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Abstract—Arguably, one of the greatest successes of early
Cray supercomputers was the use of highly efficient vector-
based computation coupled to a balanced memory subsys-
tem. In addition, efficient scalar throughput helped establish
Seymour Cray’s designs as the benchmark by which other
systems were measured. Recent high-performance processor
designs have seen a resurgence in the use of vector-like
hardware units. Some in the industry have also argued that
use of accelerators such as GPUs will also lead to a greater
focus on code being written to be amenable to vector-based
computing. For the authors of this paper, a motivation to
focus on efficient vectorization is to improve performance of
the production ASC Trinity supercomputing platform which
comprises approximately 9,000 nodes of dual-socket Haswell
processors and 9,500 nodes of Intel Knights Landing sockets –
both of which gain much of their computation prowess from
the use of vector units in the floating point pipeline.

In this paper, we describe a study of several modern,
production engineering codes which are routinely used at
Sandia National Laboratories and other important NNSA
computing partner sites, evaluating the levels of utilization
for vector units and the performance benefits obtained from
vectorized computation. Our results show varying levels of
benefit – vectorization is not always faster. Additionally, we
show the ratio of vector to integer/logical instructions providing
some insight as to why even highly vectorized code does not
achieve high levels of performance improvement.
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I. INTRODUCTION

Vector processors, sometimes called, single instruction, mul-
tiple data (SIMD) processors, have a pedigree which dates
back to some of the earliest large-scale computer architec-
tures, including the CDC STAR-100 and the TI-ASC. For
many in the high-performance computing industry, however,
vector computing is synonymous with the development of
Seymour Cray’s early designs in the mid 1970s. For the
Department of Energy’s National Nuclear Security Admin-
istration (NNSA), the use of vector processing stretches back
to the deployment of the very original Cray-1. The advantage
of such technology is the low overhead of fetching and de-
coding an instruction for execution over multiple operands,
thereby increasing the efficiency of the computation.

During the late 1990s and early 2000s, vectorization be-
came a much less critical component of supercomputer per-
formance as the market shifted away from high-performance

systems that had been typified by vector-processors, to the
use of many more nodes filled with lower-cost commodity
sockets. The effect was to see vectorization become much
less important to computational throughput as the commod-
ity market was instead being driven by ever increasing clock
rates – a period where “the killer micros” all but dominated
the market. However, as the clock rate improvements of this
period began to slow, hardware designers in the commodity
space began to switch back to use vector-based processing,
albeit at very limited widths, to increase the performance of
multi-media applications such as video decoding and audio
processing. Over the last decade, this initial foray back to
vector processing has gained momentum and now, wider
vector units have re-emerged with much more sophisticated
features such as vector-lane masking, gather/scatter capabil-
ities and horizontal operations.

The NNSA’s most recent production computing platform
– the ASC Trinity supercomputer [1] – deployed as a
joint partnership between Los Alamos and Sandia National
Laboratories, has made the community return to focus on
vectorization in the form of its Haswell [2], [3] and Knights
Landing processor [4], [5] partitions. The Intel Haswell
sockets offer dual-vector processing units at 256-bit widths
but without the ability to mask individual vector lanes unless
using explicit logical operations. For the 9,500 nodes in the
Intel Knights Landing (KNL) partition of Trinity, vector-
ization is much more important. KNL offers dual vector-
processing units of 512-bits in width with significantly more
complex operations being possible. The very limited scalar
throughput of the KNL core, when compared to Haswell,
places an additional pressure on developers to make as much
use of the vector units as possible.

Our early experience with application bring up for KNL
showed a number of problems for the use of vector units.
During the period of commodity processor use (circa 1990s
- 2000s), when many of the NNSA’s codes which rewritten
to utilize MPI instead of vector-processors, the common
programming patterns required to enable automatic vector-
ization by compiler were often ignored. When combined
with the significant growth in code size and complexity
resulting from the availability of more powerful systems, this
period seems to have resulted in the shift of code to being



inherently challenging to vectorize efficiently. This repre-
sents a significant challenge for our latest supercomputing
platform.

In this paper, we present an analysis of several key
applications and algorithm domains that are of interest to the
NNSA/ASC HPC laboratories. We show a wide variation in
the use of vector capabilities for our codes, and, we reveal
some of the low-level behavior that explains why we are
unable to gain performance from these codes when they are
ported to the KNL platform. Although KNL may appear
to be an older processor (availability in 2015), it acts as a
sentinel for other systems which are in the future, including
the Intel Skylake Xeon processor which will offer similar
512-bit wide vectors, and, processors developed by Arm to
use its Scalable Vector Extension (SVE) instructions [6].
Vector computing is far from being an uninteresting, histor-
ical technology. In fact, the use of data-parallel execution is
gaining, driven by the need for much greater efficiency of
operations per unit of power. We therefore expect that the
use of vector-like capabilities will increase in the build up
to Exascale-class computing and that studies like the one
reported in this paper, will be necessary to ensure we able
to maximize the performance of future HPC platforms.

