP offers three options: the reciprocal-space, 

Figure 2: Percentage of quantum-mechanical methods used for VASP 

jobs in terms of count that ran on Edison late 2014. Standard DFT 

makes up for 96% of the jobs, but the remaining methods have 
(heavily) increased computational complexity and machine hours have 

not been accounted for. 

Figure 3: Percentage of main solving algorithms used for VASP jobs 
in terms of count that ran on Edison late 2014. The blocked Davidson 

algorithm is default and was used 51% of the cases. The RMM-DIIS 

scheme on its own was used in 8% of the cases, but is also the 
predominant step, when combined with Davidson in another 38%. 
Specialized algorithms share the remaining 3%. 



 

 

real-space and automatic scheme. While the reciprocal 
scheme is the most accurate one, the real-space method 
offers significant computational advantages when dealing 
with large supercells. The automatic scheme is also 
computed in real space and gives the same call-tree within 
the relevant code parts. Because the job statistics gave a 
50:50 distribution, we selected the real-space scheme first for 
two reasons: a) it helps with larger cells and acceleration 
sounds more attractive the larger the job is and b) the 
reciprocal scheme is not supported in VASP 5.4.4 and would 
not have allowed for comparisons. 

The usage statistics have been tremendously helpful to 
select the features that we focused on supporting first: 
parallelization schemes seem not of utmost importance at 
first sight, since most of the examined jobs could maybe 
even fit into a single accelerator node. Besides, we chose to 
look at standard DFT with the RMM-DIIS algorithm in the 
real-space projection scheme first, but blocked-Davidson 
seems just as important regarding next features to port. 

III. PORTING WITH OPENACC 

A. Managing discrete memory 

From the outset, OpenACC was designed to be 
performance portable across processor architectures. It 
allows you to write programs that will map efficiently not 
only to GPUs, but also to multicore CPUs and manycore 
processors. At compile time it is decided to target multicore 
CPUs or GPUs by specifying one or more target 
architectures in the compilation options. When compiling for 
a target that includes a discrete memory, such as a GPU, 
managing the latter needs to be addressed somehow. 

OpenACC includes data movement directives for 
managing movement between host memory and accelerator 
memory. These can safely be ignored for targets that don’t 
need them and the resulting program will still be correct. 
Besides that, techniques like managed memory are available 
for NVIDIA GPUs that give a seamless mode of operation 
by moving data to device memory on demand. While this 
can offer various advantages of its own, it would also allow 
for fastest porting, implementing a strategy of dealing with 
low-level memory management only on an as-needed basis. 
By design, managed memory can only work with allocated 
data because an allocation call is replaced by functions that 
allocate and register the requested memory with the runtime 
that will then take care of data movement. Statically declared 
data cannot be moved without help from the operating 
system, though. Until such functionality becomes widely 
available there is no way around directives in codes that use 
such data. 

OpenACC data directives for Fortran allow all intrinsic 
datatypes to be used as arguments. Derived types can be 
handled in an analogous manner, but need further treatment: 
when a derived-type variable is copied to the device, 
OpenACC will transfer the base pointer and all statically 
defined members. If the derived type contains dynamically 
allocated data, these need to be transferred separately and 
after the parent structure has been created on the device. The 
same holds for other members that are of derived type 

themselves. In addition to treating their dynamically 
allocated members and possible further derived types, a 
derived-type member needs to be adapted on the device 
because during the initial copy it contained the associated 
memory location of the host’s member. After the latter has 
been transferred to the device as well, its memory location 
on the device needs to be used in the device copy of the 
parent type. That process requires to use the OpenACC 
pointer attach feature. Of course, when moving such 
structures back to the host, the process needs to be reversed 
(detach operation). 

For codes that employ deeply nested derived-type data 
structures like VASP, writing custom control routines that 
take care of the described “deep-copy” operations was the 
crucial step to proceed with the port. We wrote routines that 
handle the deep-copy analogues to the create, delete, copyin, 
copyout and update OpenACC data directives in either 
direction, and encapsulated them in a separate module. Since 
the compiler cannot treat them as directives, their call sites 
need preprocessor treatment to not interfere with the existing 
CPU code. Writing these routines seems tedious but is a 
straightforward process and OpenACC 3.0 will hopefully 
include fully automatic deep-copy directives that will 
alleviate this porting overhead. 

What is not as straightforward, is to limit the transfers 
and memory usage on the device to the bare minimum. 
Moving data back and forth more often than necessary will 
of course hurt performance. Beyond that, it is well possible 
that there are parts of complex derived-type structures that 
could be stored on the device as part of a full deep-copy, but 
are never referenced within any compute kernel or library 
call. Using the approach of manual deep-copy as we do here, 
removing these transfers and freeing device storage is as 
easy as removing the associated lines from the data-
management routines after identifying the opportunities. 
Proceeding in that fashion sounds like unnecessary overhead, 
but can lead to quicker success during initial porting. While 
it can be hard to figure out what data is missing in a complex 
kernel that crashes for this reason, any redundant data can be 
removed in a subsequent optimization step. 

