
Stefan Maintz, Dr. Markus Wetzstein

smaintz@nvidia.com; mwetzstein@nvidia.com

STRATEGIES TO ACCELERATE 
VASP WITH GPUS USING OPENACC



2

VASP USERS AND USAGE

Material Sciences

Chemical Engineering

Physics & Physical 

Chemistry

12-25% of CPU cycles @ supercomputing centers 

A
c
a
d
e
m

ia
C
o
m

p
a
n
ie

s Large semiconductor companies

Oil & gas

Chemicals – bulk or fine

Materials – glass, rubber,

ceramic, alloys,

polymers and metals

Rank Application

1 GROMACS

2 ANSYS - Fluent

3 Gaussian

4 VASP

5 NAMD

Top 5 HPC 
Applications

Source: Intersect360 2017 Site Census Mentions

CSC, Finland (2012)



3

VASP

Developed by G. Kresse’s group at University of Vienna (and external contributors)

Under development/refactoring for about 25 years

460K lines of Fortran 90, some FORTRAN 77

MPI parallel, OpenMP recently added for multicore

First endeavors on GPU acceleration date back to <2011 timeframe with CUDA C

The Vienna Ab initio Simulation Package



4

COLLABORATION ON CUDA C PORT

U of Chicago

Collaborators

CUDA Port Project Scope

Earlier Work

Minimization algorithms to calculate electronic ground state: 
Blocked-Davidson (ALGO = NORMAL & FAST) and RMM-DIIS (ALGO = VERYFAST & FAST)

Parallelization over k-points

Exact-exchange calculations 

Speeding up plane-wave electronic-structure calculations using graphics-processing units, Maintz, Eck, Dronskowski

VASP on a GPU: application to exact-exchange calculations of the stability of elemental boron, Hutchinson, Widom

Accelerating VASP Electronic Structure Calculations Using Graphic Processing Units, Hacene, Anciaux-Sedrakian, 

Rozanska, Klahr, Guignon, Fleurat-Lessard



5

CUDA ACCELERATED VERSION OF VASP

• All GPU acceleration done with CUDA C

• Not all use cases are ported to GPUs

• Different source trees for Fortran vs CUDA C

• CPU code gets continuously updated and enhanced, 
required for various platforms

• Challenge to keep CUDA C sources up-to-date

• Long development cycles to port new solvers

Available today on NVIDIA Tesla GPUs

Upper 
Levels

GPU
call tree

routine A

routine B

CPU 
call tree

routine A

routine B



6

INTEGRATION WITH VASP 5.4.4 (CUDA C)

davidson.F davidson_gpu.F

davidson.cu

cuda_helpers.h

cuda_helpers.cu

…

makefile
switch

Original
Routine
- Fortran

GPU-accelerated
Routine, Drop-in 

Replacement
- Fortran

Custom Kernels
and support code

- CUDA C



7

Source code duplication in CUDA C in VASP led to:

• increased maintenance cost

• improvements in CPU code need replication

• long development cycles to port new solvers

• Only some of the plethora of solvers accelerated

Upper 
Levels

GPU
call tree

routine A

routine B

CPU
call tree

routine A

routine BExplore OpenACC as an 
improvement for GPU acceleration

CUDA ACCELERATED VERSION OF VASP
Available today on NVIDIA Tesla GPUs



8

VASP OPENACC PORTING PROJECT

• Can we get a working version, with today’s compilers, tools and hardware?

• Focus on whole application performance for most important algorithms

• Guidelines:

• work out of existing CPU code

• minimally invasive to CPU code

• Goals:

• performance competitive with CUDA port

• assess maintainability, threshold for future porting efforts

• source base fully portable to other compilers/platforms

feasibility study



9

Davidson

Dav+RMM

RMM-DIIS

Damped

Exact

RPA

Conjugate

BSE

EIGENVAL

EMPLOYED VASP FEATURES AT NERSC 
Levels of theory and main algorithms w.r.t. job count

51%

Source: based on data provided by Zhengji Zhao, NERSC, 2014

2%

standard DFT

hybrid DFT

RPA

BSE



10

OPENACC DIRECTIVES
Data directives are designed to be optional

Manage

Data

Movement

Initiate

Parallel

Execution

Optimize

Loop

Mappings

!$acc data copyin(a,b) copyout(c)

...
!$acc parallel 

!$acc loop gang vector
do i=1, n

c(i) = a(i) + b(i)
...

enddo
!$acc end parallel
...

!$acc end data

For more see CUG18 paper:
OpenACC and CUDA Unified Memory

Sebastien Deldon, James Beyer and Doug Miles



11

MANAGING VASP AGGREGATE
DATA STRUCTURES

• OpenACC + Unified Memory not an option today, 
some aggregates have static members

• OpenACC 2.6 manual deep copy was key

• Requires large numbers of directives in some cases, 
but well encapsulated (107 lines for COPYIN)

• Future versions of OpenACC (3.0) will add true 
deep copy, require far fewer data directives

• When CUDA Unified Memory + HMM supports all 
classes of data, potential for a VASP port with no 
data directives at all

Derived Type 1
Members:
3 dynamic

1 derived type 2

Derived Type 2
Members:

21 dynamic
1 derived type 3
1 derived type 4

Derived Type 3
Members:
only static

Derived Type 4
Members:
8 dynamic

4 derived type 5
2 derived type 6

Derived Type 5
Members:
3 dynamic

Derived Type 6
Members:
8 dynamic

+12 lines 
of code

+48 lines 
of code

+26 lines 
of code

+8 lines 
of code

+13 lines 
of code



12

PORTING VASP WITH OPENACC

• Successfully ported the RMM-DIIS and blocked-Davidson solvers,
plus surrounding functionality