The remainder of this paper is laid out as follows:
Section II opens our paper with some of the motivations
that encouraged our study of vectorization in large-scale
applications. In Section III we describe our vectorization
analysis tools which are utilized to provide the data for
this study. Section IV discusses our low-level application
analysis. Finally, we conclude the paper in Section V.

II. MOTIVATION - APPLICATION BENCHMARK RUNS ON
KNIGHTS LANDING

During the early application bring up on the ASC Trinity
Knights Landing partition, benchmark runs had demon-
strated a mixture of applications which would perform
faster than the dual-socket Haswell nodes and then some
applications which were much slower. Since the significant
bulk of the compute performance of the KNL processors was
made available via the dual VPUs, a number of application
porting teams benchmarked runs of their codes with and
without vectorization enabled. For all runs reported in this
paper we use the Intel 17.0.4 compiler update. Platform tar-
geting is delivered via appropriate use of Cray-PE modules.
Vectorization is disabled through the explicit setting of the
-no-vec flag which instructions the compiler to continue
to perform optimization but to generate scalar compute
instructions. The purpose of these studies was to see if codes
were gaining significantly from vectorization by disabling
the generation of vector instructions. We have recreated an
example set of these runs for a 64-core (single node) run
of a range of ASC-relevant applications (shown in Table I).
We note that the difference between application execution
with and without vectorization enabled is small for all codes,

the largest gain is with the CTH hydrodynamics application
running in flat-mesh mode (24% improvement in runtime)
and the worst is a 14% application slow down (SPARC). We
also note that the improvement in application performance is
not correlated with either size or implementation language
– both small and large applications can benefit from vec-
torization, as well as those written in C, C++ and Fortran.
This correlates with our opinion that code complexity and
implementation quality are greater determinants of whether
vectorization is useful and motivates us to analyze the
execution behavior so that we can report the analysis to
application developers and hardware designers.

Given these results, which display a significant range in
execution behavior, we attempted to perform a more in-depth
analysis of instruction execution behavior.

III. VECTORIZATION ANALYSIS TOOLS

Our first attempt at performing vectorization analysis used
performance counters available on the Knights Landing
processor. However, KNL has an extremely limited support
for performance counters and it is all but impossible to suf-
ficiently differentiate floating-point vector instructions from
other instructions such as wide loads, stores and integer op-
erations that utilize the vector pipeline. Further, we intended
to study the enable/disablement of vector lanes using vector
masks, while a counter is available on KNL to perform this
operation, the results obtained from using it were not fully
consistent with our expected results from pathological test
cases. We concluded that the use of hardware-only results
was not sufficient for a study of this nature.

In order to address these shortcomings we developed an
Intel PIN-based [13] tool suite called APEX (APplication
Characterization for EXascale [14]. The tool performs a
custom instrumentation of each instruction in an appli-
cation, along with a custom identification of basic-block
structures (not using those supplied by PIN) as well as an
instrumentation of each vector instruction which uses mask
registers. The result is a tool which is able to analyze multi-
threaded, multi-rank (MPI) applications and perform ex-
tremely detailed analysis of compute and memory operations
within the binary. Overhead is limited through careful use
of atomic operations to increase counts rather than through
the generate of locks around critical structures.

For the remainder of this paper we utilize terminology
which is reported by our APEX tools:

• Operation - is defined to be a mathematical calculation,
for instance an additional, multiplication etc. We could
each operation performed on a piece of data separately.
In the case of compounded operations as performed
from the hardware perspective, for instance, a fused-
multiply add, we count two operations, the multiplica-
tion and then subsequent addition.

• Instruction - an instruction is a hardware artifact which
is decoded and then issued to perform one or more op-



Table I: Application Execution Times with and without Vectorization Enabled for Example 64-Core Intel Knights Landing
Benchmark runs, Lower Time is Better, Lower Ratio is Better.