B. Compute kernels 

Beyond managing data movement, porting VASP to 
GPUs with OpenACC mostly consisted of interfacing FFT 
and linear algebra operations to the respective GPU libraries, 
cuFFT, cuBLAS and cuSolver, plus adding OpenACC 
directives to the large number of custom kernels in between. 
On purpose, we did not refactor loops, e.g., to enable 
batching for a set of FFTs. This is usually beneficial for 
GPUs, whereas CPUs often profit more from grouping 
together multiple operations that work on the same parts of 
the data because of cache re-use. This compromises GPU 
performance in favor of a unified code base that helps with 
maintainability. 

Our presented strategies worked out well throughout all 
parts that we have ported, except for two kernels: one that 
calculates the non-local contribution of the Hamiltonian with 
the real-space projection scheme, and another that projects 
the KS-orbitals onto projection operators within the same 



 

 

scheme. Structurally, both routines are comprised of multiple 
nested loops, mainly calculating offsets and pre-factors, and 
at the innermost level use multiple consecutive loops with a 
tiny matrix-matrix multiplication (GEMM) in between. Such 
structures make it hard to expose all the possible parallelism, 
while not launching excessive amounts of separate tiny 
kernels. It is technically possible to use device-side cuBLAS 
functions from within an OpenACC kernel, but without 
intra-kernel synchronization control that would mean 
serializing the GEMM, disregarding the possible parallelism 
and hence dramatically impairing performance. For this 
reason, we added two routines that calculate the same 
quantities but structured them to expose as much parallelism 
as possible. They perform much better on GPUs than the 
original CPU routines, but are slower than those when 
compiled without OpenACC. While introducing these two 
GPU specialized routines appears to deviate from our 
guideline to not diverge CPU and GPU code, this was a 
necessary step where lower-level optimization had to be 
done. In terms of code maintainability, handling only two 
specialized routines throughout the whole code should still 
be manageable in contrast to replicated entire sections of the 
call-tree. 

C. Communication and GPU activity 

At various places data which resides on the GPU needs to 
be exchanged between MPI ranks. With OpenACC 2.6 and 
with a GPU-aware MPI implementation, this is as easy as 
enclosing every MPI call with the HOST_DATA construct. 
By adding the IF_PRESENT clause, attempts to pass a 
device pointer are only made when the data really resides on 
the GPU. This is important as certain subroutines containing 
the communication can be shared between a calling routine 
that runs on the GPU and another one that does not. 
Nevertheless, care should be taken with communications, 
when data to be communicated is also needed on the CPU. In 
this case, it is a matter of the algorithm, communication 
pattern and also interconnect topology, if updating the data 
on the host and initiating the communication from there can 
perform better than the other way around. 

To deal with (de-)activation of GPU functionality, we 
found it beneficial to introduce an on-off-switch control 
infrastructure that is respected by every kernel and by every 
call to a library function. This eases debugging tremendously 
and facilitates sharing of routines that contain ported kernels 
between GPU and CPU. 

IV. PERFORMANCE COMPARISON 

A. Whole application 

So far, we have discussed which challenges needed to be 
addressed for an OpenACC port of VASP, which adheres to 
the guidelines outlined in the introduction. While we have 
already mentioned that many optimization strategies have 
purposefully not been applied, the obvious concern and 
ultimate question to be answered is, how well the resulting 
OpenACC port performs on real-word benchmarks as 
discussed in section 2. Hence we compare the new 
OpenACC port to the CUDA C based port as available in 

VASP 5.4.4. All benchmarks presented in the following were 
run on an NVIDIA DGX-1 system that hosts two Intel Xeon 
E5-2698 v4 Broadwell CPUs that are accompanied by 8 
NVIDIA Tesla V100 GPUs. To ensure fair performance 
comparison in all tested cases, all runs based on VASP 5.4.4 
were using Intel’s compiler suite, MKL and their 
implementation of MPI. The CPU-only runs always used all 
40 available cores. 

