
DataWarp Transparent Cache: Data Path Implementation

Matt Richerson
Cray Inc., Bloomington, MN 55425

Email: mattr@cray.com

Abstract—DataWarp transparent cache uses SSDs located
on the high speed network to provide an implicit cache for the
parallel filesystem. We will look at which components make
up the data path for DataWarp transparent cache and see
how they interact with each other. The implementation of each
component is discussed in depth, and we will see how the design
decisions affect performance for different I/O patterns.

Keywords-Filesystems & I/O, DataWarp, SSD

I. INTRODUCTION

DataWarp (DW) transparent cache uses SSDs on ded-
icated servers to provide a cache between the parallel
filesystem (PFS) and compute nodes. The cache is implicitly
managed by DataWarp, and the namespace seen on the
compute nodes is identical to the PFS. I/O through DataWarp
targets the SSDs and typically provides higher bandwidth
and lower latency than using the PFS directly. Implicit
caching makes it easy for existing applications to start using
DataWarp since its interface is similar to that of the PFS.

DataWarp transparent cache is built on the existing Data-
Warp scratch data path. DataWarp scratch is an existing
DataWarp product that allows explicit file level caching of
the PFS onto an SSD backed filesystem. Users manually
stage data between the scratch SSDs and PFS using batch job
directives or a user library available at application runtime.

The goal of this paper is to provide implementation details
on the DataWarp data path. We will take a brief look at each
of the components to provide some background, and then
we will see how they are put together to form the DataWarp
scratch data path. Next we will see how that data path was
expanded to add implicit caching functionality and discuss
the challenges associated with it. Finally, we will look at the
performance characteristics of DataWarp transparent cache
to show what workloads it’s useful for.

II. COMPONENTS

DataWarp provides applications running on compute
nodes access to fast SSD space on the DW servers. Most
configurations will have multiple DW servers that each have
local SSDs attached. The job of the DataWarp data path is to
make these separate SSDs look like a single contiguous stor-
age space to the application. This is done with a distributed
filesystem that manages data across all the servers and
provides a POSIX filesystem interface on the clients. The
DataWarp team has developed its own distributed filesystem
to make the best use of the DW hardware. This distributed

filesystem is made up of multiple different components that
are implemented as kernel modules. This section provides
a brief overview of the each of the components in the data
path.

A. wrapfs

Some of the DataWarp components are kernel level
filesystems based on the GPL community wrapfs project.
wrapfs is a stackable, pass-through filesystem which is
layered between a traditional lower filesystem (e.g., ext4)
and the kernel virtual filesystem (VFS). The goal of wrapfs
is to insert a layer in the filesystem stack that has no
effect. wrapfs registers VFS operations with the kernel VFS
layer and passes them down to the lower filesystem without
modification. The kernel VFS layer only interacts with
wrapfs and not the lower filesystem.

Figure 1. Traditional filesystem stack compared to a filesystem stack with
wrapfs.

In order to remain completely separate from the lower
filesystem, wrapfs maintains its own set of in-memory
filesystem data structures (e.g., inodes) that are duplicates
of the lower filesystem. wrapfs updates the data structures
after each VFS operation to keep them consistent with the
lower filesystem. Any direct access to the lower filesystem
causes the wrapfs data structures to become stale. For



this reason, it is important that all accesses occur through
wrapfs. Duplicating memory structures means that memory
consumption is increased when using wrapfs, however, the
performance impacts of this extra layer are minimal.

By itself, wrapfs does not provide any useful functionality
since it presents exactly the same information as the lower
filesystem. However, it serves as an excellent template for
implementing new stackable filesystems. Later we will show
how we expanded upon the wrapfs code base to create new
filesystems for DataWarp.

B. Data Virtualization Service

The Datawarp data path uses the existing data virtualiza-
tion service (DVS) component. DVS is a kernel level I/O
forwarder which allows access to a filesystem mounted on
a remote node.

DVS can be divided into client and server components.
The client provides a user facing POSIX filesystem interface,
and the server interacts with a lower filesystem. All VFS
operations on the DVS client are forwarded over the network
to the DVS server. Those operations are called on the
lower filesystem, and DVS sends the results back to the
client. Since DVS is forwarding all I/O operations, there
is relatively little state it needs to store on the client and
server. This allows DVS to scale up to a very large number
of clients as no client-to-client communication is required.

