
How Deep is Your I/O? Toward Practical Large-Scale I/O Optimization via Machine

Learning Methods

Robert Sisneros∗, Jonghoon J Kim∗, Mohammad Raji† and Kalyana Chadalavada‡

∗National Center for Supercomputing Applications

University of Illinois Urbana-Champaign, Urbana, Illinois 61801

Email: {sisneros,jkm}@illinois.edu
†University of Tennessee at Knoxville, Knoxville, Tennessee 37996

Email: mahmadza@vols.utk.edu
‡Intel Corporation, Folsom, California 95630

Email: kalyana.chadalavada@intel.com

Abstract—Performance-related diagnostic data routinely col-
lected by administrators of HPC machines is an excellent
target for the application of machine learning approaches.
There is a clear notion of “good” and “bad” and there is an
obvious application: performance prediction and optimization.
In this paper we will detail utilizing machine learning to
model I/O on the Blue Waters supercomputer. We will outline
data collection alongside usage of two representative machine
learning approaches. Our final goal is the creation of a practical
utility to advise application developers on I/O optimization
strategies and further provide a heuristic allowing developers
to weigh efforts against expectations. We have additionally
devised an incremental experimental framework in an attempt
to pinpoint impacts and causes thereof; in this way we hope
to partially open the machine learning black box and com-
municate additional insights/considerations for future efforts.

Keywords-component; formatting; style; styling;

I. INTRODUCTION

Recent developments in machine learning coincide with

an explosion of successful applications across multiple do-

mains. The ability of such techniques to combine non-

mathematical, complex, or even non-understandable combi-

nations of factors into incredibly accurate models continues

to compel adoption in new areas. In an HPC environment

however deep learning is nascent; while frameworks are

deployed and supported, use cases are still fairly few and

far between. This is expected as utilizing a machine learning

model requires development and training of the model, and

this training requires a dataset that represents a ground truth

(that must be sufficient to allow the model to determine an

answer). By nature, this is at odds with much of the at scale

science utilizing HPC resources which tends toward explo-

ration or the identification of causation, neither representing

an obvious target for applying machine learning.

However, performance-related diagnostic data routinely

collected by administrators of HPC machines is an excellent

target for the application of machine learning approaches.

First, there is a clear notion of good and bad regarding per-

formance and modeling performance has an obvious appli-

cation: performance prediction (and therefore optimization).

For the Blue Waters supercomputer, the sheer amount of data

collected offers challenges in applying machine learning,

namely ensuring proper parameters are selected, both for

the model and the input data, and that a training dataset is

not sufficient to overfit the model. Our driving application

is I/O optimization which is a routine bottleneck of HPC

workflows. There is therefore obvious benefit to modeling

I/O toward improved optimization. While the enormous

configuration space makes this a difficult task, configurations

are expressed through a relatively small number of easy-to-

understand parameters.

In this work we explore machine learning methods for

modeling application I/O on Blue Waters. We will show that

even early-stage results prove useful for I/O optimization.

The machine learning models we trained show room for

refinement as their usefulness to accurately predict a single

configuration’s throughput is limited. The overall prediction

distribution is however excellent. That is, one configuration’s

performance relative to another is accurately modeled. We

will also outline an application-level utility that we de-

veloped to leverage these models’ strengths in providing

insights for I/O optimization.

In the remainder of this paper we will first motivate the

adoption of machine learning modeling with a discussion

of the I/O configuration space in Section II. We will follow

with a brief background for both machine learning and I/O

optimization in Section III. In Section IV we will describe

I/O benchmark datasets and the codes we used to generate

them. Then in Section V we will detail the derivation and

testing of models on a small I/O benchmark dataset to gain

initial insight into the efficacy of machine learning methods

for I/O optimization. We then continue to incrementally

improve/test to track progress and highlight impacts as well

as demonstrate use of the optimization utility in Section VI.

Finally we will close with a brief discussion in Section VII.



II. MOTIVATION

In this section we motivate our choice of methods for this

work. In particular, why we are using machine learning to

create a general I/O model for Blue Waters. Blue Waters has

three distinct file systems: home file system for user home

areas, project file system for team level storage/sharing, and

a scratch file system for the large I/O of applications. All

are Cray Sonexion Lustre storage technology (Lustre 2.5

gridraid) and each has separate metadata and object storage

servers. Our target is modeling I/O on scratch file system,

the largest and fastest of the three which provides 360 object

storage targets (disks) and approximately 980 GB/s peak

throughput [1].

