
DataWarp Transparent Cache: Data Path 
Implementation
CUG 2018
Matt Richerson, Cray Inc.



Agenda

CUG 2018 Copyright 2018 Cray Inc.

● Overview of DataWarp

● Implementation of the DataWarp scratch data path

● Expanding DataWarp for the transparent cache data 
path

2



Transparent Cache Overview

CUG 2018 Copyright 2018 Cray Inc.

● SSDs on service nodes serve as a cache 
layer between compute nodes and PFS

● DataWarp automatically moves data between 
SSDs and PFS

3



DataWarp Components

CUG 2018 Copyright 2018 Cray Inc.

● DataWarp has both user 
space and kernel space 
components

● Focus is on the kernel level 
components

● Cray Inc. developed 
filesystems

4



Stackable Filesystems

CUG 2018 Copyright 2018 Cray Inc.

● Linux VFS layer allows filesystems to be 
stacked

● VFS operations are the API
● Stackable filesystem must appear as a 

normal filesystem to kernel VFS
● Stackable filesystem must appear as the 

kernel VFS to lower filesystem
● wrapfs is a GPL pass through stackable 

filesystem

5



DataWarp Scratch Filesystem

CUG 2018 Copyright 2018 Cray Inc.

● kdwfs – simple distributed filesystem
● Based on wrapfs

6



DataWarp Scratch Filesystem (cont.)

CUG 2018 Copyright 2018 Cray Inc.

● Metadata and data are separated
● Single metadata server
● Data is striped across multiple SSDs

7



DataWarp Scratch Filesystem (DVS)

CUG 2018 Copyright 2018 Cray Inc.

● DVS is an I/O forwarder
● POSIX filesystem interface

● Some limitations
● DVS servers interact with 

underlying filesystem
● Data can be striped to multiple 

servers
● Scalable

8



DataWarp Scratch Filesystem (cont.)

CUG 2018 Copyright 2018 Cray Inc.

● Each metadata inode has one or 
more data objects

● DVS handles I/O forwarding 
between computes and DW 
servers
● Metadata and data operations 

target correct server
● Data is striped based on set block 

size
● kdwfs handles communication 

between DW servers

9



DataWarp Cache Filesystem

CUG 2018 Copyright 2018 Cray Inc.

● Extension of the scratch filesystem 
infrastructure

● Use DVS and kdwfs to stitch SSDs 
together into a distributed filesystem

● How does Lustre get tied in?

10



DataWarp Cache Filesystem (metadata)

CUG 2018 Copyright 2018 Cray Inc.

● kdwfs on metadata server is 
stacked on top of PFS (Lustre)
● PFS client is DW server
● DW metadata directory tree is 

identical to PFS
● PFS keeps coherency between 

clients
● Multiple DW metadata servers are 

possible
● DW metadata servers have to 

handle remote changes

11



DataWarp Cache Filesystem (data)

CUG 2018 Copyright 2018 Cray Inc.

● Data is still striped to multiple data 
objects

● Data objects read and write to SSD
● DW manages data movement

● SSD holds cache file
● PFS holds backing file

● kdcfs (kernel data caching 
filesystem)
● Based on wrapfs
● Node local
● File handles
● I/O targets cache file

12



kdcfs Internals (cache operations)

CUG 2018 Copyright 2018 Cray Inc.

● Cache operations modify cache file data
● Implemented as a pool of worker threads

● Cache operations: copy-up, write-back, evict, invalidate
● Copy-up – Copy data from PFS to cache file
● Write-back – Copy data from cache file to PFS
● Evict – Deallocate a clean region from the cache file
● Invalidate – Deallocate a dirty or clean region from the cache file

● fallocate() is used to allocate and deallocate space in the cache file

13



kdcfs Internals (extents)

CUG 2018 Copyright 2018 Cray Inc.

● Cache file is logically divided into extents
● Default size is 1MB

● Data in each extent is handled independently
● Extent states:

● Not-present – Cache data is older than PFS data
● Present – Cache data is the same as PFS data
● Dirty – Cache data is newer than PFS data

● Per inode extent states are tracked
in an in-memory tree 

14



kdcfs Internals (example)

CUG 2018 Copyright 2018 Cray Inc.

● VFS operations can trigger cache work
● Example: write() results in copy-up

15



kdcfs Internals (management)

CUG 2018 Copyright 2018 Cray Inc.

● Management sub-component
monitors cache events

● Management policies for
write-back and evict
● Policies are swappable
● Separate for write-back and

eviction
● File LRU policy for write-back

● High water 50% low water 0%
● File LRU policy for eviction

● High water 100% low water 95%

16



kdcfs Internals (control API)

CUG 2018 Copyright 2018 Cray Inc.

● External components can influence data in the 
cache

● Ioctl() interface
● Individual files
● Mount point

● DWS flushes data at job end
● Exported to compute nodes as cache control 

API (future release)

17



Transparent Cache Performance

CUG 2018 Copyright 2018 Cray Inc.

● Cache size is important
● PFS interaction is slow
● Files larger than the cache

are limited by PFS
● Good workloads

● Bursty writes
● Read after write
● Multiple reads

18



Summary

CUG 2018 Copyright 2018 Cray Inc.

● DataWarp transparent cache builds on existing scratch filesystem
● Scratch already has good performance
● Increased stability
● Fixes and features benefit both modes

● Metadata operations go through Lustre
● All files within the mount are accessible

● Filesystem implementation allows easy integration of different caching 
policies

● Cache control API will allow manual data movement similar to scratch

19



Legal Disclaimer

CUG 2018 Copyright 2018 Cray Inc.
20

Information in this document is provided in connection with Cray Inc. products. No license, express or implied, to any intellectual property rights is 
granted by this document. 

Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to change without notice. 

Cray hardware and software products may contain design defects or errors known as errata, which may cause the product to deviate from published 
specifications. Current characterized errata are available on request. 

Cray uses codenames internally to identify products that are in development and not yet publicly announced for release. Customers and other third 
parties are not authorized by Cray Inc. to use codenames in advertising, promotion or marketing and any use of Cray Inc. internal codenames is at 
the sole risk of the user.

Performance tests and ratings are measured using specific systems and/or components and reflect the approximate performance of Cray Inc. 
products as measured by those tests. Any difference in system hardware or software design or configuration may affect actual performance. 

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY and design, SONEXION, URIKA and 
YARCDATA. The following are trademarks of Cray Inc.: CHAPEL, CLUSTER CONNECT, CLUSTERSTOR, CRAYDOC, CRAYPAT, CRAYPORT, 
DATAWARP, ECOPHLEX, LIBSCI, NODEKARE, REVEAL. The following system family marks, and associated model number marks, are 
trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT and XT. The registered trademark LINUX is used pursuant to a sublicense from LMI, the 
exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis. Other trademarks used on this website are the property of their 
respective owners.



Q&A

Matt Richerson
mattr@cray.com