A typical way that DVS is used is to project a parallel
filesystem as the lower filesystem. In this configuration DVS
can have multiple servers that are parallel filesystem clients.
The parallel filesystem maintains coherency between the
DVS servers, so DVS clients can forward I/O to any server.
However, DVS typically chooses which server to target in
a way that limits the amount of coherency work the lower
filesystem has to perform. All DVS clients send metadata

operations for a particular inode to a single server based on
a hash of the inode number. Data operations for a single
inode can be striped across multiple servers, but the range
of the stripes do not overlap. This prevents lock thrashing
between the parallel filesystem clients.

C. Data Virtualization Service IPC

DVS IPC is an inter-process communication layer that
DVS uses to send network messages between the DVS client
and server. The underlying transport that DVS IPC uses is
LNet, Lustre’s network layer.

D. DataWarp Filesystem

The DataWarp filesystem (kdwfs) is a Cray Inc. developed
filesystem based on wrapfs. kdwfs runs on the DW servers
and is responsible for handling the communication between
servers that a distributed filesystem requires. It uses the DVS
IPC layer to send messages over the network. kdwfs will be
discussed in detail in the scratch data path section.

E. Data Caching Filesystem

The data caching filesystem (kdcfs) is another Cray Inc.
developed filesystem based on wrapfs. kdcfs also resides on
the DW servers, and it is used to manage data movement
between the SSD and the PFS. The section on DataWarp
transparent caching will give an in-depth implementation
view of kdcfs.

F. XFS

XFS is a high performance local filesystem that is used
on the DataWarp servers. XFS was chosen based on some
of the features it provides which will be described in a later
section.

Figure 2. Overview of the DVS components. DVS clients can communicate with multiple DVS servers over the network. The lower filesystem on the
DVS servers handles coherency.



Figure 3. Layout of DataWarp clients, metadata server, and data servers. Metadata requests from the client target the metadata server, and data requests
target the data servers.

III. SCRATCH DATA PATH

The DataWarp scratch data path is a distributed filesystem
that allows applications to see the separate SSDs on DW
servers as a single filesystem. This section covers the im-
plementation of the distributed filesystem that the DataWarp
team developed specifically for this purpose.

A. Overview

The DataWarp scratch data path can be divided into
three main areas: client, metadata server, and data server.
Clients are the end users of the filesystem where a POSIX
I/O interface is provided for interacting with files. The
metadata server is where all client based metadata operations
are directed, and the data server is where all client based
data operations are directed. Figure 3 shows how these
components are connected.

Each DataWarp scratch filesystem only has a single meta-
data server. The metadata server has an on disk directory
structure representing the namespace of the filesystem. Un-
like a local filesystem, however, the inodes in the directory
structure do not contain data. They are a skeleton structure
that clients perform metadata operations on only.

The data associated with each metadata inode is striped
across one or more data objects on the data servers. The
striping is done using a round robin algorithm based on a
configurable block size, data object count, and starting stripe.
The starting stripe is chosen using the inode number of the
metadata inode, and it determines which data server the first
data object is placed on. There is no replication of data, so
each data object contains a unique subset of the full file’s
data.

The clients communicate with the metadata and data
servers using DVS. The DataWarp environment is signifi-
cantly different that the typical parallel filesystem DVS was
designed to project, so new mount options were added to

Figure 4. Filesystem stack from the client to the server for DataWarp
scratch.

alter its behavior. These mount options include the ability to
send metadata and data operations to separate servers. DVS
uses the metadata information from the metadata server and
the data from the data servers to piece together the full view
of a file on the client.

B. Filesystem Stack

The SSDs on the DataWarp servers are formatted with
XFS. kdwfs is mounted on top of the XFS mount, and
DVS projects the kdwfs mount to the DVS clients. Figure 4
provides a graphical view of the filesystem stack.

kdwfs is a stackable filesystem that provides the ability to
separate a file into its metadata and data components, and
it can spread them across multiple nodes. The metadata and
data components are simply inodes that kdwfs stores on the
lower XFS filesystem. A kdwfs mount appears at first glance



Figure 5. DVS is used to combine information from the metadata and data servers to give a full view of the file on the clients.

to have a normal filesystem layout, but its interface is not
POSIX compliant. kdwfs requires DVS to stitch together the
correct information from the metadata and data components
from different servers.