While modeling I/O throughput or efficiency as a function

of I/O configuration parameters seems straightforward but is

belied by the lack of such models in practice. We believe

the primary reason for this must be an overwhelming config-

uration space, one that would require a prohibitive amount

of benchmarking to adequately model. We will informally

discuss this space for Blue Waters below to illustrate the

above point and explain our reasoning for turning to machine

learning methods, namely to determine the viability of such

methods to result in accurate, general models when trained

on a significantly reduced collection of benchmark data.

There are several parameters to explain I/O configurations

such as: job size, I/O size, aggregation level, number of

files, file system settings, I/O library used, etc. The many

interdependencies among these parameters make it difficult

to clearly iterate through this space, i.e. certain values of

one parameter may be incompatible with certain values of

another and each such instance must be accounted for. We

will, therefore, look at upper bounds to provide the notion

of the I/O configuration space on Blue Waters some context.

A natural first step is characterizing an I/O operation by its

size. The largest “practical” write operation on Blue Waters

would correspond to a job running on all 22,636 XE nodes

and writing 50GB/node from each. 50GB is roughly 80% of

the available memory on the node, leaving space for other

storage requirements (node OS, states, etc.). This maximum

operation is 1.08PB. To characterize all sizes, we need a

minimum and an increment; selecting the minimum and

increment to be a single byte the total number of operation

sizes is the size of 1.08PB in bytes: 1,215,260,996,403,200.

Even using the minimum file size of 512 bytes as both

the minimum and increment reduces this number only to

2,373,556,633,600. While not a realistic characterization

of I/O operation size in practice, this is indicative of the

inherent difficulty in deploying theoretical approaches in

Modeling such a space.

Keeping size constant, we now discuss other I/O con-

figuration parameters. Staying on the XE partition, as stated

above a job may run on [1, 22636] nodes and may use [1, 32]

processors per node (PPN). We will make the simplifying

assumption that whatever processors are participating in the

operation, say a write, are writing the same amount. The

operation could write a number of files from a single file to

724,352 (nodes*PPN) files. Lustre allows configuration of

how a file is striped across disks both in the count of disks

and size of stripes. On Blue Waters, a file may live on a

single disk or striped across up to 360. We will only consider

“reasonable” stripe sizes of 64KB up to 1GB, power of

two increments for 15 total. The above parameters describe

a space of 11,687,892,956,467,200 configurations. It may

seem like this encapsulates significant overlap, for example,

a 128KB write is counted both as 64KB written from two

cores on one node as well as 64KB written from two cores

on two nodes. This is a distinction we want to account for as

the number of nodes a job is running on impacts factors such

as potential network injection bandwidth and throughput to

object storage servers.

The above number of configurations does, however, in-

clude many ill-advised Lustre striping settings. Assuming

the “right” choice is always made (which certainly is not

true in practice) the resulting number of configurations is

2,164,424,621,568. Even restraining operations to the only

power of 2 node and core counts where each file is written

to must be the same size (but again not true in practice)

the number of possible configurations is 38,132,160. This

number still does not include some parameters which have

a practical impact, such as stripe offset, but assumes all

I/O libraries are equivalent. Even this reduced number is

prohibitive for any approach relying on extensive bench-

marking.

III. BACKGROUND

A. Machine Learning

Machine learning has often been used as a viable approach

for capturing the relationship between complicated variables

and outcomes. This relationship is mainly utilized through

needs of prediction, regression, and classification. With the

advancement of deep learning in recent years, complex

inputs such as images [2], speech [3], and video [4] have

been classified using various machine learning frameworks

such as TensorFlow [5], and Caffe [6].

With various deep learning frameworks having increased

the accessibility to machine learning algorithms, new ap-

plications of older approaches have also surfaced in recent

years. For example, Yigitbasi et al. used machine learning

approaches to tune MapReduce parameters [7]. Fan et al.

used support vector machines to evaluate parallel computing

frameworks such as Spark [8].

In our work, we compare a classic support vector regres-

sion approach with a deep neural network architecture in a

new application of I/O optimization in HPC systems.



