
Installation, Configuration and Performance Tuning of Shifter V16 on Blue Waters

HonWai Leong∗, Timothy Bouvet†, Brett Bode‡, Jeremy Enos§ and David King¶

National Center for Supercomputing Applications
University of Illinois at Urbana-Champaign

Illinois, United States of America
Email: ∗hwleong@illinois.edu, †tbouvet@illinois.edu, ‡brett@illinois.edu,

§jenos@illinois.edu, ¶kingda@illinois.edu

Abstract—NCSA recently announced the availability of
Shifter version 16.08.3 (V16) for production use on Blue
Waters. Shifter provides researchers with the capability to
execute container-based HPC applications on Blue Waters. In
this paper, we present the procedure that we performed to
backport Shifter V16 to Blue Waters. We describe the details
of the installation of the Shifter software stack, code cus-
tomization, configuration, and the complex integration efforts
to scale Shifter jobs to start in parallel on a few thousands
compute nodes. We will discuss in this paper the methods and
workarounds that we utilized to address the challenges that
we encountered during the deployment, which include security
hardening, performance tuning, running GPU workloads and
other operation related issues. Today, we have successfully
tuned Shifter to the scale that could execute a container-based
job on Blue Waters across more than 4000 compute nodes.

Keywords-Shifter, Docker, Blue Waters, Container

I. INTRODUCTION

Shifter [1], [2] is a software solution that enables the
execution of container-based applications on HPC systems.
The development of Shifter, a joint collaboration effort
between NERSC and Cray that started in 2015, was driven
by the need to use Docker-like container technology on
HPC systems to address the increasing demand of data-
intensive workloads [3]. Shifter was initially designed to
port over container-based applications to run on NERSC’s
Edison system, a Cray XC30 supercomputer system. It was
later made available as an open source tool for the general
HPC community. Like Docker, Shifter allows researchers to
reuse a Docker container on any HPC system. Researchers
can develop and test their scientific software stack using
Docker on their own workstation, then publish the Docker
container to a public registry such as Dockerhub, where
they can import it using Shifter into an HPC system, and
be able to run their simulations there without redeveloping
their software stack. Unlike Docker which could only start a
container-based application on a single machine locally and
requires root access, Shifter is an HPC-centric implementa-
tion of container technology. It was designed for researchers
(who usually do not have root access to a shared HPC
system), to leverage the flexibility of container technology,
to seamlessly scale their applications from local workstations
or a smaller HPC system to a large number of nodes in a

larger HPC system. Adopting container-based technology in
software development potentially reduces the development
overhead for both researchers and HPC system support
staff of porting an application across different systems, and
improves reproducibility.

The very first release of Shifter (Version 1.0) is included
and is supported as part of the software stack in Cray Linux
Environment (CLE) release 5.2.UP04. Blue Waters, a Cray
hybrid XE6 and XK7 supercomputer system has had Shifter
V1 in production since 2016. The first release of Shifter had
a simple architecture where only an image gateway (written
in Python) is used to download and convert a Docker image
into an user defined image (UDI) format. Upon request by
a job, the workload manager invokes a prologue script to
mount the requested UDI onto the allocated compute nodes
as read-only ext4 file system, giving access for the job to
launch applications through the software stack environment
provided by the container. In this architecture, the Docker
engine is still required to be installed locally on the image
manager node to pull Docker containers from public Dock-
erhub registry. The implementation details of Shifter V1 can
be found in [1].

Since the initial release of Shifter, regular updates are
provided through CLE patches. A major change in Shifter
architecture was introduced in the 2016 version (V16) [2].
This version release (and the following updates) is officially
supported and implemented in CLE release 6.0.UP02 and
onwards for Cray XC series systems. However, for Cray
XE6/XK7 systems such as Blue Waters, CLE 5.2.UP04 is
the last CLE major release so we do not get these Cray-
provided updates. Though we could continue to maintain the
V1 release of Shifter on Blue Waters, a minor security issue
has raised concerns and the scalability demand of porting
and executing container-based applications on Blue Waters
have together driven us to find a way to upgrade and make
available the newer release of Shifter (Version 16) on Blue
Waters.

In researching a path to install Shifter V16 onto Blue
Waters, we referred to the official Cray configuration guide
of Shifter [4], [5] and documentation from Shifter’s web
resource [6]. Cray provides seamless integration of Shifter
V16 into the XC series system. It requires installing the

Shifter RPM packages into the compute node boot image,
rebuilding the boot image and rebooting the system to the
new boot image. As Shifter V16 has not been tested on
a Cray XE/XK system before, we foresaw inevitable on-
going changes to the boot image during the integration,
and the efforts required in working and testing on the boot
image directly would be tedious and time consuming. Also,
as a best practice for a four-year old seasoned system like
Blue Waters, we would prefer not to modify the boot image
whenever possible to reduce risk of breaking the system
after installing untested Shifter RPM packages into the
boot image directly. Hence, to mitigate the risk in a more
controllable fashion, we decided to install Shifter V16 in the
/dsl layer, Cray’s proprietary file system projected through
the Data Virtualization Service (DVS). Testing Shifter in
/dsl allows faster turnaround time, where a fix in the
source code or configuration can be retested quickly without
the hassle of rebuilding the boot image and rebooting the
compute node. We first installed Shifter V16 and carried out
most of the integration work on our test and development
system (TDS) [7], before replicating the deployment over
to Blue Waters. As the TDS does not have the scale to
reproduce the performance issue that we encountered on
Blue Waters, testing Shifter in /dsl gave us the agility
to quickly compile an instrumented Shifter binary on Blue
Waters to debug the bottleneck root cause.

In this paper, we will present the procedure used to back-
port Shifter V16 to Blue Waters. The purpose of this paper is
to provide comprehensive guidance to other HPC sites that
are planning to implement Shifter V16 on older generations
of non-XC Cray systems. This paper addresses issues that
other sites may also encounter, including those that are
running XC systems. Though the procedure presented here
focuses on Cray systems, some of the points may also be
applicable to other general HPC systems. The following
sections will be discussed in this paper:

II. Installation of Shifter software stack;
III. Configuration of Shifter software stack;
IV. Integration with workload manager;
V. Scaling performance;
VI. GPU support on Shifter; and
VII. Other operational issues.

II. INSTALLATION OF SHIFTER SOFTWARE STACK

The Shifter V16 software stack includes the following
components (indicated software version is latest at the time
of installation):

1. Shifter 16.08.3
2. Squashfs Linux kernel module
3. MongoDB 3.4.7
4. Redis 3.2.8
5. Python 2.7.13
6. Python modules: Celery, PyMongo, Flask, redis, guni-

corn.

7. Munge
We will describe the installation procedure for each of

these components. We planned and tested the installation
procedure on the TDS before replicating the procedure over
to Blue Waters. All installations are done in /dsl through
xtopview utility on the boot node.

1 boot:˜ # xtopview
2 default/:/ #

Listing 1. Installation in /dsl through xtopview.

A. Dependencies
The following dependencies were installed to provide

header files and libraries required to build Shifter RPM
packages: fdupes, json, squashfs. These packages are only
required to build Shifter RPM packages, they are not re-
quired to be installed on Blue Waters. We installed the
source RPM packages of these dependencies (downloaded
from openSUSE [8] online repository), built the binary RPM
packages and installed them in /dsl.

1 default/:/software/rpms # rpm -ivh fdupes-1.61-9.3.1.
src.rpm json-c-0.12.1-47.4.src.rpm squashfs
-4.3-45.1.x86_64.rpm

2 default/:/software/rpms # export CC=gcc
3 default/:/software/rpms # rpmbuild -ba /usr/src/

packages/SPECS/fdupes.spec
4 default/:/software/rpms # rpmbuild -ba /usr/src/

packages/SPECS/json-c.spec
5 default/:/software/rpms # cd /usr/src/packages/RPMS/

x86_64
6 default/:/usr/src/packages/RPMS/x86_64 # rpm -ivh

fdupes-1.61-9.3.1.x86_64.rpm libjson-c-devel
-0.12.1-47.4.x86_64.rpm libjson-c2-0.12.1-47.4.
x86_64.rpm

Listing 2. Install dependencies RPM packages

As CLE 5.2.UP04 is based on older SUSE Linux En-
terprise Server 11.3 distribution, building of Shifter RPM
packages requires newer Autoconf and Automake tools.

1 default/:/software/autoconf-2.69 # ./configure --
prefix=/software/usr CC=gcc

2 default/:/software/autoconf-2.69 # make
3 default/:/software/autoconf-2.69 # make install
4
5 default/:/software/automake-1.15.1 # export PATH=/

software/usr/bin:$PATH
6 default/:/software/automake-1.15.1 # ./configure --

prefix=/software/usr CC=gcc
7 default/:/software/automake-1.15.1 # make
8 default/:/software/automake-1.15.1 # make install

Listing 3. Install newer version of Autoconf and Automake tools.

B. Shifter
We cloned the source distribution of Shifter from

NERSC’s Shifter github repository.

1 default/:/software # git clone https://github.com/
NERSC/shifter.git shifter-16.08.3

Listing 4. Cloning Shifter source distribution from NERSC’s github
repository.

1) Source Code Modification: During our test and de-
velopment phase on the TDS, we encountered a few is-
sues that required editing the Shifter source code to suit
our environment. Listing 5, 6 and 7 list the changes
made in shifter_core.c, UdiRootConfig.h and
UdiRootConfig.c source files respectively.