The discussed NCORE parallelization scheme can help 
with efficiency for CPU runs. Our benchmarks stay within a 
single node, so CPU-wise we achieved best performance 
when matching NCORE with the number of available CPU 
cores, i.e. 40. For GPU runs, NCORE needs be set to 1. As a 
side-effect the CPU-only calculations have indeed a smaller 
workload than the GPU calculations. When distributing the 
plane-wave coefficients over all MPI ranks, no workload 
distribution will be carried out over the KS-orbitals (default 
scheme, see Figure 1). Consequently, there is no need to 
increase the number of calculated KS-orbitals to a value that 
is divisible by the number of ranks, which easily happens for 
NCORE = 1 calculations. Nevertheless, comparing such 
different calculations is reasonable: adding some KS-orbitals 
will not alter the scientific result. Thus, speedups between 
the calculations presented here are time-to-solution 
comparisons against an optimized setup for the CPU-only 
runs. Other runtime parameters like NSIM (that controls how 
many orbitals are treated in a block) have been tuned for best 
performance with the respective architecture and port. 

1) RMM-DIIS 
To measure and compare the performance of the 

OpenACC-based approach we chose the silica_IFPEN 
benchmark as a test dataset. On the one hand, it matches our 
previously discussed choices in term of level of theory, 
solver and projector evaluation scheme. On the other hand, it 
has been prominent throughout the development of the 
CUDA C port and we want to compare our efforts against 
datasets for which the CUDA port can be expected to have 
been well tuned. The CPU-only runtime of the complete 
calculation took 465 s. 

Figure 4 compares the speedups of the GPU runs with 
VASP 5.4.4 and the OpenACC port over CPU-only 5.4.4 

Figure 4: Comparison of the speedups over a CPU-only run between 

the CUDA C based GPU accelerated port of VASP 5.4.4 and our new 
OpenACC based porting effort for 1 to 8 Tesla V100 accelerator cards 

for the silica_IFPEN benchmark, which features the RMM-DIIS 

algorithm. 



 

 

runs. Version 5.4.4 showed maximum performance when run 
with multiple ranks per GPU, i.e. 8, 4, 2 and 1 rank per GPU 
for 1,2,4 and 8 GPUs, respectively. To achieve this, the 
NVIDIA CUDA Multi Process Service (MPS) was 
employed. The same technique helps with OpenACC as 
well, but it turns out fewer ranks are needed for best 
performance, i.e. 4, 2, 1 and 1 ranks per GPU, respectively. 
Using MPS introduces some start-up overhead which can 
become significant for benchmarks that finish in only 86 s on 
8 GPUs: disregarding the initialization phase, 2 ranks per 
GPU outperform 1 rank per GPU also for 4 and 8 devices. 

It may come as a surprise that the OpenACC approach 
indeed outperforms 5.4.4 for any tested configuration. To not 
open a discussion on OpenACC versus CUDA execution 
speeds here, we stress that the share of accelerated routines 
between both approaches is not identical. But even though 
we did not apply aggressive optimizations, our result 
outperforms the existing port notably. The reason is probably 
that the porting strategy coming along with OpenACC, 
allowed us to focus on whole application performance and to 
quickly be able to accelerate some regions as well, which 
remained on the CPU in the 5.4.4 release. 

2) Blocked-Davidson 
As a second testcase we examined the performance of a 

benchmark that uses the blocked-Davidson algorithm. The 
same arguments presented to select silica_IFPEN, apply to 
the si-Huge benchmark as well. A notable difference besides 
the main solver is that it is a bigger system, which translates 
to its CPU-only execution time of 4852 s. This would 
alleviate penalties paid during initialization, but nevertheless 
best performance for GPU-accelerated 5.4.4 was achieved 
with 4, 2, 2 and 1 ranks per GPU, which suggests that MPS 
apparently hinders GPU execution speeds for this dataset but 
is beneficial to increase CPU processing speeds by enabling 
more cores. For the OpenACC port, no multiple ranks per 
GPU configuration performed better than a direct mapping, 
excluding the single GPU setup. The latter could not be run 
with the OpenACC port, because of insufficient device 
memory on a single 16 GB V100, as in its current 
development state, the port uses more device memory than 
5.4.4. 

The si-Huge benchmark shows an even higher gap 
between 5.4.4 and our OpenACC port. But even though there 
is still room left for optimization, the scaling efficiency to 
more accelerator cards has dramatically improved: For 8 
GPUs the new approach is more than 2x faster than the 
existing accelerated version. Yet again, we argue that this is 
not caused by OpenACC itself, but more based on the 
freedom it offers to focus on the right strategy for highly 
complex code bases. 

B. Kernel-level comparison 

To further analyze where the performance advantages 
stem from, we switch from full benchmark comparisons to 
the finer level of individual kernels. This is not as trivial as it 
may sound because kernels cannot be mapped 1:1 between 
the two ports. One reason is that in the CUDA C based 
approach, heavy refactorings have been applied. Fusing 
kernels that traverse the same memory is a worthwhile 
optimization used in the CUDA port. But we refrained from 
using it in the OpenACC port. Starting a single kernel 
instead of multiple ones can reduce launch latencies, but 
depending on code structure, yet again, would require 
refactoring. 

