
Charlene Yang, Brian Friesen, Thorsten Kurth, Brandon Cook
NERSC at LBNL
Samuel Williams

CRD at LBNL

Toward Automated
Application Profiling

on Cray Systems

I have a dream.. M.L.K.

Collect performance data:
• low overhead: little to no overhead to codes’ native runtime
• easy to deploy: no instrumentation, no extra kernels/modules, no code modification
• as much useful information as possible
• accurate information
• on mass users: run at background

HPC users: optimize their codes, prioritize development efforts

HPC facilities: better understand their user base, guide future procurements

Automated, passive, mass performance data collection!

I have a plan

• 6 tools: CrayPat (perftools-lite), LIKWID from Regional Computing Center Erlangen, IPM from
Lawrence Berkeley National Laboratory, Intel VTune Amplifier, Intel SDE Emulator, and perf
from the Linux Kernel

• 3 applications: HPGMG, Nyx, and Tiramisu

HPGMG Nyx Tiramisu
Scale Kernel Full Application Full Application

Lines of Code 20K 2M 3M
Language C C/C++, Fortran Python, C/C++
Parallelism MPI, OMP, CUDA MPI, OMP Python, MKL

Domain HPC HPC Deep Learning
PDE Solvers PDE/ODE Solvers TensorFlow

Geometric Multigrid Mesh Refinement Image Processing

I have a plan

• 5 metrics:
– Runtime
– GFLOP’s
– Memory bandwidth (DRAM/LLC/L2/L1)
– Memory high watermark
– Vectorization efficiency

• 4 qualities:
– Usability (instrumentation/recompilation/etc)
– Overhead
– Actionability (amount of actionable information)
– Accuracy (accuracy of information)

2.7TFLOP/s

At
ta

in
ab

le
 F

lo
p/

s

Arithmetic Intensity

171.96GFLOP/s

1.01 1.78 2.70 66.39

Execute our plan

• Run on Cori-KNL at NERSC, LBNL
• Compiled with Cray wrappers for Intel 18.0.1.163
• Linked dynamically *

• HPGMG and Nyx: 8 MPI ranks and 8 OpenMP threads per rank
• Tiramisu: 2 Python processes and 33 threads per process

• Fixed CPU frequency 1.401 GHz to avoid timing variation caused by clock difference

Make sure compile time/runtime environment is the same

*except for Nyx when it’s profiled with IPM

Results
3 dimensions to our results: metrics (5), applications (3) and tools (6)

How to group these data-points?
• One metric per figure
• One color per application: HPGMG, Nyx, Tiramisu
• One marker per tool: ✳Baseline, + CrayPat, ○ LIKWID, ◇ IPM, ◁ VTune, ▷ SDE, △ Perf

We would like to compare
• different tools, same application, same metric
• same tool, different applications, same metric
• same tool, same application, different metrics

Missing data-points: not available from tools, analytically intractable (e.g. baseline)

Metric 1: Runtime
Low overhead: CrayPat, LIKWID, IPM and Perf
High overhead: SDE and VTune

Tiramisu is not benchmarked with CrayPat/IPM

H: HPGMG; N: Nyx; T: Tiramisu
O: Overall Runtime; P: Per Solve Runtime

CrayPat LIKWID IPM VTune SDE Perf
H-O 1.093 1.091 1.043 2.057 9.56 1.001
H-P 1.023 1.011 1.014 1.306 9.84 1.054
N-O 1.004 1.109 0.975 1.403 7.499 1.043
N-P 1.012 1.001 0.915 1.016 4.464 1.015
T-O - 2.117 - 1.135 22.281 1.078
T-P - 2 - 1.012 25.683 1.027

Metric 2: GFLOP’s and GFLOP/s

• Count vs Rate

• LIKWID and Perf
• SDE

• KNL doesn’t have a FLOP’s counter, but...
– UOPS_RETIRED.PACKED_SIMD
– UOPS_RETIRED.SCALAR_SIMD

• Tools work under different mechanisms

• HPGMG: consistent results
• Nyx/Tiramisu: different Vector GFLOP’s

Metric 3: Memory Bandwidth

• data movement -> average bandwidth
• instantaneous bandwidth -> max bandwidth

• 4 levels: DDR, LLC, L2, and L1

• CrayPat and VTune: DDR/HBM, avg./max
• LIKWID: all 4 levels, no max
• SDE: L1, avg. skewed by runtime overhead
• Perf: hexadecimal code; DDR, avg.