1. Shifter is distributed with its own mount
binary. By default, this binary is installed as
/usr/lib64/shifter/mount. The location was hard
coded by LIBEXECDIR definition in shifter_core.c
source file at the time when Shifter RPM packages were
built, thus the installation path of mount binary is not
relocatable other than /usr. We worked around this
issue by adding a configurable mountCmd definition
in UdiRootConfig.c and UdiRootConfig.h
source files, and replaced LIBEXECDIR with
udiConfig->mountCmd in shifter_core.c
source file. With this change in place, the installation path
of Shifter’s mount binary became relocatable and can be
defined by the MountCmd parameter in UdiRoot.conf
configuration file (see section III-B later).

2. Shifter has the capability to load additional Linux
kernel modules required at runtime (e.g. loop.ko and
squashfs.ko), given kmodBasePath parameter is de-
fined in udiRoot.conf file. The source distribution
of Shifter provided an RPM Spec file to build the re-
quired Linux kernel module files in an RPM pack-
age. Files from the RPM package were to be installed
in $PREFIX/modules/‘uname -r‘/kernel direc-
tory. We noticed a flaw in the original Shifter runtime
binary, where it constructs the kernel module lookup
path as kmodBasePath + ‘uname -r‘, neglecting the
kernel subdirectory. This caused a failure in the Shifter
runtime as it tried to find and load the required ker-
nel module from an invalid path. We fixed this in the
shifter_core.c source file by including the kernel
subdirectory in the construct path.

1 diff --git a/src/shifter_core.c b/src/shifter_core.c
2 index a1ad10c..b4b50fd 100644
3 --- a/src/shifter_core.c
4 +++ b/src/shifter_core.c
5 @@ -1229,7 +1229,7 @@ int loopMount(const char *

imagePath, const char *loopMountPath, ImageFormat
form

6 goto _loopMount_unclean; \
7 }
8
9 - snprintf(mountExec, PATH_MAX, "%s/mount",

LIBEXECDIR);
10 + snprintf(mountExec, PATH_MAX, "%s", udiConfig->

mountCmd);
11
12 if (stat(mountExec, &statData) != 0) {
13 fprintf(stderr, "udiRoot mount executable

missing: %s\n", mountExec);
14 @@ -2762,7 +2762,7 @@ int loadKernelModule(const char

*name, const char *path, UdiRootConfig *udiConfi
15 }
16
17 /* construct path to kernel modulefile */
18 - snprintf(kmodPath, PATH_MAX, "%s/%s", udiConfig->

kmodPath, path);
19 + snprintf(kmodPath, PATH_MAX, "%s/kernel/%s",

udiConfig->kmodPath, path);
20 kmodPath[PATH_MAX-1] = 0;
21
22 if (stat(kmodPath, &statData) == 0) {

Listing 5. Source code modification in shifter_core.c.

1 diff --git a/src/UdiRootConfig.h b/src/UdiRootConfig.h
2 index 69fe480..b783423 100644
3 --- a/src/UdiRootConfig.h
4 +++ b/src/UdiRootConfig.h
5 @@ -108,6 +108,7 @@ typedef struct _UdiRootConfig {
6 size_t maxGroupCount;
7 size_t gatewayTimeout;
8 size_t mountPropagationStyle;
9 + char *mountCmd;

10
11 char *modprobePath;
12 char *insmodPath;

Listing 6. Source code modification in UdiRootConfig.h.

1 diff --git a/src/UdiRootConfig.c b/src/UdiRootConfig.c
2 index 4a2e26f..24cd0b1 100644
3 --- a/src/UdiRootConfig.c
4 +++ b/src/UdiRootConfig.c
5 @@ -156,6 +156,10 @@ void free_UdiRootConfig(

UdiRootConfig *config, int freeStruct) {
6 free(config->mvPath);
7 config->mvPath = NULL;
8 }
9 + if (config->mountCmd != NULL) {

10 + free(config->mountCmd);
11 + config->mountCmd = NULL;
12 + }
13 if (config->chmodPath != NULL) {
14 free(config->chmodPath);
15 config->chmodPath = NULL;
16 @@ -291,6 +295,8 @@ size_t fprint_UdiRootConfig(FILE *

fp, UdiRootConfig *config) {
17 (config->cpPath != NULL ? config->cpPath : ""))

;
18 written += fprintf(fp, "mvPath = %s\n",
19 (config->mvPath != NULL ? config->mvPath : ""))

;
20 + written += fprintf(fp, "mountCmd = %s\n",
21 + (config->mountCmd != NULL ? config->mountCmd :

""));
22 written += fprintf(fp, "chmodPath = %s\n",
23 (config->chmodPath != NULL ? config->chmodPath

: ""));
24 written += fprintf(fp, "ddPath = %s\n",
25 @@ -360,6 +366,9 @@ int validate_UdiRootConfig(

UdiRootConfig *config, int validateFlags) {
26 if (config->mvPath == NULL || strlen(config->

mvPath) == 0) {
27 VAL_ERROR("\"mvPath\" is not defined",

UDIROOT_VAL_PARSE);
28 }
29 + if (config->mountCmd == NULL || strlen(config->

mountCmd) == 0) {
30 + VAL_ERROR("\"mountCmd\" is not defined",

UDIROOT_VAL_PARSE);
31 + }
32 if (config->chmodPath == NULL || strlen(config

->chmodPath) == 0) {
33 VAL_ERROR("\"chmodPath\" is not defined",

UDIROOT_VAL_PARSE);
34 }
35 @@ -392,6 +401,11 @@ int validate_UdiRootConfig(

UdiRootConfig *config, int validateFlags) {
36 } else if (!(statData.st_mode & S_IXUSR)) {
37 VAL_ERROR("Specified \"mvPath\" is not

executable.", UDIROOT_VAL_FILEVAL);
38 }

39 + if (stat(config->mountCmd, &statData) != 0) {
40 + VAL_ERROR("Specified \"mountCmd\" doesn’t

appear to exist.", UDIROOT_VAL_FILEVAL);
41 + } else if (!(statData.st_mode & S_IXUSR)) {
42 + VAL_ERROR("Specified \"mountCmd\" is not

executable.", UDIROOT_VAL_FILEVAL);
43 + }
44 if (stat(config->chmodPath, &statData) != 0) {
45 VAL_ERROR("Specified \"chmodPath\" doesn’t

appear to exist.", UDIROOT_VAL_FILEVAL);
46 } else if (!(statData.st_mode & S_IXUSR)) {
47 @@ -494,6 +508,8 @@ static int _assign(const char *key

, const char *value, void *t_config) {
48 config->cpPath = strdup(value);
49 } else if (strcmp(key, "mvPath") == 0) {
50 config->mvPath = strdup(value);
51 + } else if (strcmp(key, "mountCmd") == 0) {
52 + config->mountCmd = strdup(value);
53 } else if (strcmp(key, "chmodPath") == 0) {
54 config->chmodPath = strdup(value);
55 } else if (strcmp(key, "ddPath") == 0) {

Listing 7. Source code modification in UdiRootConfig.c.

2) RPM Spec file customization: The Shifter source
distribution provided two RPM Spec files that build
binary RPM packages for Shifter (shifter.spec)
and an RPM package for Linux kernel modules
(shifter_cle6_kmod_deps.spec.cray). The
original Spec files were written to build RPM packages that
install non-relocatable files. The default installation path
of the RPM packages is /usr, but we wanted to install
them to /opt, as a best practice to follow our existing
third-party software directory structure. Hence, we made
these RPM files relocatable by adding Prefix key to the
Spec files. With guidance from Cray, we also made some
changes to the Spec file to suit CLE5 build environment
(see listing 8).

1 diff --git a/shifter.spec b/shifter.spec
2 index edc0a5d..3e7a418 100644
3 --- a/shifter.spec
4 +++ b/shifter.spec
5 @@ -25,6 +25,7 @@ URL: https://github.com/NERSC/

shifter
6 Packager: Douglas Jacobsen <dmjacobsen@lbl.gov>
7 Source0: %{name}-%{version}.tar.gz
8 BuildRoot: %{_tmppath}/%{name}-%{version}-%{release}-

root
9 +Prefix: /usr

10
11 %description
12 Shifter enables container images for HPC. In a

nutshell, Shifter
13 @@ -55,6 +56,8 @@ BuildRequires: json-c json-c-devel
14 BuildRequires: pam-devel
15 BuildRequires: libcap-devel
16 BuildRequires: python
17 +Prefix: /usr
18 +Prefix: /etc
19 %endif
20
21 %description runtime
22 @@ -75,7 +78,11 @@ Shifter.
23
24 %package imagegw
25 Summary: Image Manager/Gateway for Shifter
26 -Requires(pre): shadow-utils
27 +Requires(pre): shadow
28 +Group: System Environment/Base
29 +Prefix: /usr
30 +Prefix: /etc

31 +Prefix: /var
32 %if 0%{!?_without_systemd:1}
33 %{systemd_requires}
34 %endif
35 @@ -104,6 +111,7 @@ use with Shifter.
36 Summary: SLURM Spank Module for Shifter
37 BuildRequires: slurm-devel
38 BuildRequires: xfsprogs
39 +Prefix: /usr
40
41 %description slurm
42 Shifter enables container images for HPC. In a

nutshell, Shifter
43 @@ -199,8 +207,8 @@ pip install celery
44 %defattr(-, root, root)
45 %doc AUTHORS LICENSE NEWS README* udiRoot.conf.

example
46 %attr(4755, root, root) %{_bindir}/shifter
47 -%config(noreplace missingok) %verify(not filedigest

mtime size) %{_sysconfdir}/shifter_etc_files/
passwd

48 -%config(noreplace missingok) %verify(not filedigest
mtime size) %{_sysconfdir}/shifter_etc_files/
group

49 +%config(noreplace missingok) %verify(not mtime size)
%{_sysconfdir}/shifter_etc_files/passwd

50 +%config(noreplace missingok) %verify(not mtime size)
%{_sysconfdir}/shifter_etc_files/group

51 %config(noreplace) %{_sysconfdir}/shifter_etc_files/
nsswitch.conf

52 %{_bindir}/shifterimg
53 %{_bindir}/activate_gpu_support.sh

Listing 8. Customization of shifter.spec file.