Internally, kdwfs classifies each of its inodes as either
metadata or data. The type is inherited from the parent
directory that the inode is created in. The root of the kdwfs
mounts on the data and metadata servers is manually set to
the correct inode type at mount time. Each of these inode
types only implements a subset of the VFS operations. In
general, the metadata inodes implement the metadata opera-
tions (i.e., inode operations) and the data inodes implement
the data operations (i.e., file operations).

The fragmented nature of the inodes that kdwfs provides is
depicted in Figure 5. This figure shows a DataWarp scratch
configuration with one metadata server and two data servers.
Looking at the metadata server first, the kdwfs mount shows
a directory tree with a single inode highlighted that we are
interested in. Each of the data servers shows the contents
of the data inode that is associated with it. In this case, the
data is striped across the two servers on 1MB boundaries.
It is clear that viewing the inodes directly through the

kdwfs mount does not give an accurate view of the whole
file. However, looking at the client view, DVS gives the
expected information by combining parts from all three of
the DataWarp servers.

Since DVS has to combine information from the metadata
and data servers, it needs to be aware of the file layout that
kdwfs provides. When the DVS clients are mounted on the
compute nodes, one of the mount options is to specify which
server is the metadata server. Each DVS client will forward
all metadata operations to that server where they interact
with the kdwfs metadata inodes. When an application does
an open(), the DVS client forwards that request to the
metadata server. All permissions checks are done on the
metadata inode, and if the open succeeds, the DVS server
queries kdwfs through an ioctl() about where to find the
associated data objects. kdwfs provides a path name and a
server for each of the data inodes, and the DVS server passes
that information back to the DVS client.

The DVS client does not immediately open the data
inodes. In fact, some of the data inodes may not even exist
yet. Instead, DVS will defer the open of a data object until
the application does a data operation (e.g., write()) with



Figure 6. Network broadcasts from the metadata server require two hops. The metadata server contacts the data server with the broadcast data inode, and
that data server broadcasts in parallel to the other data inodes that are present.

a range that includes that data object. At that point the DVS
client will open and potentially create the kdwfs data inode.
This allows DataWarp to avoid work when accessing small
files whose data objects only need to cover a subset of the
data servers. Once the DVS client has opened a data inode
it can send data operations to that server without any further
contact with the metadata server. When the client closes a
file, it sends the close to the metadata server and all of the
data servers.

C. Network Communication

DVS is responsible for piecing together information from
each of the DataWarp servers so applications can interact
with a POSIX filesystem. However, there are also situations
when the DataWarp servers need to communicate between
each other. This is the responsibility of kdwfs.

The data inodes in kdwfs are always associated with
a metadata inode on the metadata server. The metadata
inode has to manage its data inodes since many metadata
operations can have an effect on the data as well. For
example, a setattr() can truncate a file which requires
truncating the data inodes too. The metadata inode has
to coordinate with the data inodes by sending messages
over the network to the data servers. Messages between the
metadata inode and the data inodes always originate on the
metadata server and flow out to the data servers.

The most expensive operations in kdwfs are those that
require network communication between more than two
DataWarp servers. When DataWarp is running across hun-
dreds of servers, a metadata inode broadcasting to all of
its data inodes can add a significant amount of overhead.
The network requests have some parallelism to them, but
the broadcast time still scales linearly with the number of
servers to contact. kdwfs tries to reduce this performance
bottleneck by decreasing the number of servers it has to
contact on broadcasts. One way this is done is by tracking
which data inodes exist for a particular metadata inode and
only broadcasting to those servers. This is possible since the
creation of individual data inodes is deferred until they are
needed, so small files will not have data inodes spanning
across all the data servers.

A central location is needed to track which data objects
are present for a particular metadata inode. When a new

data object is created, it will announce its presence by
sending a notify create message to that location, and it will
be included as a candidate for subsequent broadcasts. The
metadata server is the natural place to store this tracking
information since most broadcasts originate there. However,
the metadata server would become a bottleneck due to all the
notify create messages targeting it. This problem would be
especially bad during a file-per-process workload. To avoid
this bottleneck, each metadata inode designates one of its
data inodes to store the tracking information. This inode is
called the broadcast data inode. The broadcast data inode
is stored on a different server from the metadata inode,
and the server is picked based on a hash of the metadata
inode number. This distributes the network load generated
by notify create messages across all the data servers during
file-per-process workloads.