• Very little code refactoring was required

• Interfaced to cuFFT, cuBLAS and cuSolver math libraries

• Manual deep copy was key

• Ongoing integration of OpenACC into current VASP development source

• Public availability expected with next VASP release

Intermediate results



13

0

1

2

3

4

5

1 2 4 8

Sp
ee

d
u

p

Number of V100 GPUs

Full benchmark (silica_IFPEN), speedup over CPU

VASP 5.4.4

dev_OpenACC

VASP OPENACC PERFORMANCE
RMM-DIIS: silica_IFPEN on V100

• Total elapsed time for entire benchmark

• NCORE=40 on CPU: smaller workload 
than on GPU versions
improves CPU performance

• ‘tuned’ full run takes 465 s on CPU

• GPUs outperform dual socket CPU node, 
in particular OpenACC version

• 86 seconds on Volta-based DGX-1 with 
OpenACC

• OpenACC needs fewer ranks per GPU
CPU: dual socket Broadwell E5-2698 v4, compiler Intel 17.0.1
GPU: 5.4.4 compiler Intel 17.0.1; dev_OpenACC compiler: PGI 18.3 (CUDA 9.1)



14

VASP OPENACC PERFORMANCE
Kernel-level comparison for energy expectation values

CUDA C
PORT

OPENACC
PORT

kernels per orbital
1

(69 µs)

8

(90 µs total)

kernels per NSIM-block
(4 orbitals)

1

(137 µs)

0

(0 µs)

runtime per orbital 103 µs 90 µs

runtime per NSIM-block
(4 orbitals)

413 µs 360 µs

• NSIM independent reductions

• Additional kernel downstream 
was probably better on older 
GPU generations

• OpenACC adapts optimization 
to architecture with a flag

• Unfusing removes a 
synchronization point



15

VASP OPENACC PERFORMANCE
Section-level comparison for orthonormalization

CUDA C
PORT

OPENACC
PORT

Redistributing 
wavefunctions

Host-only MPI

(185 ms)

GPU-aware MPI

(110 ms)

Matrix-Matrix-Muls
Streamed data

(19 ms)

GPU local data

(15 ms)

Cholesky 
decomposition

CPU-only

(24 ms)

cuSolver

(12 ms)

Matrix-Matrix-Muls
Default scheme

(30 ms)

better blocking

(13 ms)

Redistributing 
wavefunctions

Host-only MPI

(185 ms)

GPU-aware MPI

(80 ms)

• GPU-aware MPI benefits from 
NVLink latency and B/W

• Data remains on GPU, CUDA 
port streamed data for GEMMs

• Cholesky on CPU saves a 
(smaller) mem-transfer

• 180 ms (40%) are saved by 
GPU-aware MPI alone

• 33 ms (7.5%) by others



16

0

1

2

3

4

5

6

7

1 2 4 8

Sp
ee

d
u

p

Number of V100 GPUs

Full benchmark (si-Huge), speedup over CPU

VASP 5.4.4

dev_OpenACC

VASP OPENACC PERFORMANCE
Blocked-Davidson: si-Huge on V100

• Total elapsed time for entire benchmark

• NCORE=40 on CPU: smaller workload 
than on GPU versions
improves CPU performance

• ‘tuned’ full run takes 4852 s on CPU

• Drastically improved scaling for 
blocked-Davidson with openACC

• 673 s on Volta-based DGX-1 with 
OpenACC

• MPS not needed for OpenACC
CPU: dual socket Broadwell E5-2698 v4, compiler Intel 17.0.1
GPU: 5.4.4 compiler Intel 17.0.1; dev_OpenACC compiler: PGI 18.3 (CUDA 9.1)



17

VASP BENCHMARKS

Full benchmark timings are interesting for time-to-solution, but are not an ‘apples-
to-apples’ comparison between the CUDA and OpenACC versions:

• Amdahl’s law for non-GPU accelerated parts of code affects both 
implementations, but blurs differences

• Using OpenACC allowed to port additional kernels with minimal effort, has not 
been undertaken with CUDA version

• OpenACC version uses GPU-aware MPI to help more communication heavy parts, 
like orthonormalization

• OpenACC version was forked out of more recent version of CPU code, while CUDA 
implementation is older

Can we find a subset which allows for fairer comparison? 

Differences between CUDA and OpenACC versions

use EDDRMM



18

0

4

8

12

16

20

1 2 4 8

Sp
ee

d
u

p

Number of V100 GPUs

EDDRMM section (silica_IFPEN), speedup over CPU

VASP 5.4.4

dev_OpenACC

VASP OPENACC PERFORMANCE
EDDRMM section of silica_IFPEN on V100

• EDDRMM takes 17% of total runtime

• benefits for expectation values included

• These high speedups are not the single 
aspect for overall improvement, but an 
important contribution 

• OpenACC improves scaling yet again

• MPS always helps, but does not pay off 
in total time due to start-up overhead

CPU: dual socket Broadwell E5-2698 v4, compiler Intel 17.0.1
GPU: 5.4.4 compiler Intel 17.0.1; dev_OpenACC compiler: PGI 18.3 (CUDA 9.1)



19

VASP

For VASP, OpenACC is the way 

forward for GPU acceleration. 

Performance is similar and in some 

cases better than CUDA C, and 

OpenACC dramatically decreases 

GPU development and maintenance 

efforts. We’re excited to collaborate 

with NVIDIA and PGI as an early 

adopter of CUDA Unified Memory.

Prof. Georg Kresse
Computational Materials Physics
University of Vienna

The Vienna Ab Initio Simulation Package