The provided Linux kernel module RPM Spec file was
written to build Linux kernel modules for CLE6 compute
kernel. As Blue Waters operates with a CLE5 kernel, We
rewrote the Spec file to build Linux kernel modules for the
CLE5 compute kernel. (See listing 9).

1 default/:/software/shifter-16.08.3/extra # cat
shifter_cle5_gem-c_kmod.spec

2 Name: shifter_cle5_kmod_deps-%(uname -r | sed ’s
/gem_s/gem_c/g’)

3 Version: 1.0
4 Release: 3
5 License: GPL
6 BuildRequires: kernel-source kernel-syms
7 BuildRoot: %{_tmppath}/%{name}-%{version}-build
8 Summary: kernel mod deps for cle5
9 Group: System Environment/Base

10 Prefix: /lib
11 %description
12 xfs, ext4 and deps
13 %prep
14 %build
15 %define KVER %(uname -r | sed ’s/-cray.*//g’)
16 rsync -raql /usr/src/linux-%{KVER} %{buildroot}
17 cd %{buildroot}/linux-%{KVER}
18 if [-e "arch/x86/configs/cray_gem_c_defconfig"];

then
19 cp arch/x86/configs/cray_gem_c_defconfig .config
20 else
21 cp /proc/config.gz ./
22 gunzip config.gz
23 mv config .config
24 fi
25 echo "CONFIG_BLK_DEV_LOOP=m" >> .config
26 echo "CONFIG_EXT4_FS=m" >> .config
27 echo "CONFIG_CRAMFS=m" >> .config
28 echo "CONFIG_SQUASHFS=m" >> .config
29 echo "CONFIG_JBD2=m" >> .config
30 echo "CONFIG_FS_MBCACHE=m" >> .config
31 echo "CONFIG_XFS_FS=m" >> .config
32 echo "CONFIG_XFS_QUOTA=y" >> .config
33 echo "CONFIG_XFS_DMAPI=m" >> .config

34 echo "CONFIG_XFS_POSIX_ACL=y" >> .config
35 echo "CONFIG_XFS_RT=y" >> .config
36 yes "" | make oldconfig
37 make modules_prepare
38 make modules
39 %install
40 %define KVER %(uname -r | sed ’s/-cray.*//g’)
41 cd %{buildroot}/linux-%{KVER}
42 make modules_install INSTALL_MOD_PATH=%{buildroot}
43 %post
44 depmod -a
45 %postun
46 depmod -a
47 %files
48 %define _unpackaged_files_terminate_build 0
49 %defattr(-,root,root)
50 /lib/modules/%{KVER}*/kernel

Listing 9. shifter_cle5_gem-c_kmod.spec

3) Building RPM Packages: The build procedure of
Shifter RPM packages is given in listing 10.

1 default/:/software/shifter-16.08.3 # ./autogen.sh
2 default/:/software/shifter-16.08.3 # cd ..
3 default/:/software # tar czvf shifter-16.08.3.tar.gz

shifter-16.08.3
4 default/:/software # cp shifter-16.08.3.tar.gz
5 /usr/src/packages/SOURCES
6 default/:/software # cd shifter-16.08.3
7 default/:/software/shifter-16.08.3 # rpmbuild -ba
8 shifter.spec
9 default/:/software/shifter-16.08.3 # cd extra

10 default/:/software/shifter-16.08.3/extra # rpmbuild -
bb shifter_cle5_gem-c_kmod.spec

Listing 10. Build procedure of Shifter RPM packages.

4) Installing RPM Packages: The install procedure of
Shifter RPM packages is given in listing 11. With addition
of the Prefix key in the RPM Spec files, we were able
to install the files at the desired location. These RPM
packages were copied from the TDS over to Blue Waters
for installation on Blue Waters’ /dsl.

1 default/:/usr/src/packages/RPMS/x86_64 # rpm -ivh --
prefix=/opt/cray/shifter/16.08.3
shifter_cle5_kmod_deps-3.0.101-0.46.1_1
.0502.8871-cray_gem_c-1.0-3.x86_64.rpm

2 default/:/usr/src/packages/RPMS/x86_64 # rpm -ivh --
prefix=/opt/cray/shifter/16.08.3 shifter
-16.08.3-1.nersc.x86_64.rpm

3 shifter/:/usr/src/packages/RPMS/x86_64 # rpm -ivh --
relocate /usr=/opt/cray/shifter/16.08.3 shifter-
imagegw-16.08.3-1.nersc.x86_64.rpm

4 shifter/:/usr/src/packages/RPMS/x86_64 # rpm -ivh --
prefix=/opt/cray/shifter/16.08.3 shifter-runtime
-16.08.3-1.nersc.x86_64.rpm

Listing 11. InstallSing hifter RPM packages.

Installation of Shifter RPM packages create a new user
‘shifter’ and group ‘shifter’ if they are not already present
in the install host’s /etc/passwd and /etc/group files.
We use this user to run the Shifter image manager gateway
service and the UDI files stored by the image manager
in the Lustre shared file system would be owned by this
user. In order to be granted write access permission to the
file system, the same credential has to be recognized on
the Lustre file system server nodes. We use a centralized

LDAP service to achieve consistency of user identity across
systems. The ‘shifter’ user and group were created in LDAP
before installing the Shifter RPM packages to avoid re-
creation of the same credential locally in the install host’s
/etc/passwd and /etc/group files.

C. MongoDB

MongoDB [9] is an open-source distributed database
designed to scale horizontally across multiple servers and to
provide high availability. Shifter uses MongoDB to store the
metadata of available container images and their operational
state: whether the image is in download state, in conversion
state or ready to use. We obtained MongoDB RPM pack-
ages from https://repo.mongodb.org. The procedure to install
MongoDB RPM packages is given in listing 12.

1 default/:/software/mongodb # wget --no-check-
certificate https://www.mongodb.org/static/pgp/
server-3.4.asc

2 default/:/software/mongodb # rpm --import server-3.4.
asc

3 default/:/software/mongodb # rpm -ivh --prefix=/opt/
mongodb/3.4.7 mongodb-org-3.4.7-1.suse11.x86_64.
rpm mongodb-org-server-3.4.7-1.suse11.x86_64.rpm
mongodb-org-shell-3.4.7-1.suse11.x86_64.rpm
mongodb-org-mongos-3.4.7-1.suse11.x86_64.rpm
mongodb-org-tools-3.4.7-1.suse11.x86_64.rpm

Listing 12. Install procedure of MongoDB

D. Redis

Redis [10] is an open source in-memory key-value data
structure store used as a database, cache and message broker.
Shifter uses Redis as the message broker for the Celery
queue system. The install procedure of Redis is given in
listing 13.

1 default/:/software # wget http://download.redis.io/
releases/redis-3.2.8.tar.gz

2 default/:/software # tar xvf redis-3.2.8.tar.gz
3 default/:/software # cd redis-3.2.18
4 default/:/software/redis-3.2.8 # export CC=gcc
5 default/:/software/redis-3.2.8 # make distclean
6 default/:/software/redis-3.2.8 # make PREFIX=/opt/

redis/3.2.8 install

Listing 13. Install procedure of Redis

E. Python

The core image manager gateway component of Shifter
is a RESTful service written in the Python [11] language.
The Shifter installation provided a list of Python modules
required to support the functionality of the image manager.

1 default/:/opt/shifter/16.08.3/share/shifter # cat
requirements

2 celery
3 pymongo
4 flask
5 redis
6 gunicorn
7 pylint

Listing 14. Python modules required by Shifter image manager gateway.

Celery [12] - Asynchronous and distributed task queue
system to service user requests. Celery provides better
scalability to multiple requests through queue and dispatch
to a distributed pool of workers.

Flask [13] - Web framework that provides RESTful API
as the interfacing layer between user requests and underlying
image manager. Use of RESTful API replaces a locally
installed Docker engine (needed in Shifter V1) to interact
with Docker registry.

pymongo [14] - Python API to interface with MongoDB.
redis [15] - Python API to interface with Redis.
gunicorn [16] - Web server gateway interface to work with

Flask.
We used the pip [17] tool to download these Python

modules from PyPI [18] and installed them under the
/opt/cray/shifter/16.08.3/imagegw_venv di-
rectory using virtualenv [19] to automatically resolve the
dependencies, creating an isolated Python environment to
avoid overwriting existing Python modules installed on the
system. As PyPI now enforces client connection with SSL
enabled, a newer version of Python (2.7.13) was installed to
obtain SSL supported pip.

1 default/:/software # tar xvf Python-2.7.13.tgz; cd
Python-2.7.13

2 default/:/software/Python-2.7.13 # ./configure --
prefix=/opt/python/2.7.13

3 default/:/software/Python-2.7.13 # make
4 default/:/software/Python-2.7.13 # make install
5
6 default/:/software # tar xvf virtualenv-15.1.0.tar.gz
7 default/:/software # cd /opt/cray/shifter/16.08.3
8 default/:/opt/cray/shifter/16.08.3 # /software/

virtualenv-15.1.0/virtualenv.py imagegw_venv --
python=/opt/python/2.7.13/bin/python

9
10 default/:/ # source /opt/cray/shifter/16.08.3/

imagegw_venv/bin/activate
11 (imagegw_venv) default/:/ # pip install -r /opt/cray/

shifter/16.08.3/share/shifter/requirements
12 (imagegw_venv) default/:/ # deactivate

Listing 15. Install procedure of Python modules.