B. HPC I/O Optimization

I/O stack on contemporary HPC systems has multiple

components: application I/O profile, I/O middleware, file

system client characteristics, network topology, file system

configuration, and the file system architecture. Analyzing the

cause of poor I/O performance is a complex undertaking,

especially in large-scale parallel I/O systems comprised of

multilayered software stacks and hardware components [9].

I/O profiling and optimization is complex due to the sheer

number of factors/variables that affect the application I/O

performance. In addition to application I/O pattern, other

factors such as the system workload, other applications

performing I/O simultaneously on the system, file system

configuration, its default parameters, and file system specific

features such as Lustre striping parameters all play a role in

the the observed performance. Developers choice of I/O mid-

dleware also plays a role in the observed I/O performance.

Usually a process of experimentation and elimination

is employed to determine the optimal values for various

parameters for each application on a given system. This is

a time consuming process and is typically a less productive

use of system time and resources. As the breadth of applica-

tions and volume of data processed on systems increase, it

becomes important to be able to provide a more efficient

mechanism to achieve reasonably good I/O performance

across all applications.

Tools like Darshan [10] provide a way to characterize

the I/O profile of specific applications but users and system

administrators still have to invest time in developing an

understanding of the application behavior, and relate it to the

system configuration and its state at the time of execution.

This variability makes analysis complex.

These factors lead to a splintered approach to I/O opti-

mization, targeting specific aspects or utilizing specific prop-

erties. Examples include leveraging hardware specifics [11],

[12], developing middleware [13], and even hand tuning I/O

configurations [14].

IV. I/O BENCHMARK DATASETS

The data described below was collected on Blue Waters

during normal running conditions of the system. Beyond

ensuring the model predictions are not artificially skewed by

ideal conditions, our primary goal for this work is for the

practical application of the models. Additionally, we believe

machine learning, especially multilayered approaches, to be

capable of incorporating system noise or runtime variability

so as to better model I/O in practice. We utilize two

benchmarks to collect performance data for both typical and

exotic I/O configurations which are described below.

A. IOR

The Interleaved or Random (IOR) I/O Benchmark [15]

from Lawrence Livermore National Laboratory is an HPC

center standard [16], [17], [18] for measuring read/write

performance of parallel file systems. There are several pa-

rameters including file size, I/O transaction size, sequential

vs. random access, and single shared file vs. file-per-process.

The purpose of our IOR benchmarking is to collect data

across the spectrum of what is typical of HPC I/O. We are

therefore only measuring file-per-process and single shared

file I/O patterns. In our experience, the vast majority of ap-

plications utilize one of these methods for writing simulation

data. Furthermore, reducing the set of I/O patterns allows

for the gathering of a wide range of other configuration

parameters.

1) File-per-process (600 tests): utilizing 16 PPN we

run on the following 14 total processor counts 2i
,1 ≤ i ≤

14. File-per-process does not benefit from increased stripe

counts so the files are written to single stripes. The file sizes

are varied to correspond to multiple (12) stripe sizes between

512KB and 1GB: 2ibytes,19 ≤ i ≤ 30. For one stripe size

(32MB), we also tested PPN values of 1,2,4,8 across total

processor sizes above up to 4096. Finally, there were three

iterations of each test run.

2) Single shared file (453 tests): using similar parameter

values as the file-process-test with adjustments to accommo-

date longer test times. We use the same set of stripe sizes,

but only benchmark total processors up to 2048 (11 values).

As opposed to file-per-process, when writing to a single

shared it is crucial that stripe sizes be set appropriately. In

these tests, the stripe size was always set to min(procs,360)
with 360 being the maximum number of OSTs. At a certain

point continuing to increase I/O parallelism beyond available

OSTs will result in noticeable diminishing returns due to

additional OST and network contention. In these cases added

throughput comes at the cost of reduced efficiency. When the

tests with processor counts higher than 360 were run, we

also ran these with a stripe count of 256. We believe evenly

distributing additional contention may improve efficiency

and added this test to improve the likelihood of accurately

modeling this and other impacts the limit of 360 OSTs may

have. Similarly to file-per-process, for stripe size of 32MB

we tested PPN values of 1,2,4,8 up to 1024 processors and

again set number of iterations to three.

B. Custom Aggregation Benchmark

There are many theoretical and maybe even some useful

I/O configurations that IOR is not able to benchmark.

