Supporting failure analysis with discoverable, annotated log datasets

Steve Leak (NERSC, presenting) Annette Greiner (NERSC) Jim Brandt (SNL) Ann Gentile (SNL)

"Why was my job 30% slower today than usual?"

- Network congestion caused by whatever else happened to run at that time?
- How do we find out?
 - Browse the logs?
 - Are we collecting HSN counters?

Why is this hard?

• Volume

- Access
 - It's on SMW
 - It's in someone else's \$HOME

- Variety
 - Formats, storage
- Expertise
 - What do all those messages actually mean?

Spoiler alert

- "We can solve any problem by introducing an extra level of indirection"
- Machine-readable metadata
 - Decouple publication and discovery from storage and access
 - Deal with a tractable volume of data before diving deeper
 - Solve the solvable now, and let local solutions address local constraints

What are the requirements?

- Volume
- Variety
- Access
- Expertise

What are the requirements?

- Format-agnostic, storage-agnostic
 - Work with what we have
- No dependence on a priori knowledge of data
 - "Ann is collecting that" is fine .. If you know Ann, and what she is collecting (and if she's available today)
- Decentralized
 - If you have everything in one place great! (But you probably don't)

What are the requirements?

- Low effort, low risk to publish data
 - "select something non-sensitive to publish" vs. "redact all the sensitive bits"
- Make contributing expertise easy
- Deal in tractable volumes
 - Don't download the internet
- Understand connected/related components
 - The fault might start somewhere else

A metadata solution

- Format-agnostic, storage-agnostic
- No dependence on a priori knowledge of data
- Decentralized
- Low effort, low risk to publish data
- Make contributing expertise easy
- Deal in tractable volumes
- Understand connected/related components

With metadata we can:

- Decouple publication and discovery from storage and access
- Deal with a tractable volume of data before diving deeper
- Link different data together
- Solve the solvable now, and let local solutions address local constraints

A metadata solution

 RDF vocabulary for describing log data collections and finding relevant logs

- Machine readable, searchable, decentralized, global graph

• Schema for annotating data within logs and exploring a reduced set of relevant log entries

Linked Data and RDF

Sandia National

Linked Data and RDF

- Triples: subject, predicate, object
 - CUG2018 is a Conference
 - Conference has Research Presentations
 - Stockholm is hosting CUG2018
- We can infer that this talk is happening, here, now

Linked Data and RDF

- Everything^{*} is a URI
- Convention:

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
rdfs:type

• Means:

<http://www.w3.org/2000/01/rdf-schema#type>

@prefix nersc: <http://nersc.gov/project/hmdr/nersc#> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
nersc:nersc rdfs:type foaf:Organization .

* Almost everything (some things are literal strings, etc)

Querying a graph (SPARQL)

SELECT ?name ?interest
WHERE {

?type rdfs:subClassOf* foaf:Agent

- ?uri rdfs:type ?type .
- ?uri foaf:name ?name .

?uri foaf:interest ?interest .

• Returns "Steve", "RDF"

RDF Vocabulary for log data

Global graph, Catalogs form hubs

What does this get us?

- Format-agnostic, storage-agnostic
- No dependence on a priori knowledge of data
- Decentralized
- Low effort, low risk to publish data
- Make contributing expertise easy
- Deal in tractable volumes
- Understand connected/related components

With metadata we can:

- Decouple publication and discovery from storage and access
- Deal with a tractable volume of data before diving deeper
- Link different data together
- Solve the solvable now, and let local solutions address local constraints

A metadata solution

• RDF vocabulary

Discovery <u>of</u> data

- Schema for annotating data within logs and exploring a reduced set of relevant log entries
 - Discovery <u>in</u> data

• That's a lot to search through!

Annotations

- Human-provided commentary
 - "I swapped a DIMM in node nid00123"
 - "These messages are due to a fault injection experiment"
- Machine-generated annotations
 - Eg subset of entries matching significant Baler patterns, with timestamps, components called out

An annotation schema

What does this get us?

- Format-agnostic, storage-agnostic
- No dependence on a priori knowledge of data
- Decentralized
- Low effort, low risk to publish data
- Make contributing expertise easy
- Deal in tractable volumes
- Understand connected/related components

With metadata we can:

- Decouple publication and discovery from storage and access
- Deal with a tractable volume of data before diving deeper
- Link different data together
- Solve the solvable now, and let local solutions address local constraints

"Why was my job 30% slower today than usual?"

- Network congestion caused by whatever else happened to run at that time?
- How do we find out?
 - Browse the logs? Search a set of annotations

Testing it out

- Some prototype tools:
 - Construct a graph from RDF files on web (or locally)
 - Scan a directory of logfiles and generate RDF to describe them
 - Asks some questions, basic inspection of file characteristics, infers most metadata from the answers and graph
 - Populate an annotation database from a subset of log entries identified via Baler, and some admin notes
 - Baler: finds patterns in log files, weights by presence of listed keywords, filter by highest-weighted patterns
 - Search the annotation database for things of interest

Are applications interfering with each other via HSN congestion?

elds (e.g., description, LDcategory) contain the word 'congest'

- ... none at all!
- What else happened? Search annotations for the half-hour leading up to this one

Are applications interfering with each other via HSN congestion?

- The last half hour:
 - 300 annotated events, 7 distinct
 - 192 were:

c0-0c1s8a0n0 Correctable memory error. This may result in degraded performance.

– 47 were:

c0-0c1s8a0n0 Component failed

• Lets look at that component more closely...

Are applications interfering with each other via HSN congestion?

- c0-0c1s8a0n0 "Component failed" and "Correctable memory error"
- Issues started a few weeks earlier and stopped a few days later (.. Why did it *stop*?)
 - Start coincided with deliberately induced faults for system testing difficult to ascertain
 - Why did it stop? Search a bit wider, over a couple of levels of physical architecture
 - Found at a couple of levels up that the blade was reseated on that day. Constraining the search to around the time the errors stopped, can see entries documenting a warm swap, after which the errors stopped

What did we learn?

- Our intuition was wrong we expected to find a communication-heavy application but instead found a component issue
- Searching a database of annotated log entries reduced the search space from 150000+ lines to a few hundred

Where are we now?

- RDF vocabulary defined
- Annotation schema defined
- Prototype tools
 - (further development in progress)
- Finding: this can make exploration more tractable, and lead to interesting insights

Making log data discoverable and tractable – machine readable metadata

- Format-agnostic, storage-agnostic
- No dependence on a priori knowledge of data
- Decentralized
- Low effort, low risk to publish data
- Make contributing expertise easy
- Deal in tractable volumes
- Understand connected/related components

With metadata we can:

- Decouple publication and discovery from storage and access
- Deal with a tractable volume of data before diving deeper
- Link different data together
- Solve the solvable now, and let local solutions address local constraints