F. Munge

Munge [20] service provides the authentication mecha-
nism for communication between compute nodes invoking
Shifter and the service node hosting the Shifter image
manager gateway service. The munge daemon is provided
by the cray-munge RPM package, which comes with a
/etc/munge.key file. All nodes including the image
manager node must use the same key for authentication.
cray-munge is included as part of the CLE5 software stack
installation.

G. Post Installation

The installation of Shifter software stack in xtopview
installed some files under /var space in /dsl. After
exiting from xtopview, we copied the Shifter’s files from

/dsl’s /var space into the persistent /var space of the
service node where the Shifter services would be running.

1 default/:/ # exit
2 boot:˜ # cd /rr/current/var/lib
3 boot:/rr/current/var/lib # cp -Rp mongo /snv/<nid_id>/

var/lib
4 boot:/rr/current/var/lib # cd ../log
5 boot:/rr/current/var/log # cp -Rp mongodb

shifter_imagegw* /snv/<nid_id>/var/log
6 boot:/rr/current/var/log # cd ../run
7 boot:/rr/current/var/run # cp -Rp mongodb /snv/<nid_id

>/var/run

Listing 16. Copying files from /dsl /var space into service node’s
persistent /var space

III. CONFIGURATION OF SHIFTER SOFTWARE STACK

The following section describes the configuration of the
Shifter V16 software stack on Blue Waters.

A. Shifter Image Manager Gateway

The imagemanager.json file, written in JSON for-
mat, configures how the Shifter image manager connects to
MongoDB, Redis, Munge, the Docker registry, and provides
locations to store original Docker files, temporary files, and
the final UDI files. We specialized this file to the utility
class in /dsl, as only the service nodes from the utility
class eligible to host Shifter services would use this file.

1 class/utility:/ # xtspec -c utility /etc/shifter/
imagemanager.json

2 class/utility:/ # cat /etc/shifter/imagemanager.json
3 {
4 "WorkerThreads":8,
5 "DefaultLustreReplication": 1,
6 "DefaultOstCount": 16,
7 "DefaultImageLocation": "registry-1.docker.io",
8 "DefaultImageFormat": "squashfs",
9 "PullUpdateTimeout": 300,

10 "ImageExpirationTimeout": "90:00:00:00",
11 "MongoDBURI":"mongodb://shifteradmin:<P@55w0rd>

@localhost/Shifter?authMechanism=SCRAM-SHA-1",
12 "MongoDB":"Shifter",
13 "Broker":"redis://:<P@55w0rd>@localhost/",x‘’
14 "CacheDirectory": "/mnt/c/scratch/system/shifter/

images/cache/",
15 "ExpandDirectory": "/mnt/c/scratch/system/shifter/

images/expand/",
16 "Locations": {
17 "registry-1.docker.io": {
18 "remotetype": "dockerv2",
19 "authentication": "http"
20 }
21 },
22 "Platforms": {
23 "bluewaters": {
24 "mungeSocketPath": "/var/run/munge/munge.

socket.2",
25 "accesstype": "local",
26 "admins": ["root"],
27 "usergroupService": "local",
28 "local": {
29 "imageDir": "/mnt/c/scratch/system/shifter

/images"
30 }
31 }
32 }
33 }

Listing 17. /etc/shifter/imagemanager.json

B. Shifter Runtime

The udiRoot.conf file defines the runtime environ-
ment of Shifter. Listing 18 lists the parameters that we ex-
plicitly configured on Blue Waters, leaving other parameters
as default. This file is read by all compute nodes when
Shifter is invoked, it is placed in the default class of /dsl.

1 default/:/ # cat /etc/shifter/udiRoot.conf | grep -v
ˆ# | grep -v ˆ$

2 udiMount=/var/udiMount
3 loopMount=/var/udiLoopMount
4 imagePath=/mnt/abc/scratch/system/shifter/images
5 udiRootPath=/opt/cray/shifter/16.08.3
6 sitePreMountHook=/opt/cray/shifter/16.08.3/sbin/

premount.sh
7 optUdiImage=/opt/cray/shifter/16.08.3/lib64/shifter/

opt/udiImage
8 etcPath=/etc/shifter/shifter_etc_files
9 autoLoadKernelModule=1

10 mountUdiRootWritable=1
11 maxGroupCount=31
12 mountCmd=/opt/cray/shifter/16.08.3/lib64/shifter/mount
13 modprobePath=/sbin/modprobe
14 insmodPath=/sbin/insmod
15 cpPath=/bin/cp
16 mvPath=/bin/mv
17 chmodPath=/bin/chmod
18 ddPath=/bin/dd
19 rootfsType=ramfs
20 kmodBasePath=/opt/cray/shifter/16.08.3/modules
21 siteFs=/home:/home
22 siteEnv=SHIFTER_RUNTIME=1
23 siteEnvAppend=PATH=/opt/udiImage/bin
24 imageGateway=http://shifter:5000 http://shifter:5001

http://shifter:5002
25 system=bluewaters
26 defaultImageType=docker
27 siteResources=/opt/shifter/site-resources
28 allowLibcPwdCalls=1

Listing 18. /etc/shifter/udiRoot.conf

The sitePreMountHook parameter in
udiRoot.conf file points to a script to define customized
mount points that can be setup in the Shifter runtime
container. Using this script, we are able to bind volumes
from the compute host into the container, e.g. the user
home directory and mount points from Lustre file systems,
and /opt.

1 default/:/ # cat /opt/cray/shifter/16.08.03/sbin/
premount.sh

2 #!/bin/sh
3 set -e
4 mkdir -p mnt/c
5 mount --bind /mnt/c mnt/c
6 mkdir -p mnt/a
7 mount --bind /mnt/a mnt/a
8 mkdir -p mnt/b
9 mount --bind /mnt/b mnt/b

10 mkdir -p ufs
11 mkdir -p var/opt/cray/alps
12 mount --bind /ufs ufs
13 mount --bind /var/opt/cray/alps var/opt/cray/alps
14 ln -s mnt/c/scratch scratch
15 ln -s mnt/a/u u
16 ln -s mnt/a/sw sw
17 ln -s sw/cm cm
18 ln -s mnt/b/projects projects
19 mkdir -p dsl/opt
20 mount --bind /dsl/opt dsl/opt
21 exit 0

Listing 19. /opt/cray/shifter/16.08.3/sbin/premount.sh

C. Redis Configuration

The Redis source package provided a sample
redis.conf file to configure Redis. We copied this
file into the /etc/shifter directory, and modified only
the parameters listed in listing 20.

1 default/:/ # grep -E "ˆdir|ˆrequirepass" /etc/shifter/
redis.conf

2 dir /var/lib/redis
3 requirepass P@55w0rd

Listing 20. Parameters modified in /etc/shifter/redis.conf file
as required for Blue Waters’ operation environment.

D. Service Startup Scripts

Shifter requires multiple services to be running in order to
be functional: Shifter image manager gateway, MongoDB,
Redis and Munge. We grouped all unused service nodes on
Blue Waters into an “utility” class, serving as a resource pool
to host software services like Shifter. We placed all services
required by Shifter to start on one of the utility class service
nodes. All these services use System V style init scripts
located in the /etc/init.d directory: munge, mongod,
redisd and shifter-imagegw. These services can be
started using the trivial way in the order listed in listing 21.

1 shifter:˜ # service munge start
2 shifter:˜ # service mongod start
3 shifter:˜ # service redisd start
4 shifter:˜ # service shifter-imagegw start

Listing 21. Intializing Shifter image manager gateway and the dependent
peripheral services.

When started, the shifter-imagegw init script trig-
gers a Python script (See listing 22) to launch a pool of
Celery workers. These Celery workers are standby service
threads ready to handle Shifter requests from compute nodes.

1 default/:/ # cat /opt/cray/shifter/16.08.3/sbin/
shifter-imagegw

2 #!/bin/bash
3 if [-z ${ROOT_TREE}]; then
4 ROOT_TREE=’/opt/cray/shifter/16.08.3’
5 fi
6 if [-z ${PYTHON_VENV}]; then
7 PYTHON_VENV=’imagegw_venv’
8 fi
9 if [-z ${SHIFTER_SYSTEM_NAME}]; then

10 SHIFTER_SYSTEM_NAME=’bluewaters’
11 fi
12 QA="${SHIFTER_SYSTEM_NAME}"
13 cd ${ROOT_TREE}
14 source ${PYTHON_VENV}/bin/activate
15 echo "Starting Celery Queue $QA"
16 celery -A shifter_imagegw.imageworker worker -Q $QA --

loglevel=WARNING -n worker.queue.$QA -E --
concurrency=24 &

17 echo "Starting imagegw API"
18 python lib64/shifter/imagegwapi.py &
19 python lib64/shifter/imagegwapi1.py &
20 python lib64/shifter/imagegwapi2.py &

21 wait

Listing 22. shifter-imagegw init script.

E. Security

We secured the authentication to MongoDB and Redis
databases by setting up a password, to prevent access to the
databases by unprivileged users.

1) Securing Redis: A password can be set for Re-
dis database using the requirepass parameter in
redis.conf file (see listing 20). The redisd init script
is configured to read from the redis.conf file where the
password is stored. The permission of the redis.conf
file was changed to be accessible by root only.

1 default/:/ # chown root: /etc/shifter/redis.conf
2 default/:/ # chmod 640 /etc/shifter/redis.conf
3 default/:/ # chown root: /etc/init.d/redisd
4 default/:/ # chmod 750 /etc/shifter/redisd

Listing 23. Securing Redis

2) Securing MongoDB: By default, MongoDB is config-
ured to listen to connections from localhost only. To better
secure MongoDB, we created a mongodbadmin user and set
a password in the admin database.