This was the motivation behind a custom benchmark we

developed to better understand HPC I/O [?]. That benchmark

measures I/O models between file-per-process and single

shared file across a constant I/O size. This corresponds to

a space covering many combinations of f files per node

shared across m nodes. In other words, the many ways

an I/O operation may be aggregated within a running job

are iterated. Figure 1 shows the configurations (from run

1 detailed below) in terms of overall number of processors



Figure 1: Direct display of 315 I/O models in the space of

the number of processors performing I/O vs. the number of

processors writing to each file.

vs. number of processors writing to each file and highlights

common I/O patterns.

1) Run 1 (315 tests): writing 32MB from up to 32 nodes

and for up to 16 PPN.

2) Run 2 (315 tests): writing 32GB from up to 32 nodes

and for up to 16 PPN.

3) Run 3 (826 tests): writing 512MB from up to 512

nodes and for up to 16 PPN.

4) Run 4 (675 tests): writing 512GB from up to 512

nodes and for up to 16 PPN. The reason there are fewer

possible tests for run 4 than run 3 is that serial I/O is

no longer possible. An I/O operation of this size must be

somewhat distributed to ensure proper available memory.

This run had several very slow configurations some of

which were disruptive to the file system. For this reason we

collected results for chunks iterations from the beginning,

middle, and end of the sets of configurations and completed

296 of the 675.

C. ML Training/Testing Data

The above benchmarking code differ significantly with

regard to configuration parameters. We however need to

ensure the parameter space is consistent for using both

datasets to train a machine learning model. While several

parameters are not shared across codes with some even

applicable to both, it is possible to derive the majority of

parameters from one benchmark given the input values from

the other. We wrote some simple utilities to go through the

benchmark data and create such a unified set. Additionally

though the selection of parameters to represent the config-

uration space is important in the modeling process. As in

statistical or any other modeling intervariable dependencies,

over/underrepresentation, etc. can be detrimental to resulting

quality. The following is our decided set of parameters

to describe the configuration space: nodes, PPN, number

of nodes per file, number of files per node, and I/O size

per processor. These are adequate to describe all of our

tested aggregation models and are readily derived from both

benchmark inputs. There are still some interdependencies

among these variables but arise from inherent connections

between specifying resources and resulting capabilities.

V. METHODS

A. Machine Learning Methods

We selected two machine learning mechanisms to cap-

ture the relationship between various I/O parameters and

throughput. Various degrees of efforts went into selecting the

parameters with which to tune these algorithms. For some,

there are several options with distinct theoretical capabilities

and uses. Descriptions of possible parameters is beyond the

scope of this work, we will however provide exact details

for how we tuned the algorithms.

1) Support Vector Machine: refers to a class of super-

vised learning models that create a decision surface by

fitting a set of hyperplanes to points in high dimensional

space which is then used for classification or other pur-

poses. One of these purposes is regression analysis and

this subclass is referred to as Support Vector Regressors

(SVRs). Our benchmark data as a function of configuration

to throughput is a natural fit for this approach and we

use the scikit-learn library [19]. Our selection of specific

parameters was the result of a trial-and-error process, but we

found the Radial Basis Function (RBF) kernel to consistent

produce the best results for our data. Tuning the RBF

kernel is accomplished through the setting of parameters

C, the degree to which classification error is acceptable

for smooth decision surfaces, and gamma, the impact of

a single training example. Library documentation advises

that high values for C favors correct classification and that

C and gamma be spaced exponentially far apart. We used

C = 1000,gamma = 0.1andepsilon = 0.001. Data input

to the model were normalized to be in the range [0,1].
2) Deep Neural Network: using Keras [20] which is

built on TensorFlow. Deep Neural Networks (DNNs) model

complex non-linear relationships and recent successes influ-

enced our decision to test it. We used a “Sequential” model

which is composed of a linear stack of layers. There are

several configurable options, including the number of layers

with each layer configurable as well. The other parameters

correspond how to define error (metrics, objective function)

and what approach to use to minimize it (optimizer). Our

parameter selection was again the result of trial-and-error

while working through documented example codes paired

with test data resembling our I/O configurations. We found

the Adaptive Moment Estimation (Adam) [21] optimizer to

provide the best results, and used Mean Squared Error loss

function with default metric, accuracy. We used five dense

layers in total, with three hidden layers between the input

and output layers. We specified Rectified Linear Unit (relu)

activation for the first three layers and the identity activation

function for the last. Input data for this model is normalized

to be in the range of [−1,1] to accommodate relu activation.