Most operations that require a broadcast originate from
the metadata server where the tracking information is not
available to efficiently target the data inodes. Therefore,
network broadcasts are actually a two step process. The
metadata server first sends a message to the data server that
holds the broadcast data inode. That server processes the
network request locally and uses its tracking information
to broadcast to all the other data servers with data inodes.
Figure 6 shows how the network broadcast travels between
the different servers.

Some of the common operations that require network
messages in kdwfs are listed below.

1) create() When a data inode is created, kdwfs sends
a message to the broadcast data inode so the new data
object can be tracked.

2) unlink() kdwfs will unlink all of the data inodes
after a metadata inode has been unlinked.

3) getattr() kdwfs collects size and time attributes
from the data inodes when a getattr() is called
on the metadata inode.

4) statfs() The global filesystem stat needs to com-
bine filesystem information from all of the individual
disks.

5) read() A read past the end of a data inode triggers
a broadcast to all the other data inodes to collect size
information. This is needed to determine if the actual
EOF was reached.



D. Attribute Caching

One of the most common sources of network broadcasts
is the getattr() call which typically requires a full
broadcast to all of the data inodes. kdwfs has a few ways
of reducing the latency of this operation.

In some situations, the broadcast can be avoided entirely
by caching the latest attributes on the metadata server. After
a getattr() broadcast is done, the metadata attributes
are set to match the global state of the file. Subsequent
getattr() requests can use the local metadata inode
attributes rather than broadcasting to the data inodes again.
However, this is only possible until the metadata inode is
opened with write privilege. At that point, a DVS client
could open one of the data inodes and change its attributes
through a data operation. DVS clients always open the
metadata inode first, so kdwfs on the metadata server is
aware of when it can use the cached attributes.

Attribute caching on the metadata server is very fast since
it does not require any network communication between the
DataWarp servers. However, once the inode has been opened
with write permissions, the metadata server is forced to
contact the data servers to get accurate size information. This
is problematic for applications that open a file with O_RDWR
or O_WRONLY and then immediately call stat(). Even
though the application has not done anything to change the
file size, kdwfs still has to broadcast to all data inodes. We
improved this situation by adding another level of caching on
the broadcast data inode. The broadcast data inode caches
attributes and tracks which of the other data inodes have
been opened with write permissions. When the broadcast
data inode gets a getattr() message, it only broadcasts
it to the data inodes that have been opened for writing.
Whenever DVS opens a data inode with write permissions,
kdwfs sends an asynchronous message to the broadcast data
inode to update the tracking table. Since DVS defers the
opens of data inodes until they are needed, this can give a
significant performance improvement for stat()s that are
done immediately after an open(O_RDWR).

Caching file attributes will only increase performance
when there are multiple getattr() calls to the same
metadata inode while the cache attributes are valid. An initial
broadcast is needed to collect the attributes from the data
inodes so the result can be cached. kdwfs tries to hide the
latency of this by speculatively broadcasting getattr()
requests to the data inodes and caching the results on the
broadcast data inode and metadata server. The speculative
broadcast is done asynchronously to any user access, and it
is triggered when the last writable file is closed on an inode.

IV. ADDING TRANSPARENT CACHING

The DataWarp scratch filesystem provides a simple dis-
tributed filesystem that leverages DVS’s ability to scale to a
large number of clients. DataWarp transparent caching builds
on this infrastructure to create a filesystem with implicit

caching of a PFS. We will look at how both the metadata
and data portions of the scratch filesystem were modified
for DataWarp transparent caching.

A. Metadata Server

In the scratch filesystem, the metadata server uses an XFS
filesystem on the local storage to persist the metadata. For
transparent cache, the goal is to project the PFS mount, so
instead of mounting kdwfs on top of XFS, it is mounted on
top of the PFS. This means that the directory tree that exists
on the metadata server and gets projected to the clients is
the exact contents of the PFS. It should be noted that just
like in the case of the scratch filesystem, the directory tree
on the metadata server is only used for metadata operations.
Although the files in the directory tree on the metadata server
do contain data, data accesses will still happen through the
data objects.

One benefit we get from having metadata backed by a
PFS is that the metadata is accessible anywhere that the PFS
is mounted. This allows transparent cache to use multiple
metadata servers. The underlying PFS will keep all the
metadata servers in-sync through its own coherency model.
A side effect of this is that the internal data structures within
our stackable filesystem (i.e., kdwfs) can become out of
sync with the PFS. As described in the section on wrapfs,
stackable filesystems cannot tolerate out of band changes to
the lower filesystem. For the most part, we are able to avoid
this problem by having DVS forward all operations for a
particular inode to a single metadata server. However, there
are still situations where the PFS changes state under kdwfs.
Those will be described in more detail under the challenges
section.