1 user@shifter:˜> /opt/mongodb/3.4.7/bin/mongo
2 > use admin
3 > > db.createUser(
4 ... {
5 ... user: "mongodbadmin",
6 ... pwd: "<P@55w0rd>",
7 ... roles: [{ role: "root", db: "admin" }]
8 ... }
9 ...)

Listing 24. Creating mongodbadmin user and set a password in
MongoDB’s admin database.

After restarting the MongoDB service with the --auth
argument, we login again to the MongoDB’s admin database
using the mongodbadmin credential to create a shifteradmin
credential for the Shifter database.

1 user@shifter:˜> /opt/mongodb/3.4.7/bin/mongo
2 > use admin
3 switched to db admin
4 > db.auth("mongodbadmin", "<P@55w0rd>")
5 1
6 > use Shifter
7 switched to db Shifter
8 > db.createUser(
9 ... {

10 ... user: "shifteradmin",
11 ... pwd: "<P@55w0rd>",
12 ... roles: [{ role: "dbOwner", db: "Shifter" }]
13 ... }
14 ...)
15 > exit

Listing 25. Creating shifteradmin credential for the Shifter database in
MongoDB.

3) Shifter Image Manager: With password authentication
configured in Redis and MongoDB, the MongoDBURI and

Broker parameters in the imagemanager.json con-
figuration file were updated to use the secured credentials
for connections to Redis and MongoDB. In addition, we
also noted that it is not recommended to launch Celery
worker threads as root, hence the shifter-imagegw
init script was edited to start the image manager gateway
service as the ‘shifter’ user, and it requires read access to
imagemanager.json file. As passwords are passed as
clear text in the imagemanager.json file, the ownership
and permission of the imagemanager.json file was
changed to be accessible by root and ‘shifter’ user only.

1 default/:/ # chown shifter:root /etc/shifter/
imagemanager.json

2 default/:/ # chmod 660 /etc/shifter/imagemanager.json

Listing 26. Securing Shifter image manager gateway.

IV. INTEGRATION WITH WORKLOAD MANAGER

Figure 1 illustrates the integration of Shifter jobs with
Blue Waters’ workload manager. The Shifter source distri-
bution provided the integration scripts to work with Torque
Resource Manager. These scripts were written for Shifter
V1, but not updated to work in Shifter V16. We modified
these scripts to integrate Shifter V16 with Torque Resource
Manager on Blue Waters. In the general HPC cluster use
case (including on a Cray system), a Shifter container-
based application can be launched on compute nodes by
invoking the shifter command line interface. For Cray
systems that use ALPS, Shifter can be configured to invoke
setupRoot through job prologue scripts to setup con-
tainer environment on all compute nodes before beginning
execution of the job script, such that usual ALPS syntax
can be used to launch container based applications onto the
compute nodes, without causing additional overhead induced
by shifter CLI. Both methods require Munge service to
be running on the compute nodes in order to be able to
communicate with the Shifter image manager gateway. A
generic resource shifter16 was setup in the resource and
workload manager, in which upon request at job submission,
the Cray login node (a.k.a. mom node) allocated to the job
will invoke a series of prologue scripts (see listing 28) to
start Munge service on all compute nodes allocated to the
job.

1 user@h2ologin:˜> qsub -l nodes=1:ppn=16,gres=shifter16
jobscript.sh

Listing 27. Requesting for gres=shifter16 generic resource in job
submission.

1 mom:/var/spool/torque/mom_priv # awk "/Shifter ver.
16/,/END Shifter/" prologue

2 # Request for Shifter ver. 16.08.3
3 if [$(/opt/torque/default/bin/qstat -f ${BATCH_JOB_ID

} | grep Resource_List.gres | grep -c ’\
bshifter16\b’) -gt 0];then

4 echo "In Torque Shifter prologue batchID: ${
BATCH_JOB_ID}"

Figure 1. Architecture of Shifer implementation on Blue Waters

5 echo "In Torque Shifter prologue batchID: ${
BATCH_JOB_ID}" >> /scratch/system/shifter/
shifter16.log

6 shifter_prologue=/opt/cray/shifter/16.08.3/wlm/
torque/cray-shifter-prologue

7 if [[-x $shifter_prologue]]; then
8 $shifter_prologue ${BATCH_JOB_ID} $2 $3 ${

RESV_ID} ${NIDS}
9 fi

10 fi
11 # END Shifter
12
13 mom:/opt/cray/shifter/16.08.3/wlm/torque # cat cray-

shifter-prologue
14 #!/bin/bash
15 SHIFTER_JOBID=$1
16 SHIFTER_USER=$2
17 SHIFTER_GROUP=$3
18 SHIFTER_RESVID=$4
19 SHIFTER_NIDS=$5
20 ROOT=/opt/cray/shifter/16.08.3
21 PROLOGUE=$ROOT/wlm/udiRoot-prologue
22 QGETENV=$ROOT/wlm/torque/qgetenv
23 PCMDCMD="/opt/cray/nodehealth/default/bin/pcmd"
24 id $SHIFTER_USER
25 cp /var/run/nscd/passwd /scratch/system/shifter/jobs/

passwd.${SHIFTER_JOBID}
26 cp /var/run/nscd/group /scratch/system/shifter/jobs/

group.${SHIFTER_JOBID}
27 $PCMDCMD -r -q -n ${SHIFTER_NIDS} "/dsl/usr/bin/chroot

/dsl sh /opt/cray/shifter/16.08.3/wlm/torque/
cray-shifter-extra-service start ${SHIFTER_JOBID
}"

28 if [[! -x $PROLOGUE]]; then
29 # shifter/udiRoot is not installed. Nothing to

do.
30 exit 0
31 fi
32 SHIFTER_ENV_VAR=$($QGETENV $SHIFTER_JOBID UDI)
33 if [[-z $SHIFTER_ENV_VAR]]; then
34 # Job did not ask for shifter resources.
35 exit 0
36 fi
37 $PROLOGUE $SHIFTER_JOBID $SHIFTER_USER $SHIFTER_GROUP

$SHIFTER_RESVID DOCKER $SHIFTER_ENV_VAR
38 RET=$?
39 exit $RET
40
41 mom:/opt/cray/shifter/16.08.3/wlm/torque # cat cray-

shifter-extra-service
42 #!/bin/bash
43
44 opts=$1
45 jobid=$2

46 kmodpath=/opt/cray/shifter/16.08.3/modules/kernel
47 case $opts in
48 start)
49 echo Starting MUNGE service.
50 /etc/init.d/munge start
51 cp /scratch/system/shifter/jobs/passwd.$jobid /

var/run/nscd/passwd
52 cp /scratch/system/shifter/jobs/group.$jobid /

var/run/nscd/group
53 echo Starting NSCD service.
54 /etc/init.d/nscd start
55 /sbin/insmod $kmodpath/drivers/block/loop.ko

max_loop=128
56 /sbin/insmod $kmodpath/fs/squashfs/squashfs.ko
57 ;;
58 stop)
59 echo Stopping NSCD service.
60 /etc/init.d/nscd stop
61 echo Stopping MUNGE service.
62 /etc/init.d/munge stop
63 rm /var/run/nscd/passwd /var/run/nscd/group /var

/run/nscd/services
64 ;;
65 *)
66 echo Unknown option
67 esac

Listing 28. Prologue scripts triggered by gres=shifter16.

A. shifter Command Line Interface

If using the shifter CLI to launch Shifter tasks
in a job script, the job submission requires only the
gres=shifter16 argument to be passed to the job
submission qsub command. Like a regular job script,
aprun command is used to invoke the shifter CLI,
together with the --image=<image:tag> argument to
specify which Docker image to use, followed by the ap-
plication command to be executed in the container com-
pute environment. For example (see listing 29), specifying
--image=centos:latest would trigger Shifter image
manager to download the centos:latest docker image from
the Docker registry, convert it into UDI, and mount it on
the compute node, then proceed to execute the following
command in the container environment.

1 aprun -b -- shifter --image=<image:tag> -- command

Listing 29. shifter CLI

B. Using setupRoot in Prologue

Alternatively, if using setupRoot to setup the con-
tainer environment on compute nodes before executing
the job script, the -v UDI=<image:tag> argument is
required to be passed to qsub command in addition to
gres=shifter16.

1 user@h2ologin:˜> qsub -l nodes=1:ppn=16,gres=shifter16
-v UDI=<image:tag> myscript.sh

Listing 30. Requesting for shifter16 generic resource and UDI in job
submission.

As seen in listing 28, when UDI argument is passed
to qsub command, setupRoot is triggered by the
udiRoot-prologue script (see listing 31) to download
the Docker image indicated by the <image:tag> label
from Docker registry onto the mom node, convert it into
UDI and mount it on all compute nodes allocated to the
job. After completion of all prologue scripts, the mom node
then proceeds to begin execution of the job script. In the job
script, by setting CRAY_ROOTFS=SHIFTER environment
variable, regular aprun syntax can be used to launch
container-based applications onto the compute nodes’ con-
tainer environment. This method of job submission preserves
the same working shell environment from the mom node
onto the compute node. When using aprun with shifter
CLI, PATH and LD_LIBRARY_PATH environment vari-
ables from the mom node are not passed to the shifter
tasks executing in the container.