Application Execution Time Ratio Domain Language Code Size
Vectorized Non-Vectorized (Source Lines)

CTH [7] Flat Mesh 2058.7 2696.8 0.76 Hydrodynamics (Struct.) Fortran 77/90 O(1M)
CTH [7] AMR Mesh 1019.3 946.2 1.08 Hydrodynamics (Struct.) Fortran 77/90 O(1M)
miniAMR [8] 582.4 613.0 0.95 Hydrodynamics (Struct.) C O(10K)
LULESH [9] 332.1 349.9 0.95 Hydrodynamics (Unstruct.) C/C++ O(10K)
PARTISn [10] 641.8 699.2 0.92 Transport Fortran 77/90 O(500K)
LAMMPS (LJ) [11] 395.4 392.0 1.01 Molecular Dynamics C,C++ O(100K)
SAGE 56.4 57.4 0.98 Hydrodynamics (Unstruct.) Fortran 77/90 O(100K)
SPARC CFD [12] 2394.9 2108.2 1.14 Computational Fluid Dynamics C/C++ O(2M)

erations over data. Instructions can be either vectorized,
when they may issue operations over multiple lanes of
data, or non-vectorized where they execute operations
over scalar values. In each case, we count only a
single instruction regardless of how many operations
are performed.

• Masked Operations - a mask is used by the vector
units on KNL to disable a specific vector lane from
having its operation from being performed. In this case,
we do not count the operation in our running total (since
no side effect is observable).

• Packed Instructions - we use the term “packed” for
the issue of an instruction which is both vectorized,
and, for which the instruction executes operations on
all vector lanes. Such instructions represent the most
efficient use of the decode/issue pipeline.

IV. APPLICATION ANALYSIS

A. Floating-Point Instruction Intensity

Table II: Percentage of Instructions Executed that Perform
64-bit Double Precision Compute Operations

Application Vectorized Non-Vectorized
CTH AMR Mesh 3.58 6.03
CTH Flat Mesh 11.46 22.96
MiniAMR 30.33 36.31
LAMMPS 40.80 40.74
LULESH 48.16 49.36
SAGE 10.71 14.17
SPARC 13.22 17.19

Table II shows the percentage of total application instruc-
tions which, when executed, perform a double-precision
floating-point operation. Smaller applications (MiniAMR,
LULESH and LAMMPS) all see significantly higher floating
point calculation intensity when compared with the larger
application portfolio. We see a perhaps unsurprising corre-
lation that applications which experience a performance gain
from the use of vectorization also see an increase in the per-
centage of instructions which perform compute operations
when vectorization is disabled. This reflects the continued
observation that even though floating-point operations may

not dominate executed instructions (as we see from our
results), they continue to be significant determinants of
execution time. The outlier in this analysis is the result from
the CTH AMR Mesh which sees an increase in percentage
of instructions executed when vectorization is disabled but
does not experience a performance gain from their use.

Observation: floating-point arithmetic instructions con-
tinue to be a minor, and in some cases very small, component
of application execution. This creates a concern for architec-
tures that are optimized for machine learning or Exascale-
class LINPACK runs, since they direct greater proportions of
the processor die to floating-point operations despite these
being a small component of execution.

B. Packed Vector Instruction Intensity

Table III: Percentage of Vector Instructions Executed that
Perform Packed Operations

Application Vectorized Non-Vectorized
CTH AMR Mesh 64.07 0.45
CTH Flat Mesh 77.03 0.22
MiniAMR 32.91 0.00
LAMMPS 0.00 0.00
LULESH 21.25 4.27
SAGE 50.92 0.00
SPARC 57.17 6.12

As stated, packed vector instructions are the most efficient
method of decoding and issuing operations, and, wherever
possible these are preferred for compute intensive routines.
Table III shows our analysis of application instruction
streams in this context. Note that for some applications,
the non-vectorized components are non-zero despite vec-
torization being disabled because platform libraries/runtimes
(such as libc) are able to perform limited dispatch of system
functions based on runtime hardware detection (for instance,
calls to memory copy operations).

CTH shows the greatest number of packed instructions
issued with up to 77% of its computation being performed
using over packed operations. Similarly, SAGE demonstrates
high levels of packed instructions. We attribute CTH and
SAGE to their use of Fortran which is more amenable to



vectorization even in the presence of complex application
flow. SPARC is the outlier amongst applications written in
C/C++ with up to 57% of its instructions using packed
operations. This is attributable to the use of manually
vectorized routines (using intrinsics) deep within the low-
level kernels of the Trilinos solver framework. In this setting,
its inner most compute kernels are optimized on a per-
ISA basis to yield high levels of performance. Despite this,
it does not show significant gains when vectorization is
enabled/disabled. LAMMPS shows no significant change in
packed operation counts (both are zero) when vectorization
is enabled which reflects the virtually insignificant change
in runtime when vectorization is enabled.

Observation: Fortran codes continue to show efficient
vector instruction sequences with greater proportions of the
vector instructions executed being performed over packed
operands.