The challenge was to identify a set of kernels in either 
port which calculate the same quantities and only those. 
Table 1 lists the runtimes of kernels that calculate the energy 
expectation values for a block of NSIM = 4 KS-orbitals 
within the silica_IFPEN benchmark, which basically means 
doing NSIM independent reductions. The primary difference 
between both approaches is that the CUDA C port launches 
one kernel per orbital and after all of them are finished, 
another kernel per NSIM-block.  The OpenACC port just 
launches 8 kernels per orbital without a fused post-
processing kernel. To properly fuse the post-processing, a 
synchronization point is inevitable. We can only guess that 
the implementation in the CUDA C port was beneficial on 
earlier GPU generations. OpenACC can adapt its 
optimizations according to the architecture at compile time 
and in this case results in a 15% faster code, even though it 
does not make use of aggressive optimization techniques. 

C. Section-level comparisons 

A main solving algorithm in VASP can be grouped into 
various high-level sections. Depending on that section, the 
share of subroutines that run on the GPU can vary drastically 
between the CUDA C approach and the OpenACC port. To 
directly compare CUDA C and OpenACC performance one 
should examine a section that has the least amount of 

 
CUDA-C port OpenACC port 

Kernels per orbital 
1 

(69 µs) 

8 

(90 µs total) 

kernels per NSIM-block 

(4 orbitals) 

1 

(137 µs) 

0 

(0 µs) 

runtime per orbital 103 µs 90 µs 

runtime per NSIM-block 

(4 orbitals) 
413 µs 360 µs 

Figure 5: Comparison of the speedups over a CPU-only run between 

the CUDA C based GPU accelerated port of VASP 5.4.4 and our here 
presented OpenACC based porting effort for 1 to 8 Tesla V100 

accelerator cards for the si-Huge benchmark that features the blocked-

Davidson algorithm. 

Table 1: Kernel level comparison between OpenACC and CUDA C 
based approaches for energy eigenvalue optimization 



 

 

differences which are unrelated to these two frameworks. 
Before we do so, let’s look at a section that differs widely 
first, still sticking to the silica_IFPEN dataset: 

1) Orthonormalization 
In Table 2 we give runtimes of subsections needed to 

orthonormalize the orbitals. The first step is to redistribute 
data, which in the CUDA C port requires transferring the 
data back to the host first. The OpenACC port in contrast 
saves 75 ms by saving these buffer copies and in addition 
can benefit from lower latency and higher bandwidth GPU-
GPU NVLink-interconnect as available on the employed 
DGX-1 platform. Of course, the exchanged data needs to be 
brought back to the GPU for the subsequent GEMMs, that is 
not as costly as in the first step because the CUDA C port 
uses streaming to hide the transfer behind computation and 
loses only 4 ms. Saving a comparably small memory transfer 
and probably designed prior to the latest performance 
improvements in cuSolver, 5.4.4 kept the Cholesky 
decomposition on the CPU, which nowadays loses another 
12 ms. For further GEMMs we sacrificed device memory 
consumption in OpenACC for performance, saving another 
17 ms and the final MPI data exchange sets the CUDA-C 
port back for another 105 ms. While GPU-aware MPI gains 
roughly 40% in this section, another 7.5% have been saved 
by a more complete port of the section. 

2) EDDRMM 
Finally, we turn to a section where influences by 

different MPI implementations and additionally ported 
subsections and -routines are minimal. Yet, different 
implementations as exemplified in Section IV. B show their 
effect. Figure 6 shows that for the EDDRMM section for 
single GPU runs, VASP 5.4.4 achieves comparable 
performance as the OpenACC port. But for 8 GPUs, the new 
port has a clear advantage due to improved scaling. For both 
approaches using MPS to increase the number of MPI ranks 
mapped to a GPU is beneficial, within this section. While 
EDDRMM alone cannot explain the improvement over the 
existing port in 5.4.4, it clearly plays a major role given it is 
one of the most time-consuming sections, taking 17% of 
total runtime for 8 GPUs. 

V. CONCLUSION 

We have shown that OpenACC enables straightforward 
porting of complex codes, after managing device memory 
has been addressed with techniques such as manual deep-
copy. Aggressive optimizations that lead to major code 
refactoring were not applied on purpose and only two kernels 
needed to be rewritten to express more parallelism. Focusing 
on whole application performance has paid off because our 
first attempts on the RMM-DIIS and blocked-Davidson 
solvers outperforms the existing CUDA C port in VASP 
5.4.4 for all benchmarks that we have tested by a significant 
margin, while the applied strategy suggest that there is still 
room for further optimization. 

Once presented with our preliminary performance 
numbers and after they were able to compare the ported 
source code to the original CPU version, the developers of 
VASP at the University of Vienna have decided that 
OpenACC is the way to move forward to accelerate VASP 
with GPUs. 
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