1 #!/bin/bash
2 jobId="$1"
3 user="$2"
4 group="$3"
5 resId="$4"
6 udiRootType="$5"
7 udiRootValue="$6"
8 shift 6
9 PATH=${PATH}:/opt/cray/alps/default/bin

10 nodeContext=""
11 udiRootPath=/opt/cray/shifter/16.08.3
12 mode="alps"
13 nodelist=""
14 tasksPerNode=1
15 volumes=()
16 while getopts ":m:n:N:v:" opt; do
17 case "${opt}" in
18 m)
19 mode="${OPTARG}"
20 if [[-n "$mode" && "$mode" == "local"]];

then
21 nodeContext="";
22 fi
23 ;;
24 n)
25 nodelist="${OPTARG}"
26 ;;
27 N)
28 tasksPerNode="${OPTARG}"
29 ;;
30 v)

31 volumes+=(${OPTARG})
32 ;;
33 \?)
34 echo "Invalid option: -${OPTARG}" >&2
35 exit 1
36 ;;
37 :)
38 echo "Option -${OPTARG} requires an argument"

>&2
39 exit 1
40 ;;
41 esac
42 done
43 die() {
44 local msg
45 msg="$1"
46 echo "$msg" 1>&2
47 exit 1
48 }
49 [[-n "$jobId"]] || die "Job ID is undefined"
50 [[-n "$user"]] || die "user is undefined"
51 [[-n "$group"]] || die "group is undefined"
52 [[-n "$udiRootType"]] || die "udi image type is

undefined"
53 [[-n "$udiRootValue"]] || die "udi image value is

undefined"
54 userUid=$(id -u "$user")
55 groupGid=$(getent group "$group" | awk -F ’:’ ’{print

$3}’)
56 [[-n "$userUid"]] || die "user Uid is unknown"
57 [[-n "$groupGid"]] || die "group Gid is unknown"
58 jobEnv=()
59 entrypoint=""
60 udiRootId=""
61 echo "Initializing udiRoot, please wait."
62 if [["$udiRootType" == "DOCKER"]]; then
63 echo "Retrieving Docker Image"
64 status=$(su - $user "$udiRootPath/bin/shifterimg

pull $udiRootValue" | awk {’print $NF’})
65 if [["$status" == "READY"]]; then
66 data=$(su - $user "$udiRootPath/bin/shifterimg

lookup $udiRootValue")
67 ret=$?
68 else
69 echo "Failed to download docker image:

$udiRootValue" 2>&1
70 exit 1
71 fi
72 for item in $data; do
73 if [["$item" == "ENV:"*]]; then
74 envItem=$(echo "$item" | cut -c 5-)
75 jobEnv+=($envItem)
76 elif [["$item" == "ENTRY:"*]]; then
77 entrypoint=$(echo "$item" | cut -c 7-)
78 else
79 udiRootId=$item
80 fi
81 done
82 if [[-z "$udiRootId" || $ret -ne 0]]; then
83 echo "Failed to get udi image: $udiRootValue"

1>&2
84 exit 1
85 fi
86 else
87 echo "Unknown image type: $udiRootType" 1>&2
88 exit 1
89 fi
90 umask 066
91 datadir="/var/run/shifter/jobs/$user/$jobId"
92 mkdir -p "$datadir"
93 umask 022
94 homeDir=$(eval "echo ˜$user")
95 pubKey="$homeDir/.shifter/id_rsa.pub"
96 if [[-r $pubKey]]; then
97 sshPubKey=$(cat $pubKey)
98 else
99 ssh-keygen -t rsa -f "$datadir/id_rsa" -N ’’ >/dev/

null 2>&1
100 chown "$user" "$datadir/id_rsa" "$datadir/id_rsa.

pub"

101 chmod 600 "$datadir/id_rsa" "$datadir/id_rsa.pub"
102 sshPubKey=$(cat "$datadir/id_rsa.pub")
103 fi
104 envFile="$datadir/env";
105 for envItem in "${jobEnv[@]}"; do
106 echo "$envItem" >> "$envFile"
107 done
108 if [[-n "$entrypoint"]]; then
109 echo "$entrypoint" > "$datadir/entrypoint"
110 fi
111 reservation=""
112 if [["$mode" == "local"]]; then
113 reservation="local";
114 elif [[-n "$BASIL_RESERVATION_ID"]]; then
115 reservation="$BASIL_RESERVATION_ID"
116 else
117 reservation="$resId"
118 fi
119 [[-z "$reservation"]] && die "Failed to identify job

reservation"
120 job_nodelist="$datadir/nodelist"
121 if [["$reservation" == "local"]]; then
122 hostname > "$job_nodelist"
123 else
124 apstat -rvvv -R "$reservation" | awk ’/ˆ[]*PE / {

printf "nid%05d\n", $6 }’ | sort > "
$job_nodelist"

125 fi
126 xtxqtcmd_log="$datadir/log_start"
127 xtxqtcmd="/opt/cray/nodehealth/default/bin/xtxqtcmd"
128 [[-x "$xtxqtcmd"]] || die "Could not find xtxqtcmd.

Exiting"
129 ## get list of unique nodes to run setupRoot on
130 unique_nodes="$datadir/unique_nodes"
131 cat "$job_nodelist" | sort -u > "$unique_nodes"
132 ## minimize nodelist for putting hosts file on the

compute node
133 if [["$mode" == "local"]]; then
134 minNodes=$(/opt/slurm/default/bin/scontrol show

hostnames "$nodelist" | awk -v taskCount="
$tasksPerNode" ’{ print $1 "/" taskCount }’ |
xargs)

135 else
136 minNodes=$(cat "$job_nodelist" | sort | uniq -c |

awk ’{ print $2 "/" $1 }’ | xargs)
137 fi
138 echo $minNodes >> $xtxqtcmd_log
139 cmdStr="/dsl/usr/bin/chroot /dsl ${udiRootPath}/sbin/

setupRoot \"$udiRootType\" \"$udiRootId\" -s \"
$sshPubKey\" -u \"$user\" -U \"$userUid\" -G \"
$groupGid\" -N \"$minNodes\" -V"

140 for volume in "${volumes[@]}"; do
141 cmdStr="$cmdStr -v \"$volume\""
142 done
143 ok=0
144 expected=0
145 if [["$mode" == "local"]]; then
146 echo $cmdStr >> $xtxqtcmd_log
147 /bin/sh -c "$cmdStr"
148 [[$? -eq 0]] && ok=1
149 expected=1
150 else
151 echo "$xtxqtcmd $unique_nodes $cmdStr" >>

$xtxqtcmd_log
152 "$xtxqtcmd" "$unique_nodes" "$cmdStr" >>

$xtxqtcmd_log 2>&1
153 ok=$(grep "Reply (complete) from .* exit code: 0"

$xtxqtcmd_log | wc -l)
154 expected=$(cat "$unique_nodes" | wc -l)
155 fi
156 ret=0
157 if [["$ok" -eq "$expected"]]; then
158 echo "udiRoot Start successful"
159 else
160 echo "udiRoot Start FAILURE, $ok of $expected

responses"
161 ret=1
162 fi
163 exit $ret

Listing 31. udiRoot-prologue

By default on Blue Waters, when aprun is invoked in a
job script, applications are placed to start in an environment
where /dsl is set as the relative root. /dsl is set as
the default root in the CLE compute node root runtime
environment (CNRTE) configuration file (roots.conf).
Alternative root can be defined in roots.conf file us-
ing <ROOT_NAME=/absolute/path/to/root> for-
mat. If CRAY_ROOTFS environment variable is defined in a
job script and matches one of the available <ROOT_NAME>
in roots.conf file, aprun will launch applications
on the compute node with root set at the path defined
by the corresponding <ROOT_NAME> in roots.conf
file. Since Shifter was installed at /dsl root on Blue
Waters, the udiMount=/var/udiMount parameter de-
fined in udiRoot.conf file instructs setupRoot
to mount Docker image at /dsl/var/udiMount
on the compute node. Hence, an alternative root
SHIFTER=/dsl/var/udiMount was added to the
roots.conf file.

1 default/:/ # grep SHIFTER /etc/opt/cray/cnrte/roots.
conf

2 SHIFTER=/dsl/var/udiMount

Listing 32. /etc/opt/cray/cnrte/roots.conf

With this configuration in place, and
CRAY_ROOTFS=SHIFTER environment variable
defined in job script, ALPS tasks would be executed
at /dsl/var/udiMount root on the compute node
where the Docker image is mounted (see listing 33). This
condition is not required for jobs that use the shifter
CLI.

1 export CRAY_ROOTFS=SHIFTER
2 aprun -b -- command

Listing 33. Launching ALPS task in Shifter container environment, when
passing gres=shifter16 and -v UDI=<image:tag> to qsub.

C. Epilogue

At the end of a Shifter job, epilogue scripts are executed
from the mom node to clean up the container environment
on the compute nodes (see listing 34). unsetupRoot
is triggered by the udiRoot-epilgoue script to un-
mount the container image from compute nodes (if -v
UDI=<image:tag> argument is passed to qsub). The
epilogue scripts shutdown the Munge service on the compute
nodes.

1 mom:/var/spool/torque/mom_priv # cat epilogue
2 ...
3 if [$(/opt/torque/default/bin/qstat -f ${BATCH_JOB_ID

} | grep Resource_List.gres | grep -c ’\
bshifter16\b’) -gt 0];then

4 shifter_epilogue=/opt/cray/shifter/16.08.3/wlm/
torque/cray-shifter-epilogue

5 if [[-x $shifter_epilogue]]; then
6 $shifter_epilogue ${BATCH_JOB_ID} $2 $3 ${

RESV_ID} ${NIDS}
7 fi
8 fi
9 ...