The entire directory structure of the PFS is available
through the metadata directory tree. However, data objects
are only created after the first open() of a metadata inode,
so almost all of the metadata inodes in the large PFS names-
pace will not have any data objects associated with them.
This is an important note since some metadata operations
have to adjust their behavior depending on whether data
objects exist. For example, a getattr() must collect size
information from either the PFS or the data objects. If the
data objects are present then they have the most up to date
size. If there are not any data objects, then kdwfs must call
getattr() on the PFS inode.

B. Data Server

The data server changes required for transparent cache
were extensive enough that a new filesystem was developed
to hold the logic. The new filesystem, kernel data caching
filesystem (kdcfs), is also based on wrapfs.

Figure 7 shows how kdcfs is layered between kdwfs and
an XFS filesystem mounted on top of the SSD. kdwfs uses
the same on disk layout for data inodes in both the scratch
and transparent cache data paths. In the transparent cache



Figure 7. Data server filesystem stack from the client to the server for
DataWarp transparent cache.

data path, however, kdcfs manages the data in the data inodes
underneath kdwfs so that they mirror the contents of the
PFS file the user opened on the metadata server. kdcfs does
this by allowing each of its inodes to have an external file
associated with it. The file on the SSD is referred to as the
cache file, and the external file is referred to as the backing
file. As Figure 8 shows, kdcfs moves data between these two
files as needed. All user accesses to the data inode travel
straight through to the cache file, and kdcfs ensures that the
correct data is on the SSD before allowing the accesses to
complete.

kdcfs provides a kernel interface for setting the backing
file for an inode. kdwfs is responsible for the server-to-server
communication necessary to coordinate setting the correct
backing file in kdcfs on each of the data servers. This is
complicated by the fact that the creation of each data inode
is deferred until the overall file size is large enough to need
it. Using path names to set the backing file in kdcfs opens
up a timing window where the PFS file could be renamed or
unlinked before all the data inodes have been created. This
would lead to kdwfs setting the incorrect backing file for a
cache file. To get around this problem, we use file handles to
open the correct PFS file. File handles are a unique identifier
of an inode within a filesystem. They can be used to open
a file without having a path name, and they can be used on
inodes that are unlinked but still present.

When the metadata inode is opened through kdwfs, we
also query the PFS for the file handle of that inode. That

Figure 8. DataWarp transparent cache moves data between the cache file
and backing file so user I/O see the same contents as the PFS.

information is passed to the broadcast data inode where it
is used to set the kdcfs backing file. All data inodes that are
created from that point on have to contact the broadcast data
inode with a notify create message. The PFS file handle is
included on the reply message, and kdwfs uses it to set the
kdcfs backing file on the newly created data inode. In that
way, the PFS file handle is distributed from the metadata
server to all of the data servers.

C. Extents

kdcfs is responsible for moving data between the cache
file and backing file. All user I/O operations target the SSD,
so the regions that are being accessed have to be copied
from the PFS onto the SSD. kdcfs logically divides each
inode into extents that have a default size of 1MB. Data
is moved between the PFS and SSD on extent boundaries
such that certain regions of the file can exist on the SSD.
kdcfs tracks the state of an inode’s extents in an in-memory
radix tree which it updates based on filesystem operations.
The state of each of these extents is independent, and they
are tracked individually. Each extent can be in one of three
states:

1) Not-present The data in the cache file is older than
the data in the backing file

Figure 9. State diagram for kdcfs extents.



Figure 10. Left: Flowchart for user write() operations. Right: Flowchart for the copy-up cache worker.

2) Present The data in the cache file is the same as the
data in the backing file

3) Dirty The data in the cache file is newer than the data
in the backing file

Figure 9 shows a state diagram that models how the extent
state changes based on operations to the kdcfs inode.