C. Masked Instruction Intensity

Table IV: Percentage of Vector Instructions Executed that
Utilize Vector Masks

Application Vectorized Non-Vectorized
CTH AMR Mesh 6.00 3.76
CTH Flat Mesh 8.18 1.74
MiniAMR 0.49 0.0
LAMMPS 0.0 0.0
LULESH 0.24 0.16
SAGE 3.31 0.0
SPARC 6.13 0.98

One of the most important new features of the AVX512
(512-bit) wide vector instruction set introduced with the
KNL processor is the ability of the vector instructions to
utilize mask registers to selectively disable vector lanes from
computing. These features are useful for several reasons: (1)
they enable vectorization even in the presence of compli-
cated control flow (for instance, if-else structures or C-style
tertiary operators); (2) they can make the code easier to
compile/vectorize since complex flow can be handled and
smaller loops/inner loops can be unrolled and completely
vectorized with appropriate mask-generation. The downside
of mask registers being available is that they can give the
impression to the developer that the code is vectorized, when
reported by the compiler, but in practice, the lanes are so
frequently disabled that only very low-levels of compute
efficiency are obtained. In Table IV we show the percentage
of vector instructions which utilize masks for execution. For
all codes this is relatively low with a maximum of 8.18% in
the case of the CTH flat mesh runs.

Observation: vector masking is used relatively infre-
quently for all codes analyzed in this paper. From initial
inspection, it may seem that such features are therefore
redundant, however, their availability is often used by the
compiler to enable vectorization to be performed since

without it the cost-models of code sequences will often
direct the compiler to drop back to scalar execution.

D. Average Vector Lane Density when Using Vector Masks

Table V: Density of Enabled Vector Lanes when using
Vector Masking

Application Vectorized Non-Vectorized
CTH AMR Mesh 3.23 1.42
CTH Flat Mesh 2.25 0.26
MiniAMR 2.12 1.36
LAMMPS 0.0 0.0
LULESH 3.58 4.26
SAGE 6.61 0.0
SPARC 0.82 1.64

In Table IV we presented the percentage of vector instruc-
tions which utilized the masking capabilities of the VPUs
in KNL. Table V shows the density of enabled lanes when
a mask register is used, for reference the maximum value
in KNL is 8 since the vector register is 512-bits wide
and each operand occupies 64-bits. SAGE makes the most
efficient use of the mask registers with an average density
of 6.61 operands per masked-instruction. SPARC is the least
efficient at 0.82 operands which implies that some masks
disable the vector register entirely during execution to yield
less than one operand per masked-instruction. It is possible
an algorithm optimization of all zero-detection could be used
here to shortcut redundant computation.

Observation: most masked codes make low efficiency use
of the VPU when masked-instructions are executed with less
than halve the lanes being enabled. SPARC is a particularly
low efficiency code for this class of operation with some
instructions operating over fully disabled vector registers.
Such an occurrence would benefit from short circuiting
further execution.

V. CONCLUSION

Despite being a technology which dates back to the origins
of high-performance computing, vectorization continues to
be a hardware function of interest in contemporary processor
design. Moreover, the restrictions in application code that
are required for efficient vector instruction sequences to
be generated are of interest as the community progresses
towards Exascale-class systems and beyond. Particularly,
the annotation of non-overlapping data structures and the
promise of operations being side-effect/interference free are
likely to be required well into the future.

In this paper we reported on our experiences with some of
the first application ports of NNSA/ASC-relevant codes to
the newest production-class supercomputing resource – the
Trinity platform housed as Los Alamos National Laboratory.
The use of the KNL system partition showed limited early
performance improvement when vectorization was enabled.
Through the use of a custom binary analysis tool, we have



been able to perform a deeper analysis into the application
instruction sequences to determine that a limited number of
operations in all the codes analyzed are performed using
fully dense vector instructions. We evaluated the use of
vector masks, one of the novel features of the AVX512
instruction set which debuted in KNL, and showed that
applications typically make fairly infrequent use of masked
instructions, but that, when they do, the operation density is
typically low – less than half of the vector lanes are enabled
on average.

Floating point operations continue to be a minor com-
ponents of our large-scale scientific applications, in part
because of complex control flow, address calculation and
data movement. Yet, the community continues to utilize the
HPL/LINPACK benchmark as a herald of performance. Our
results show that the many in the community who question
whether HPL is a good determinant of our code perfor-
mance, may well have an accurate observation to make.
Even when we vectorize, and so enable much more efficient
compute decode and issue, we fail to find significant gains
in application performance. Such hardware structures are
built to improve LINPACK and dense-BLAS performance
but the results from this paper show we do not currently see
the benefits that such designs can bring in real applications.
This motivates deeper application work to port our codes
to vector architectures – a skill which was largely lost
during the period of rapid commodity processor frequency
improvements. Such work is likely to bring benefit not only
on the systems of today, but as described above, also the
systems of tomorrow.
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