(a) SVR Predictions (b) DNN Predictions

Figure 2: Expected throughput (gray) alongside (a) SVR predictions (blue) and (b) DNN predictions (red). Models were

trained and tested on subsets of the aggregation benchmark data.

(a) Scaled SVR Predictions (b) SVR Model Error

(c) Scaled DNN Error (d) DNN Model Error

Figure 3: Expected throughput (gray) alongside (a) scaled SVR predictions (blue) and (c) scaled DNN predictions (red).

The resulting residual errors are also shown for each (b), (c).



B. Utility Development

The layered technical components of domain-specific con-

cepts and jargon are made deployment of machine learning

techniques far from trivial. The recent successes in the field

are nevertheless a compelling testimony to the upside of

overcoming these hurdles. The process of developing the full

framework has a convenient and extremely useful property;

difficulties in training accurate models are exclusive to that

step with subsequent model use being entirely separable

as a development effort. APIs include saving and loading

mechanisms facilitating the independent development of

codes using models. Furthermore, refined, improved, or even

alternate models are simply drop-in replacements for older

ones.

VI. RESULTS

In this section we show the incremental training and evalu-

ation of I/O models. We follow with the details and results of

a practical utility designed to provide insights to application

developers endeavoring to improve I/O performance.

A. Benchmark Tests

For our first model evaluation we trained each model

on the aggregation benchmark’s runs 2 and 3. To test we

predicted the throughput measured in run 1. The purpose of

this test is two fold. First, these are the fast running tests

and therefore make sense as an initial test while continuing

collection of larger/slower benchmark runs. Second, runs 2

and 3 will do not provide configurations for training that

correspond to the smallest I/O sizes in run 1. Given our

hope to model I/O from a reduced configuration set, such

a test can prove insightful. Figure 2 shows the predictions

of the SVR and DNN models. This figure is meant to

give perspective as to the extent to which the scales of the

predictions and expected values differ, especially apparent

in the negative predictions. We believe numerical errors are

likely to be tied to our tuning of the machine learning

algorithms. Considering our relative inexperience in fine-

tuning learning parameters for remaining results we will

show expected values and predictions on independent scales

to highlight how predictions generally variabilities across

observed configurations.

In Figure 3 we show the scaled predictions and the

model errors. The small features in the expected values

distribution corresponding to the aforementioned small-scale

configurations show large relative errors for both models.

The SVR model predicts local maxima where there are local

minima whereas the DNN correctly predicts configurations

corresponding to local peaks. The histograms of residual

errors show a somewhat wide distribution highlighting over-

all model inaccuracy. Errors unevenly centered around zero

can indicate a suboptimal set of parameters were used in

training. Both exhibit somewhat balanced, also widespread

errors overall as well as unbalanced features. While these

plots show the models are not fundamentally wrong they

also clear room for improvement.

We then trained each model on the full aggregation

benchmark I/O data and tested the models on the IOR data.

These results are shown in Figure 4. The IOR measurements

show a distribution of expected values quite distinct from

the previous test which illustrates the fundamental differ-

ences between benchmark codes. The residual error plots

show perfectly centered and significantly reduced overall

widespread errors. We believe the apparent capability of

models trained on the series of uncommon configurations

provided by the aggregation benchmark to accurately model

standard benchmarking tests serves as both a proof of

concept for this work as well as evidence for the viability of

this application of machine learning. The DNN model again

better matches the features of the distribution of expected

values and as such remaining results will be based on the

predictions of that model.

B. Optimization Utility

Our model evaluations show the consistent disparity in

scales between expected and predicted values. Across a set

of configurations ,however, the distribution is quite similarly

shaped to that of the expected values. That is, accurately

predicting performance is not as reliable as predicting simply

whether one is better than another (and even to what extent).

We have therefore developed a way utilize this information

in a utility for optimizing an application’s I/O. The scientific

value of an application is tied to a series of physics calcula-

tions that drive development, data structures, and scalability

requirements. As a result, the data distribution may not be

ideal for I/O creating or exacerbating a bottleneck. Worse

yet, the considerable effort required to optimize I/O is

readily apparent while the benefits of doing so are not.