D. Cache Workers

Any data access to a kdcfs inode first checks the state of
the extents that the data operation impacts. kdcfs will only
allow access to extents that are in the present or dirty state.
Data operations that target an extent in the not-present state
must block until kdcfs copies data from the backing file into
the cache file for that region. This sort of data movement
in kdcfs is performed by a pool of cache worker threads.
There are four operations that these workers can perform:
copy-up, write back, evict, and invalidate. They are defined
as follows:

1) Copy-up Data is copied from the backing file to the
cache file

2) Write Back Data is copied from the cache file to the
backing file

3) Evict The space reservation from a clean area of the
cache file is deallocated

4) Invalidate The space reservation from a clean or dirty
area of the cache file is deallocated

We can see how these workers are used by tracking a
write() operation through the flowchart in Figure 10. We
will look at a write() with offset 0 and size 4096. First,
kdcfs uses the offset and count to find which extents are
targeted. In this example, only extent 0 would be affected.

kdcfs checks the state of extent 0 in the extent tree and finds
that it is in the not-present state. A copy-up worker thread is
scheduled, and the write() thread blocks until the worker
thread is finished. The copy-up worker will copy 1MB of
data at offset 0 from the backing file to the cache file. Then
it will set the state of extent 0 to present. The copy-up thread
finishes, and the write() thread is unblocked. It checks
the state of the extent again and finds that the extent is now
present. The first 4096 bytes of the extent are written to,
and the extent’s state is changed to dirty.

The example above shows how a write() call may
trigger a read() from the backing file. This is necessary
because the size of the write() only partially covered the
1MB extent. The entire 1MB extent must have a consistent
state, so the copy-up is done to bring the entire extent into the
present state. After the write() occurs, the whole extent
is transitioned to the dirty state even though only the first
4096 bytes are actually dirty.

The copy-up operation will significantly impact write()
performance since it requires interaction with the slower
PFS. Performance can be improved for write() operations
by aligning the write() with extent boundaries. When a
write() covers an entire extent, it can be overwritten with-
out copying up from the backing file first. This transitions
the extent state directly from not-present to dirty without
having to pass through present. This operation is called a
write-up.

Eventually the SSD will be completely filled with data that
was either written from an application or copied up from the
PFS. Some of this space on the filesystem has to be freed
so that the cache can be used for new incoming data. An



evict cache worker is scheduled to free individual extents
within a cache file. It does this with the fallocate()
call which can be used to deallocate blocks within a range
on the lower filesystem. Not every filesystem supports this
operation which is one of the reasons why XFS was picked
for a lower filesystem in DataWarp. The data in the region
that is deallocated is lost forever, so only extents that are
in the present state are allowed to be evicted. The data in
an extent that is present is already replicated by the data
on the PFS, so removing it from the cache does not lose
information.

Extents that are dirty cannot be evicted from the cache
because their data is more recent than what exists on the
PFS. If the underlying blocks were deallocated, the data
would be lost, and the user would see corruption. Write-
back workers are used to write the data from the cache file
to the backing file for an extent. This will transition the
extent from dirty to present. At that point the extent is a
candidate for eviction.

E. Cache Management

Movement of data onto the SSD is driven by user events
like read()s and write()s. However, determining which
regions of which cache files to write back to the PFS
or evict from the cache is left up to kdcfs. kdcfs has a
management subcomponent that is responsible for making
those decisions. The goal of the management subcomponent
is to keep the correct data in the cache to minimize the
number of PFS accesses that have to take place through
copy-up and write back.

The management subcomponent of kdcfs chooses which
extents to target for evict or write back based on algorithms
within a pluggable policy layer. Eviction and write back
are driven by separate policies that can be configured inde-
pendently. The policies register for filesystem events (e.g.,
write() and copy-up) that provide information on which
operations are taking place on which regions of a file. Each
specific policy tracks this information in a way that makes
sense for the algorithm it is implementing.

The total amount of cache space used and the total amount
of data that is dirty within the cache is tracked by the
management subcomponent. Each policy allows a set of
high and low water marks expressed as a percentage of
the total cache size that are used to determine when the
policy should take action. For example, when the total cache
utilization reaches the high water mark specified for the
eviction policy, the management subcomponent will trigger
a set of management threads that evict data from the cache
until the low water mark is reached. Since eviction and write
back use separate polices with different high and low water
marks, they can be tuned independently.

DataWarp transparent cache currently uses a file based
least recently used (LRU) policy for both write back and
eviction. This algorithm works by selecting the least recently

used extent within the least recently used file. The default
water levels for eviction try to keep the cache utilization
between 95% and 100% full, and by default write back starts
when the dirty data reaches 50% of the cache size and stops
when no dirty data is left.