• Accuracy?

Metric 3: Memory Bandwidth

HPGMG:
• Consistent results on DDR and HBM level

from CrayPat, LIKWID and VTune
(both data movement and average bandwidth)

• Expected tendency for L2 and L1 data movement
from LIKWID and SDE

• Reasonable max bandwidth on DDR and HBM
from VTune

Nyx/Tiramisu:
• CrayPat < LIKWID/VTune < Perf
• SDE unable to introspect precompiled binaries

Metric 4: Memory High Watermark

CrayPat
• uses /proc/self/numa_maps for reporting
• captured near the end of the program
IPM
• uses /proc/self/status for reporting

– VmHWM: Peak resident set size ("high water mark").
• more accurate: 13.52GB vs. 12.3GB (from Nyx’s own memory tracking)

CrayPat LIKWID IPM VTune SDE Perf

HPGMG 0.255 - 11.93 - - -

Nyx 2.76 - 13.52 - - -

Tiramisu - - - - - -

Metric 5: Vectorization Efficiency

• Ratio:
packed arithmetic floating-point instructions : total number of arithmetic floating-point instructions

• HPGMG well vectorized <-> high vectorization efficiency reported by tools
• Nyx not well optimized <-> very low vectorization efficiency

LIKWID and Perf possibly over-reporting due to inclusion of non-arithmetic vector micro-ops
• Tiramisu utilizes MKL-DNN and cuDNN (highly optimized) <-> near-1 vectorization efficiency

reported by all tools

CrayPat LIKWID IPM VTune SDE Perf

HPGMG - 0.945 - - 0.949 0.949

Nyx - 0.309 - - 0.088 0.311

Tiramisu - 0.993 - - 1 0.993

Results Analysis
Usability Overhead Actionability (In-)Accuracy

CrayPat • Instrumentation required
• pat_build

• Negligile for Sampling
• Variabile for Tracing

• BW, Hi mem; no FLOP, vec.
eff.; but hotspots, load
balance, MPI comm., IO

• text and graphical reports

• Max BW captured at end of
execution; inaccurate

LIKWID
• Elevated user access
• No instrumentation except

with Marker API

• Low; mainly at finalization
• Number of ranks/threads

can increase overhead

• FLOP, BW, vec. eff.; no Hi
mem; access HW counters

• Command line
• Vector FLOP’s include non-

arithmetic vector uops

IPM
• Prepend to native run

command
• No instrumentation

• Low
• Limited information; but MPI

comm., etc
• Command line

• Accurate Hi mem.

VTune
• Extra kernel modules
• Privileged user access
• -g and dynamic linking

• High
• Depends on analysis type

• BW, Hi mem; no FLOP, vec.
eff.; but hotspots, load
balance, concurrency,
locks/waits

• GUI

• Accurate for supported
metrics

SDE • No instrumentation
• Very high
• Startup, during execution

and at finalization

• Mainly instruction level
code characteristics

• Unable to tap into pre-
compiled binaries/libraries

• Accurate FLOP’s

Perf
• No instrumentation
• Lack pre-defined

performance groups
• Hex codes for HW counters

• Low
• Can access HW counters

but lack provision of
performance groups

• Vector FLOP’s include non-
arithmetic vector uops

Strengths Weaknesses

Conclusion

Suitability for performance data collection by HPC users? HPC facilities?

SDE:
• incurs too high an overhead;
• provides limited actionable information;

✗ ✗

IPM:
• limited information available ✗ ✗

CrayPat and VTune:
• require certain work to gather a good amount of information
• relatively low overhead and high accuracy

✓ ✗

LIKWID and Perf:
• minimal work required to collect data
• produce a good amount of information with low overhead

✗ ✓

Thank You