It is exactly this our utility addresses. Simulations run

at targeted scales and an iteration’s I/O specifics are also

known. Our utility takes as input the number of nodes and

PPN for the running simulation as well as the aggregate

size of a step’s I/O operations. From this information the

utility we perform a brute-force iteration through all possible

configurations, possible for a single application. For each

configuration, performance is predicted and the full set of

configuration predictions are plotted noting expected relative

performances of typical approaches. Furthermore, an input

of currently used I/O configuration may be specified (in

terms of nodes per file, files per node, participating nodes

and PPN) and this configuration will also be noted in the

plots. For each configuration, we also show a plot of an

efficiency metric of throughput per node (or write/node-

hour) as this is how run time is measured and charged

against an allocation on Blue Waters. Together these give a

general context for measuring current performance as well

as a potential for improvement. The utility also prints the

predicted optimal configuration. Note, none of these outputs



(a) 32MB I/O throughput. (b) 32MB I/O throughput.

(c) 32MB I/O throughput. (d) 32MB I/O throughput.

Figure 4: Expected throughput (gray) alongside (a) scaled SVR predictions (blue) and (c) scaled DNN predictions (red).

The resulting residual errors are also shown for each (b), (c). The models were trained on the full aggregation benchmark

dataset and tested on the full IOR benchmark dataset.

rely on communicating the actual prediction of any single

configuration.

To show results of the utility we selected parameters

corresponding an actual application running on Blue Waters

for which we have profiled the I/O and have a general

understanding of relative performance in practice. In this

particular case single shared file, I/O was implemented to

facilitate postprocessing and resulting I/O throughput was

undesirable. The simulation was running 512 nodes, using

a total of 8192 cores and writing 5GB per simulation

iteration. While troubleshooting performance we found that

the portion of the 5GB each processor was writing was

further split across multiple simulation variables such that

each write was only 32KB. The merit of this as a test

case is that such small I/O is rare (and again wouldn’t

have been highly trained in our benchmarks) and without

significant aggregation, we would expect poor performance.

Figure 5 shows the throughput and efficiency predictions

for this application’s possible I/O configurations. The model

unexpectedly suggests these configurations with little to

no aggregation are among the best. The throughput-based

predicted optimal involves slight aggregation, compressing

16 writes per node to 4, but no longer to a shared file

but 2048 separate files. The range of negative values of

efficiency show there are some configurations the model

seems unsuited for.

Now we finally add the set of practical I/O data to our

training set and train a final DNN model on our full set

of benchmark data. The updated utility’s predictions are

displayed in Figure 6. As expected we are seeing higher

throughput associated with aggregation (file-per-node vs.

file-per-process) and that the file-per-process configuration

is no longer among the those with the highest throughput.

This time, the predicted optimal configuration is interest-

ing: 256 nodes, 16PPN writing to 512 files. However, the

configuration specifies each node writes to 8 files and that



(a) Predicted throughput (b) Predicted efficiency

Figure 5: Throughput (a) and efficiency (b) charts of predictions of possible configurations of an application’s I/O. The model

used was the DNN evaluated in Figure 4. Shared file configuration is not shown in the charts as that is the applications

current I/O model.

(a) Predicted throughput (b) Predicted efficiency

Figure 6: Throughput (a) and efficiency (b) charts of predictions of possible configurations of an application’s I/O. The

model used was refined over previous tests by training on all available benchmark data. Shared file configuration is not

shown in the charts as that is the applications current I/O model.

each file will be written to by 4 nodes. This “trick” of

increasing the number of separate nodes writing to storage

servers can improve utilization of the server’s bandwidth

as well as increase potential network injection. This likely

represents a difficult implementation but not one totally

dissimilar from other highly tuned applications. The effi-

ciency chart no longer has a section of missed predictions

and clearly communicates what we would expect, that the

majority of configurations for such small I/O would not be

efficient. Overall the model makes predictions, not at odds

with common sense and shows a better representation of

diminishing returns of highly parallel small-scale I/O.

VII. CONCLUSION

In this work we have taken some early steps toward the

creation of a practical and sustainable framework for uti-

lizing machine learning models for optimizing parallel I/O.

Even at this early stage, we have also provided evidence of

the benefits of the approach supported through our alternate

uses of model predictions. In our experience with the two

models, SVR and DNN we found the relative difficulty in

configuring the DNN learning to result in a model that

better predicts relative performance across configurations,

even when trained on fairly limited data. However, given

the consistency of results and ease of tuning accompanying

the use of SVR, we would certainly test both again given



the chance, and would recommend doing so to others. There

were some issues with the scales of our predicted values and

in a future work, we would like to reapproach tuning the ML

algorithms directed by scale adjustments.