Different workloads will benefit from different policies
for both write back and eviction. In the future, DataWarp
will expose a method for changing the policy to optimize
for a particular access pattern.

F. Control API

The contents of the cache are modified automatically
through the management policies and through user oper-
ations like read()s and write()s. In some situations,
however, an external component may want to modify the
contents of the cache. kdcfs provides a set of ioctl()s
that can be used to perform copy-up, write-back, evict, or
invalidate work on a file. This interface is currently used
by the DataWarp service daemons, and in the future it will
be exported to the compute nodes. On the compute nodes
it will be available to user applications through the cache
control API in libdatawarp. This will allow users to stage
files to and from the SSDs in a similar way to DataWarp
scratch.

V. CHALLENGES

Adding transparent caching to DataWarp posed some sig-
nificant challenges. The first challenge was that we needed a
good understanding of the parallel filesystems that DataWarp
would be caching. Adding a stackable filesystem on top of a
parallel filesystem is not common practice, so having access
to the PFS internals is important for debugging problems.
For this reason, DataWarp transparent cache currently only
supports Lustre as a backing filesystem.

Lustre’s use of the kernel dentry cache was a source of
many problems for DataWarp. kdwfs is mounted over Lustre
on the metadata servers which is not an expected way to use
Lustre. The dentry cache for Lustre is more complicated
than for a local filesystem since the state of a dentry can
change due to a remote event. For example, two Lustre
clients can have copies of the same dentry, and one of those
clients could rename it. The kernel VFS layer allows for
this behavior with the d_revalidate() operation. After
finding a dentry in the dentry cache, the kernel VFS layer
will call d_revalidate() to ask the lower filesystem if
the dentry is valid. However, Lustre chose not to interface
with the dentry cache this way. Instead, Lustre overloads
the d_compare() operation. Lustre prevents the kernel
VFS layer from matching on the name of a stale dentry
in the dentry cache. The kernel is then forced to do a real
lookup(), but in most cases Lustre will correct the old
stale dentry and return it. This behavior is non-standard, and
it does not work when the wrapfs layer is inserted between



the kernel VFS layer and Lustre. We had to modify wrapfs
to expect this behavior when mounted on top of Lustre.

File handles through Lustre also presented problems for
DataWarp. The DW data servers use a Lustre file handle to
open the backing file for their data object. Lustre file handles
are not well supported, and some of the features we were
expecting to get by using them did not work. We had to
make several fixes to this code path in Lustre.

We also experienced some performance problems with
the Linux kernel. kdcfs uses kworker threads to do I/O
operations between the cache and backing files. However,
the kernel throttles kworker I/O in low memory situations
to work around a race condition. We were forced to use a
pool of our own kthreads for doing I/O instead of being able
to use the kworker infrastructure.

VI. PERFORMANCE CONSIDERATIONS

DataWarp transparent cache has different performance
characteristics than interacting with the PFS directly. Using
the correct DataWarp options when creating a reservation
and optimizing I/O patterns for DataWarp can help to get
the fastest performance from the SSDs.

One of the biggest impacts on performance for DataWarp
transparent cache is the amount of SSD space used for the
cache. The cache size is specified in the user batch job
script and should be matched to the I/O requirements of
the application [1]. Applications that have read-only data
should size the cache so that their data can fit entirely
within the cache. Sizing the cache too small for a read-
only workload will result in cache churn that will likely
give worse performance that accessing the PFS directly. For
a write heavy workload, the goal is to size the cache so that
a single burst of data can fit within the cache. DataWarp
will trickle the data out to the PFS, allowing the cache to
be filled with new data during the next burst. Sizing the
cache too small for a write-only workload will fill the cache
entirely with dirty data. Incoming write() requests from
the user will block waiting for write back to finish so space
can be freed. This means that I/O performance will drop to
the speed of the PFS.

DVS has its own performance characteristics that need to
be considered since DVS is a major component in DataWarp.
There is overhead when sending I/O requests from a DVS
client to a DVS server, so doing small I/O limits the
maximum possible bandwidth. An I/O block size of at least
1MB will give the best performance. DataWarp configures
the DVS mounts with an 8MB stripe size, and a single
I/O request that spans multiple servers will be sent to all
servers in parallel. This means that for applications that do
I/O from a single node, very large I/O sizes will give the
best performance.