10
11 mom:/opt/cray/shifter/16.08.3/wlm/torque # cat cray-

shifter-epilogue
12 #!/bin/bash
13 SHIFTER_JOBID=$1
14 SHIFTER_USER=$2
15 SHIFTER_GROUP=$3
16 ROOT=/opt/cray/shifter/16.08.3
17 EPILOGUE=$ROOT/wlm/udiRoot-epilogue
18 QGETENV=$ROOT/wlm/torque/qgetenv
19 SHIFTER_RESVID=$4
20 SHIFTER_NIDS=$5
21 if [[! -x $EPILOGUE]]; then
22 exit 0
23 fi
24 SHIFTER_ENV_VAR=$($QGETENV $SHIFTER_JOBID UDI)
25 if [[-n $SHIFTER_ENV_VAR]]; then
26 $EPILOGUE $SHIFTER_JOBID $SHIFTER_USER

$SHIFTER_GROUP
27 RET=$?
28 else
29 RET=0
30 fi
31 PCMDCMD="/opt/cray/nodehealth/default/bin/pcmd"
32 $PCMDCMD -r -q -n ${SHIFTER_NIDS} "/dsl/usr/bin/chroot

/dsl sh /opt/cray/shifter/16.08.3/wlm/torque/
cray-shifter-extra-service stop"

33 rm /scratch/system/shifter/jobs/passwd.${SHIFTER_JOBID
} /scratch/system/shifter/jobs/group.${
SHIFTER_JOBID}

34 if [[-n $SHIFTER_ENV_VAR]]; then
35 ssh_proc_cleanup=/opt/cray/shifter/16.08.3/wlm/

torque/cray-shifter-ssh-cleanup
36 $PCMDCMD -r -n ${SHIFTER_NIDS} "/dsl/usr/bin/chroot

/dsl sh $ssh_proc_cleanup $SHIFTER_USER
$SHIFTER_JOBID"

37 fi
38 exit $RET

Listing 34. Epilogue scripts to clean up container environment on compute
nodes.

1 #!/bin/bash
2 jobId="$1"
3 user="$2"
4 group="$3"
5 shift 3
6 nodeContext=""
7 udiRootPath=/opt/cray/shifter/16.08.3
8 mode="alps"
9 while getopts ":m:" opt; do

10 case "${opt}" in
11 m)
12 mode="${OPTARG}"
13 if [[-n "$mode" && "$mode" == "local"]];

then
14 nodeContext="";
15 fi
16 ;;
17 \?)
18 echo "Invalid option: -${OPTARG}" >&2
19 exit 1
20 ;;
21 :)
22 echo "Option -${OPTARG} requires an argument"

>&2
23 exit 1
24 ;;
25 esac
26 done
27 die() {

28 local msg
29 msg="$1"
30 echo "$msg" 1>&2
31 exit 1
32 }
33 [[-n "$user"]] || die "user is undefined"
34 [[-n "$group"]] || die "group is undefined"
35 [[-n "$jobId"]] || die "Job ID is undefined"
36 datadir="/var/run/shifter/jobs/$user/$jobId"
37 [[-d "$datadir"]] || exit 0
38 job_nodelist="$datadir/nodelist"
39 [[-e "$job_nodelist"]] || exit 0
40 xtxqtcmd_log="$datadir/log_end"
41 xtxqtcmd="/opt/cray/nodehealth/default/bin/xtxqtcmd"
42 [[-x "$xtxqtcmd"]] || die "Could not find xtxqtcmd.

Exiting"
43 unique_nodes="$datadir/unique_nodes"
44 [[-e "$unique_nodes"]] || exit 0
45 cmdStr="/dsl/usr/bin/chroot /dsl ${udiRootPath}/sbin/

unsetupRoot"
46 ok=0
47 expected=0
48 if [["$mode" == "local"]]; then
49 echo $cmdStr >> $xtxqtcmd_log
50 /bin/sh -c "$cmdStr"
51 [[$? -eq 0]] && ok=1
52 expected=1
53 else
54 echo "$xtxqtcmd $unique_nodes $cmdStr" >>

$xtxqtcmd_log
55 "$xtxqtcmd" "$unique_nodes" "$cmdStr" >>

$xtxqtcmd_log 2>&1
56 ok=$(grep "Reply (complete) from .* exit code: 0"

$xtxqtcmd_log | wc -l)
57 expected=$(cat "$unique_nodes" | wc -l)
58 fi
59 ret=0
60 if [["$ok" -eq "$expected"]]; then
61 echo "udiRoot Cleanup successful"
62 else
63 echo "udiRoot Cleanup FAILURE, $ok of $expected

responses"
64 ret=1
65 fi
66 if [[$ret -eq 0]]; then
67 rm -r "$datadir"
68 fi
69 exit $ret

Listing 35. udiRoot-epilogue

V. SCALING PERFORMANCE

During initial testing on Blue Waters, a Shifter job could
only successfully launch tasks on about 2000 nodes from
a single aprun when using shifter CLI and about 700
nodes when using setupRoot to setup containers on com-
pute nodes before starting the job script. In the shifter
CLI test case, many failed tasks were seen throwing the
error message: “FAILED to lookup docker image
<image:tag>”. Occasionally, the tasks were also seen
throwing a different error message: “Failed to lookup
username or attempted to run as root.”. In
setupRoot test case, many failed tasks were seen
throwing the error messages: “FAILED to get groups
correctly” and “FAILED to lookup auxiliary
gids. Exiting”.

By analyzing the source code, we were able to identify the
username and groups related error messages occurred due
to getgrouplist() and getgid() calls not returning

valid results. These two functions are invoked during the
Shifter setup process to query for group IDs belonging to
the execution user. Blue Waters uses LDAP as the directory
service. When large number of concurrent query requests are
sent from the the compute nodes to the LDAP server, the
LDAP server reaches its maximum number of connections
threshold and failed to respond to all query requests, thus
leading to failure in Shifter setup.

To workaround this issue, we included a trigger into the
cray-shifter-extra-service script (see listing 28)
to start the Name Service Cache Daemon (nscd) service
on each compute node. nscd service caches the user and
group directory from LDAP. Using nscd service, when
shifter CLI or setupRoot is invoked, local nscd
service returns response to the getgrouplist() and
getgid() queries, instead of sending the query to the busy
LDAP server. We wrote the cray-shifter-prologue
script to execute a “id $user” command on the mom
node, then copy the local /var/run/nscd/passwd
and /var/run/nscd/group files from the mom
node into a shared directory accessible by all com-
pute nodes (See line 25 to 27 of listing 28). These
files are labeled with the corresponding job ID. When
cray-shifter-extra-service is invoked later, the
compute nodes copy the shared nscd passwd and group
files (with reference to the job ID) into their respective
local /var/run/nscd directory before starting the nscd
service (see line 50 to 53 of listing 28). These steps ensure
the right user and groups information required by the job are
cached by nscd on all allocated compute nodes. Using this
setup, job prologue script was able to initialize setupRoot
on 1024 compute nodes without failure. As the time required
to setup Shifter containers through prologue increases with
the number of compute nodes, a prologue timeout of 300
seconds set in the resource manager limited the scaling of
Shifter job up to 2048 compute nodes without exceeding the
prologue timeout. On the other hand, when using shifter
CLI to launch applications, this nscd setup provides a
consistent scaling to 4000 nodes consistently. Without this
nscd setup, some nodes occasionally failed to execute the
shifter process successfully due to LDAP not returning
valid response. At the end of a Shifter job, we wrote epilogue
scripts to remove the local cache files in /var/run/nscd
directory of all allocated compute nodes and the shared
nscd files.

For the other issue where Shifter fails to look up
docker image, we found the scalability was limited by
a single instance of imagegwapi.py (listening to port
5000) launched from the shifter-imagegw script. To
improve the scalability, we duplicated the Python script
into imagegwapi1.py and imagegwapi2.py, modi-
fied them to listen to different ports (5001 and 5002 respec-
tively) and added them into the shifter-imagegw script
(see listing 22). With three instances of imagegwapi.py

running, we successfully launched shifter CLI tasks on
4096 compute nodes from a single aprun call.

1 root@shifter:/opt/cray/shifter/16.08.3/lib64/shifter>
grep "LISTEN_PORT =" imagegwapi*.py

2 imagegwapi.py:LISTEN_PORT = 5000
3 imagegwapi1.py:LISTEN_PORT = 5001
4 imagegwapi2.py:LISTEN_PORT = 5002

Listing 36. imagegwapi*.py scripts listening to different ports.

In addition, when shifter CLI loads the required
loop device kernel module (loop.ko), the module pa-
rameter max_loop is set to 0 by default. Online docu-
mentation of Shifter recommends to set max_loop=128.
This avoids race condition with loading the kernel module
when multiple instances of Shifter processes are launched
concurrently on the same compute node (e.g. execut-
ing “aprun -n 32 -N 32 -b shifter”). We veri-
fied that the squashfs kernel module (squashfs.ko) is
required to be preloaded together with the loop device
kernel module in order for this type of job launch to be
successful. We included these additional prologue routines
into the cray-shifter-extra-service script (see
line 55 and 56 of listing 28.

VI. GPU SUPPORT ON SHIFTER

The Shifter source distribution branch which we
pulled from NERSC’s github repository came with
GPU support. To use this feature, we configured
siteResources=/opt/shifter/site-resources
parameter in udiRoot.conf file. A script
activate_gpu_support.sh is provided in the
Shifter distribution to setup the GPU driver in the container.
We modified PATH in the script to point to the location
on the compute host where nVidia driver is installed (see
listing 37).