REFERENCES

[1] “https://bluewaters.ncsa.illinois.edu/hardware-summary.”

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet
classification with deep convolutional neural networks,” in
Advances in neural information processing systems, 2012, pp.
1097–1105.

[3] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recog-
nition with deep recurrent neural networks,” in Acoustics,
speech and signal processing (icassp), 2013 ieee international
conference on. IEEE, 2013, pp. 6645–6649.

[4] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar,
and L. Fei-Fei, “Large-scale video classification with con-
volutional neural networks,” in Proceedings of the IEEE
conference on Computer Vision and Pattern Recognition,
2014, pp. 1725–1732.

[5] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,
M. Devin, S. Ghemawat, G. Irving, M. Isard et al., “Tensor-
flow: A system for large-scale machine learning.” in OSDI,
vol. 16, 2016, pp. 265–283.

[6] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-
shick, S. Guadarrama, and T. Darrell, “Caffe: Convolutional
architecture for fast feature embedding,” in Proceedings of the
22nd ACM international conference on Multimedia. ACM,
2014, pp. 675–678.

[7] N. Yigitbasi, T. L. Willke, G. Liao, and D. Epema, “Towards
machine learning-based auto-tuning of mapreduce,” in Mod-
eling, Analysis & Simulation of Computer and Telecommu-
nication Systems (MASCOTS), 2013 IEEE 21st International
Symposium on. IEEE, 2013, pp. 11–20.

[8] W. Fan, Z. Han, and R. Wang, “An evaluation model and
benchmark for parallel computing frameworks,” Mobile In-
formation Systems, vol. 2018, 2018.

[9] C. Xu, S. Snyder, V. Venkatesan, P. Carns, O. Kulkarni,
S. Byna, R. Sisneros, and K. Chadalavada, “Dxt: Darshan ex-
tended tracing,” Argonne National Laboratory (ANL), Tech.
Rep., 2017.

[10] S. Snyder, P. Carns, K. Harms, R. Ross, G. K. Lockwood,
and N. J. Wright, “Modular hpc i/o characterization with
darshan,” in Proceedings of the 5th Workshop on Extreme-
Scale Programming Tools. IEEE Press, 2016, pp. 9–17.

[11] V. Vishwanath, M. Hereld, V. Morozov, and M. E. Papka,
“Topology-aware data movement and staging for i/o acceler-
ation on blue gene/p supercomputing systems,” in Proceed-
ings of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis. ACM, 2011,
p. 19.

[12] K. Chadalavada and R. Sisneros, “Analysis of the blue waters
file system architecture for application i/o performance,” in
Cray User Group Meeting (CUG 2013), Napa, CA, 2013.

[13] M. Dorier, G. Antoniu, F. Cappello, M. Snir, and L. Orf,
“Damaris: How to efficiently leverage multicore parallelism
to achieve scalable, jitter-free i/o,” in Cluster Computing
(CLUSTER), 2012 IEEE International Conference on. IEEE,
2012, pp. 155–163.

[14] S. Byna, R. Sisneros, K. Chadalavada, and Q. Koziol, “Tuning
parallel i/o on blue waters for writing 10 trillion particles,”
Cray User Group (CUG), 2015.

[15] “IOR: interleaved or random hpc benchmark.” [Online].
Available: https://github.com/chaos/ior

[16] H. Shan and J. Shalf, “Using IOR to analyze the I/O per-
formance for HPC platforms,” in Cray Users Group Meeting
(CUG) 2007, Seattle, Washington, May 2007.

[17] P. Wauteleta and P. Kestener, “Parallel io performance and
scalability study on the prace curie supercomputer,” Partner-
ship For Advanced Computing in Europe (PRACE), Tech.
Rep., September 2009.

[18] Demonstrating lustre over a 100Gbps wide area network of
3,500km, Salt Lake City, Utah, 11/2012 2012.

[19] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg et al., “Scikit-learn: Machine learning in python,”
Journal of machine learning research, vol. 12, no. Oct, pp.
2825–2830, 2011.

[20] F. Chollet et al., “Keras,” https://keras.io, 2015.

[21] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” arXiv preprint arXiv:1412.6980, 2014.