DVS also has a client side cache that can be configured
for both read-only and read/write workloads. This improves
small I/O performance, but there are several non-POSIX

behaviors it introduces that make it ill suited for some
applications [2].

kdwfs also introduces its own performance intricacies. As
discussed already, operations that require network broadcasts
between the metadata server and data servers suffer from
high latency. Reducing the number of operations that trigger
these broadcasts is the easiest way to improve performance
at the kdwfs layer. For getattr()s in particular, being
aware of when attributes are cached on the metadata server
or in the broadcast data inode can give large performance
gains. For situations where an application needs to call
getattr() but does not require an accurate file size or
modification time, kdwfs provides an extended attribute that
returns a struct stat with invalid size and time field.
This interface works similarly to a getattr() but avoids
doing any broadcasts.

For the scratch filesystem, DataWarp also provides the
ability to reduce the number of servers that an individual file
is striped across. This can increase performance for file-per-
process workloads since each metadata inode has to contact
fewer data inodes. With a large number of user files, data
will still be spread across all of the DataWarp servers, so
all of the SSD space can be used. This feature is available
through the libdatawarp library on the compute nodes, but
it is currently only allowed in the scratch data path.

kdwfs allows data objects to map to multiple inodes on
XFS. This is referred to as substriping, and it can increase
the performance for single-shared-file writes. With a sub-
stripe count of 1, user threads are serialized by XFS during
write operations. A single-shared-file workload will only
have a single XFS inode being written to on each DW server
which is not enough to drive the SSD to its full bandwidth.
By substriping the data objects onto multiple XFS inodes,
we gain parallelism in this situation. The substripe count for
DataWarp can be configured by an administrator.

DataWarp transparent caching adds the kdcfs module
which has its own preferences for how I/O should be
organized. Write performance is fastest when the I/O transfer
size is a multiple of the kdcfs extent size. By default this is
1MB. Writes that are smaller than 1MB will require copying
data from the PFS to the SSD before the write can proceed.
For read() operations, small I/O may see significantly
worse performance than reading directly from the PFS. This
is because copy-up will read a 1MB chunk from the PFS
regardless of the user requested size.

There are also interactions at the block level that have to
be considered for transparent caching. An application that
writes to the cache sees the full bandwidth of the SSD up
until kdcfs starts doing write back. At that point, the user
write() threads will have to compete with the write back
threads that are reading from the SSD. This will cause a
small drop off in write performance.

Metadata performance through DataWarp transparent
cache is often less than the metadata performance an appli-



cation would see directly through the PFS. This is partially
because DVS is layered between the application and the
PFS, and partially because there are often fewer PFS clients
(i.e., DataWarp servers) than when an application interacts
directly with the PFS. Applications that have high metadata
requirements are not likely to be a good match for DataWarp
transparent cache.

VII. CONCLUSION

DataWarp transparent cache provides an easy way to get
improved I/O bandwidth for many existing applications.
It builds off of the existing DataWarp scratch data path,
so transparent cache benefits from the stabilization period
scratch has had. It provides more flexibility in utilizing the
SSD space since transparent cache allows access to files
that are larger than could fit in the cache at one time.
Also, transparent cache is easily extendable in the future to
provide different cache polices to optimize the performance
for individual workloads.

REFERENCES

[1] B. Landsteiner and D. Paul, “DataWarp Transparent Cache:
Implementation, Challenges, and Early Experience,” in Proc.
Cray Users’ Group Technical Conference (CUG), May 2018.

[2] B. Hicks, “Improving I/O Bandwidth With Cray DVS
Client-side Caching,” in Proc. Cray Users’ Group
Technical Conference (CUG), May 2017. [Online].
Available: https://cug.org/proceedings/cug2017 proceedings/
includes/files/pap149s2-file1.pdf

https://cug.org/proceedings/cug2017_proceedings/includes/files/pap149s2-file1.pdf
https://cug.org/proceedings/cug2017_proceedings/includes/files/pap149s2-file1.pdf

	Introduction
	Components
	wrapfs
	Data Virtualization Service
	Data Virtualization Service IPC
	DataWarp Filesystem
	Data Caching Filesystem
	XFS

	Scratch Data Path
	Overview
	Filesystem Stack
	Network Communication
	Attribute Caching

	Adding Transparent Caching
	Metadata Server
	Data Server
	Extents
	Cache Workers
	Cache Management
	Control API

	Challenges
	Performance Considerations
	Conclusion
	References