1 default/:/ # grep "export PATH" /opt/cray/shifter
/16.08.3/bin/activate_gpu_support.sh

2 export PATH=/opt/cray/nvidia/default/bin:/usr/local/
bin:/usr/bin:/bin:/sbin

Listing 37. Setting path to nVidia driver in
activate_gpu_support.sh

This activate_gpu_support.sh script
currently only works with shifter CLI. The
CUDA_VISIBLE_DEVICES=0 environment variable
is required in the job script to execute GPU application
through shifter CLI (see listing 38). This setting
configures Shifter runtime to bind the GPU driver
from the compute host (found from PATH set
in activate_gpu_support.sh script) to the
/opt/shifter/site-resources directory in
the container.

1 export CUDA_VISIBLE_DEVICES=0
2 aprun -b -- shifter --image=<image:tag> nvidia-smi

Listing 38. Using shifter CLI to execute GPU application.

VII. OTHER OPERATIONAL ISSUES

A. Encoding and Decoding Issue

During initial tests, Shifter encountered an encoding issue
when pulling and converting Docker image that contains files
with special characters. Shifter documentation provided a
workaround to this issue by setting default encoding to use
utf8 in sitecustomize.py file (see listing 39).

1 default/:/opt/cray/shifter/16.08.3/lib64/python2.6/
site-packages # cat sitecustomize.py

2 import sys
3 reload(sys)
4 sys.setdefaultencoding(’utf8’)

Listing 39. Changing default encoding to utf8.

However, this change introduced another decoding issue.
To resolve this, the dockerv2.py file was edited to use
utf8 decoding.

1 default/:/opt/cray/shifter/16.08.3/lib64/python26/site
-packages/shifter_imagegw # diff dockerv2.py.org
dockerv2.py -Nu

2 --- dockerv2.py.org 2017-08-29 09:08:08.000000000
-0500

3 +++ dockerv2.py 2017-08-29 11:33:28.000000000 -0500
4 @@ -625,6 +625,9 @@
5 tfp = tar_file_refs[layer_idx]
6 members = layer_paths[layer_idx]
7 +
8 + # Change encoding to ’utf8’ to take care of

unicode character in file paths.
9 + base_path = base_path.encode(’utf8’)

10 tfp.extractall(path=base_path, members=
members)

11 # We need to make sure everything is
writeable by the user so

Listing 40. Changing decoding to utf8.

B. Untracked process in SSH session

When using prologue to setup Docker image on compute
nodes, the setupRoot process starts an sshd daemon in
the container allowing the user to remote login via ssh
from the mom node into the compute node’s container
environment through port 1204.

1 user@mom:˜> cat .shifter/config
2 Host *
3 Port 1204
4 IdentityFile ˜/.shifter/id_rsa
5 StrictHostKeyChecking no
6 UserKnownHostsFile /dev/null
7 LogLevel error
8
9 user@mom:˜> ssh -F .shifter/config nidxxxxx

10 -bash-4.2$ hostname

Listing 41. Direct remote login via ssh from mom node to compute
node’s container environment.

We noticed that any process started on the compute node
through this direct login is not tracked by ALPS, thus
any background or daemon process would be left running
on the compute node even after the job has ended. A
shifter-cray-ssh-cleanup script was added to the

epilogue to ensure a thorough cleanup of the stray processes
(if any) on the compute nodes. This script is called from the
cray-shifter-epilogue script (See listing 34).

1 default/:/opt/cray/shifter/16.08.3/wlm/torque # cat
cray-shifter-ssh-cleanup

2 #!/bin/bash
3 USER=$1
4 JOBID=$2
5 SHIFTERLOG=/scratch/system/shifter/shifter16.log
6 echo Checking for stray process\(es\) launched by

$USER through direct SSH to Shifter container.
7 ps -u $USER
8 if [$? == 0]
9 then

10 echo Found stray process\(es\) by $USER, killing
these process\(es\)...

11 pkill -u $USER
12 echo Stray process cleanup completed.
13 echo ‘date‘ Found stray process\(es\) on ‘hostname‘

allocated to job $JOBID left over by user
$USER through direct SSH to Shifter container.
Cleanup completed. >> $SHIFTERLOG

14 fi

Listing 42. shifter-cray-ssh-cleanup

C. User and Group Identity in Container

By design, Shifter copies files from the host’s
/etc/shifter/shifter_etc_files directory into
the container’s /etc directory so that certain site con-
figuration can be preserved in the container environment.
Some applications like Apache Spark [21] check for valid
identity of the execution user. Thus updated passwd and
group files are required to be parsed from the host’s
/etc/shifter/shifter_etc_files directory into
the container. A cron script was configured on the Sys-
tem Management Workstation (SMW) to update these files
(stored on the boot node) in a weekly basis.

1 SMW:˜ # crontab -l|tail -2
2 # Weekly update of /etc/shifter/shifter_etc_files/<

passwd/group> files.
3 @weekly ssh root@boot "sh /opt/localadm/shifter-update

-passwd-group.sh"
4
5 boot:˜ # cat /opt/localadm/shifter-update-passwd-group

.sh
6 #!/bin/bash
7 if [-f /rr/current/.shared/.session-lock]
8 then
9 ps -p ‘cat /rr/current/.shared/.session-lock‘ >/dev

/null
10 if [$? == 0]
11 then
12 echo xtopview is currently locked, cannot

perform update of Shifter passwd/group
files.

13 exit 1
14 fi
15 fi
16 xtopview -r /rr/current -x /etc/opt/cray/sdb/

node_classes -e "getent passwd > /etc/shifter/
shifter_etc_files/passwd" > /dev/null 2>&1

17 xtopview -r /rr/current -x /etc/opt/cray/sdb/
node_classes -e "getent group > /etc/shifter/
shifter_etc_files/group" > /dev/null 2>&1

Listing 43. cron script to update passwd and group files in
/etc/shifter/shifter_etc_files directory.

VIII. CONCLUSION

After five years into production, we continue to implement
advanced software tools and capabilities on Blue Waters.
We find that our efforts in getting advanced software stacks
like Shifter V16 to work on Blue Waters is a valuable
experience worth sharing with the community. Though we
currently have a working model of Shifter V16, we have
yet to explore the high availability features, such as using
multiple MongoDB servers for database redundancy and
using multiple service nodes to host the Shifter image man-
ager gateway service for better load balancing (comparing
to launching multiple imagegwapi.py instances on the
same service node). We will continue to work on this area
to improve the robustness of Shifter software infrastructure.
With increased demand of portability and reproducibility in
scientific computing, containerization technology is gaining
traction in software development. The availability of Shifter
V16 on Blue Waters will now provide an opportunity for
researchers to develop, test, and use their container-based
applications on Blue Waters, paving an early preparation
path for portability to the next generation of HPC systems.

ACKNOWLEDGMENT

This work is part of the Blue Waters sustained-petascale
computing project, which is supported by the US Na-
tional Science Foundation (awards OCI-0725070 and ACI-
1238993) and the state of Illinois. Blue Waters is a joint
effort of the University of Illinois at Urbana-Champaign and
its National Center for Supercomputing Applications.

We thank Mr. Mark Dalton of Cray Inc. for his consul-
tation in completing this work and the Shifter open source
community for the sharing of valuable online resources.

REFERENCES

[1] D. M. Jacobsen and R. S. Canon, “Contain This, Unleashing
Docker for HPC,” in CUG2015 Proceedings, 2015.

[2] R. S. Canon and D. Jacobsen, “Shifter: Containers for HPC,”
in CUG2016 Proceedings, 2016.

[3] K. Kincade. (2015) NERSCs Shifter Makes
Container-based HPC a Breeze. [Online]. Avail-
able: https://www.hpcwire.com/2015/08/07/nerscs-shifter-
makes-container-based-hpc-a-breeze/

[4] Shifter Configuration Guide 1.0, Cray Inc., 901 Fifth
Avenue, Suite 1000, Seattle, 2015. [Online]. Available:
http://docs.cray.com/pdf/shifter configuration guide.pdf

[5] XC Series Shifter Configuration Guide (CLE
6.0.UP06) S-2572, Cray Inc., 901 Fifth Avenue,
Suite 1000, Seattle, 2016. [Online]. Available:
http://docs.cray.com/PDF/XC Series Shifter Configuration
Guide CLE60UP06 S-2572.pdf

[6] SHIFTER. [Online]. Available: https://github.com/NERSC

[7] J. Muggli, B. Bode, T. Hoefler, W. Kramer, and C. L.
Mendes, “Blue Waters Testing Environment,” in CUG2012
Proceedings, 2012.

[8] openSUSE download server. [Online]. Available:
http://download.opensuse.org

[9] MongoDB for GIANT Ideas. [Online]. Available:
https://www.mongodb.com

[10] Redis. [Online]. Available: https://www.redis.io

[11] Python Programming Language. [Online]. Available:
https://www.python.org

[12] Celery: Distributed Task Queue. [Online]. Available:
http://www.celeryproject.org

[13] Flask (A Python Microframework). [Online]. Available:
http://flask.pocoo.org

[14] PyMongo - MongoDB API. [Online]. Available:
https://api.mongodb.com/python/current/

[15] Python client for Redis key-value store. [Online]. Available:
https://pypi.python.org/pypi/redis

[16] Gunicorn - Python WSGI HTTP Server for UNIX. [Online].
Available: http://www.gunicorn.org

[17] The PyPA recommended tool for installing Python packages.
[Online]. Available: https://pypi.python.org/pypi/pip

[18] PyPI - the Python Package Index. [Online]. Available:
https://pypi.python.org/pypi

[19] Virtualenv. [Online]. Available: https://virtualenv.pypa.io

[20] MUNGE Uid ’N’ Gid Emporium. [Online]. Available:
https://dun.github.io/munge/

[21] Apache Spark - Unified Analytics Engine for Big Data.
[Online]. Available: https://spark.apache.org

